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Abstract 
This study aims to establish a rationale for the Rice University rule in deter-
mining the number of bins in a histogram. It is grounded in the Scott and 
Freedman-Diaconis rules. Additionally, the accuracy of the empirical histo-
gram in reproducing the shape of the distribution is assessed with respect to 
three factors: the rule for determining the number of bins (square root, 
Sturges, Doane, Scott, Freedman-Diaconis, and Rice University), sample size, 
and distribution type. Three measures are utilized: the average distance be-
tween empirical and theoretical histograms, the level of recognition by an ex-
pert judge, and the accuracy index, which is composed of the two aforemen-
tioned measures. Mean comparisons are conducted with aligned rank trans-
formation analysis of variance for three fixed-effects factors: sample size (20, 
35, 50, 100, 200, 500, and 1000), distribution type (10 types), and empirical 
rule to determine the number of bins (6 rules). From the accuracy index, Rice’s 
rule improves with increasing sample size and is independent of distribution 
type. It outperforms the Friedman-Diaconis rule but falls short of Scott’s rule, 
except with the arcsine distribution. Its profile of means resembles the square 
root rule concerning distributions and Doane’s rule concerning sample sizes. 
These profiles differ from those of the Scott and Friedman-Diaconis rules, 
which resemble each other. Among the seven rules, Scott’s rule stands out in 
terms of accuracy, except for the arcsine distribution, and the square root rule 
is the least accurate.  
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1. Introduction 

Lane [1] presents the Rice University rule as a straightforward and practical me-
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thod that appears to perform well across various sample sizes without assuming 
any specific distribution. Additionally, the author asserts that it enables the ef-
fective visualization of distribution shapes [2]. In practice, the rule is employed 
in applied research [3]. However, the rationale behind the rule is not provided, 
and it has received limited attention in the literature. One of the few studies in-
vestigating this rule is conducted by Sahann, Müller, and Schmidt [4]. In their 
research, they explore the correlation between the number of intervals required 
for a user to recognize a distribution and the number of intervals generated by 
four empirical rules. They conclude that the Scott, Rice University, and Freed-
man-Diaconis rules tend to overestimate the number of intervals. The Sturges 
rule emerges as the most suitable among the four, and they ultimately recom-
mend using a fixed number of 20 class intervals. Their study incorporates four 
different distributions: uniform, normal, bimodal, and gamma, and four sample 
sizes: 100, 1000, 10,000, and 1,000,000. The user sample comprises 100 computer 
science students. Consequently, in this validation study, Rice’s rule does not stand 
out as a preferable choice. 

The present study aims to provide a rationale for the Rice University rule based 
on the Scott and Freedman-Diaconis rules. Additionally, it seeks to assess the 
accuracy of the empirical histogram regarding six rules for determining the num-
ber of bins, including five classical rules: Pearson’s square root [5], Sturges [6], 
Doane [7], Scott [8], and Freedman-Diaconis [9], along with the Rice University 
rule [1]. The study does not initially emphasize one rule over another. The as-
sessment includes two additional factors: sample size and distribution type, con-
sidering both their principal effects and the interactions of second and third or-
der among the three factors. 

It begins with the presentation of a historical note on the histogram and six 
empirical rules to determine the number of class intervals. When the Rice Uni-
versity rule [1] is presented, its rationale is developed from the rules of Scott [8] 
and Freedman-Diaconis [9]. 

The second objective of the study is pursued by randomly drawing five dis-
tinct samples from a standard continuous uniform distribution across seven dif-
ferent sizes: 20, 35, 50, 100, 200, 500, and 1000 data points. Employing the in-
verse transform sampling method, a total of 350 samples are generated, incor-
porating 10 distribution types. These distribution types encompass two meso-
kurtic symmetric distributions: normal N (μ = 5, σ2 = 6.25) and beta (α = 30, β = 
30); two leptokurtic symmetric distributions: Laplace (μ = 5, β = 2.5) and logistic 
(μ = 5, s = 2.5); two platykurtic symmetric distributions: arcsine (a = 1, b = 1) 
and semicircular (R = 2); two distributions exhibiting skewness and platykurto-
sis: triangular (a = b = 0, c = 1) and PERT (a = 1, b = 4, c = 5); and two distribu-
tions featuring skewness and leptokurtosis: exponential (λ = 1/2) and lognormal 
(μ = 0, σ2 = 0.25). Subsequently, the six rules are applied to these 350 samples, 
resulting in the generation of 2100 empirical histograms (5 samples of 7 sizes of 
10 distributions for 6 rules). 
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The probability of k class intervals in each of the 2100 empirical histograms 
was calculated using the cumulative distribution function of the corresponding 
distribution. This process generated the expected relative frequencies or theoret-
ical probabilities. The distance between the relative frequencies and the expected 
probabilities of the class intervals was then measured using the average Eucli-
dean distance, referred to as the average discrepancy. 

On the other hand, a sample of 1000 uniformly distributed data with perfect 
symmetry was generated in the interval [0.001, 0.999], equispaced at a distance 
of 0.000998. Using the corresponding quantile function, 10 distributions were 
generated. A probability density function plot for each of the 10 distributions, 
bounded to the range of the random sample, served as a theoretical model to vi-
sually assess whether the empirical histogram accurately reproduces the distri-
bution curve. The visual evaluation was conducted by an expert judge using a 
scale of four ordered categories, referred to as recognition level. 

The means of the average discrepancy and the recognition level are compared, 
taking into account three factors: rule, distribution, and sample size, through 
analysis of variance with aligned rank transformation. Additional details are 
provided in the Method section. Following the explanation of the study’s me-
thodology, the Result section is presented, and conclusions are subsequently 
drawn. 

2. Historical Note on the Histogram 

In 1833, the histogram was introduced by the French lawyer and statistician 
André Michel Guerry [10] as an approximation of a discrete empirical distribu-
tion to a continuous distribution function in the study of crimes and suicides in 
France. The English nurse Florence Nightingale [11] utilized histograms to com-
pare the mortality of soldiers and civilians in her work on sanitation in the British 
army during the Crimean War against Russia, published in 1859. However, these 
authors simply named their graphic representations and did not use the neolog-
ism “histogram”, composed of the Greek words “histos” (ιστοσ) (which can be 
translated into English as “mast”) and “gramma” (γραµµα) (which can be trans-
lated as “graph” or “drawing”). Thus, this term, in its etymological sense, refers 
to a graph of masts or vertical bars [12]. 

The statistical term “histogram” was coined by Karl Pearson (1857-1936) and 
first used in his lecture on maps and cartograms in 1891, during his tenure as a 
professor of geometry at Gresham College. In this lecture, Pearson explained 
that histograms could be used to represent historical information about reigns, 
sovereigns, or prime ministers of different periods [13]. However, it wasn’t until 
1895 that the term “histogram” appeared in a written publication by Pearson 
when he presented his system of continuous distributions. In contrast to Guerry, 
Pearson discretizes a continuum of values into k class intervals to create the at-
tached rectangles seen in the histogram, representing the areas under the conti-
nuous distribution [14]. 
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It is noteworthy that the histogram serves as a highly valuable graphical tool 
for comprehending the shape of a distribution and found extensive use in Karl 
Pearson’s development of his system of frequency curves [14]. The histogram 
allows for the graphical representation of the sampling distribution of a conti-
nuous random variable. This involves grouping the n sample values within a 
continuous range into k class intervals. Each interval is represented in the histo-
gram by a rectangle, with its area corresponding to its relative frequency. 

On the horizontal or abscissa axis, the k intervals are arranged and can be la-
beled with their two limits in brackets or parentheses [LI, LS) or with a singular 
value (the class mark). This axis can take values from 0 to +∞, from −∞ to +∞, 
or be bounded [−a, a], depending on the domain of the variable. Consequently, 
this horizontal axis may correspond to the upper two quadrants of a Cartesian 
coordinate axis when the bar chart uses only the first quadrant (of positive val-
ues). Contiguous intervals are placed next to each other, reflecting the conti-
nuous nature of the variable. 

On the vertical or ordinate axis, the heights of the intervals are positioned. 
The height is determined by dividing the relative frequency by the width of the 
interval: hi = fi/ai. These representations constitute the density histogram. While 
resembling a bar chart, the bars are connected, the X-axis values have a mathe-
matical meaning, and their areas correspond to the relative frequency of the in-
terval. 

The most common practice is for the intervals to have the same width, a de-
termination guided by empirical rules such as the square root, Sturges [6], Doane 
[7], Scott [8], Freedman and Diaconis [9], and the Rice University rule [1]. 
Another option is to maintain homogeneity in density or frequency within each 
interval while allowing variable width. This approach is recommended when uti-
lizing Pearson’s chi-square test to assess the goodness-of-fit between the empiri-
cal distribution and a theoretical distribution [15]. Additionally, various algo-
rithms exist for minimizing integrated mean square error [16], hazard function 
[17], or entropy [18]. 

There exists a variant of the histogram that sees more general usage when 
dealing with datasets featuring numerous values that have been grouped into 
class intervals. This variant is known as a frequency histogram, wherein the in-
tervals of values share the same width and are positioned adjacent to each other. 
For each interval, a rectangle is drawn to a height corresponding to its absolute 
or simple relative frequency. In this case, the area under the curve is not equal to 
the frequency of the interval, as in the density histogram, but is a value propor-
tional to it. Consequently, it resembles a bar chart where the bars are connected 
to each other. This approach ensures the preservation of the data’s nature, avoid-
ing the imposition of continuity on a discrete quantitative variable or the forced 
attribution of a quantitative and continuous character to an ordinal variable. The 
study uses this variant of the histogram for data analysis in order to facilitate its 
extrapolation to studies in the field of Psychology and related sciences. 
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3. Class Intervals When Tabulating and Graphing Sample  
Data 

When dealing with a continuous quantitative variable and aiming to construct a 
frequency table, it is necessary to establish class intervals for conducting the fre-
quency count. Once the table is defined, the data can be visually represented 
through a histogram. Class intervals are contiguous and non-overlapping ranges 
of values for the variable that adhere to two key principles: ordering and com-
pleteness. The ordering principle ensures the intervals are continuous and con-
secutive, while the completeness principle ensures that all sample data falls 
within a single interval, maintaining exclusivity. 

During the creation of the table, the challenge arises in determining the num-
ber of class intervals (k) and deciding whether the intervals will have the same 
width (w) or not (wi; i = 1, 2, …, k). Here, the width of the class interval is de-
fined as the difference between its upper limit (ULi) and lower limit (LLi): wi = 
ULi − LLi. 

It is recommended that the width of the intervals be constant (w), except for 
the two extreme intervals when long tails are generated by outliers. In this case, 
the width of these two extreme intervals can be much larger to encompass these 
low-frequency data points that are far away from the others. 

There are several automatically applied or programmable rules for defining 
the number of class intervals, which can be classified into three groups [19] [20]. 
One group of rules starts by defining the constant amplitude, represented by a 
positive real number (w), and subsequently determines the number of intervals 
(k), which is a natural number. Within this group are rules designed to minimize 
an argument, typically either the integrated mean square error or the loss func-
tion [21]. Another set of rules begins by specifying the number of intervals (k), 
and from there determines the constant amplitude (w). In both groups of rules, 
the frequency or amount of data per interval (ni) is variable. A third set of rules 
starts by setting the number of class intervals (k), and then establishes the ho-
mogeneous density or constant amount of data per interval (n), whereby the 
amplitude remains variable (wi). This last strategy is employed to optimize the 
power of the goodness-of-fit chi-square test [15], and is not developed in this 
paper. 

3.1. From the Constant Amplitude to the Number of Class  
Intervals 

Within the first group, where rules define the constant amplitude (w) and sub-
sequently determine the number of class intervals (k), the rules proposed by 
Scott [8] and Freedman and Diaconis [9] stand out for their simplicity and ana-
lytical formulation. Each of them is outlined below. 

3.1.1. Scott’s Rule (1979) 
This rule assumes that the variable X follows a normal distribution and is 
grounded in the minimization of the integrated mean square error [8]. The am-
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plitude (w) is derived from the quotient between 3.49 times the sample standard 
deviation (with the Bessel correction) and the cube root of the sample size (Equ-
ation (1)). 
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The number of intervals (k) is determined by rounding up the quotient of the 
total range (R) divided by the amplitude (w). See Equation (2). 
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Another option is to recalculate the constant amplitude (ac) so that the k class 
intervals fall within the total range of the sample (R), inclusive of its minimum 
and maximum values but not exceeding them. Once the number of class inter-
vals (k) is determined, the constant amplitude of the intervals is adjusted to 
match the sample range: ac = R/k. 

3.1.2. Freedman-Diaconis Rule (1981) 
Freedman and Diaconis [9] make no assumptions about the distribution. This 
rule arises as a modification of Scott’s rule designed to enhance robustness to 
outliers. It is derived from the quotient of twice the interquartile range and the 
cube root of the sample size (Equation (3)). 
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RIQ = q0.75 – q0.25 = interquartile range. 
q0.75 = third sample quartile or 0.75 order quantile. 
q0.25 = first sample quartile or 0.25 order quantile. 
Optionally, the interval amplitude obtained (a) can be adjusted to remain 

within the sample range, encompassing both the minimum and maximum val-
ues without exceeding them. The adjusted amplitude (ac) would be the quotient 
of the range and the number of class intervals: ac = R/k. 

To calculate the third and first quartiles, and subsequently obtain the inter-
quartile range, one can utilize an interpolation rule based on the expected value 
or mean of the i-th order statistic from samples of size n drawn randomly from a 
continuous uniform distribution U[0, 1]. This order statistic follows a beta dis-
tribution with shape parameters: α = i and β = n + 1 − i [22], whose mean is: μ = 
α/(α + β) = i/(n + 1). This rule is often referenced as rule 6 in R [23]. The SPSS 
program calculates sample quantiles using this rule [24]. When applying the 
functions CUARTIL.EXC and PERCENTIL.EXC in the Excel program, which 
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exclude quantile orders 0 and 1 from the calculation, this rule is employed [25]. 
When dealing with a normal sample distribution, the application of rule 9 is 

recommended in R [23]. In general, Hyndman and Fan [26] suggest utilizing 
rule 8 in the R program, which relies on the median of the distribution of the 
i-th order statistic in random samples of size n drawn from a standard conti-
nuous uniform distribution. This distribution follows the beta distribution men-
tioned earlier in the previous paragraph. The PERCENTILE_EXC function from 
the Real Statistics Resource Pack package facilitates the calculation of sample 
quantiles using these rules [25]. It’s worth noting that this package also offers the 
Harrell-Davis robust (distribution-free) procedure for estimating quantiles. This 
procedure can be particularly useful with bimodal data, such as samples from the 
arcsine distribution, as well as very heavy-tailed symmetric distributions like the 
Cauchy, and asymmetric distributions such as the lognormal [27]. 

In both rules, after determining the constant or homogeneous amplitude, the 
process of constructing class intervals begins with identifying the minimum val-
ue in the sample. The amplitude is added to this minimum value, defining the 
lower limit of the first class interval. The upper limit of this interval becomes the 
lower limit of the next interval, and the amplitude is added again. This process 
continues until the maximum sample value in the k-th interval is included or 
exceeded. The number of class intervals (k) is calculated as the upwardly 
rounded quotient of the total sample range and the constant amplitude of the 
intervals: k = ⌈R/w⌉. When using the Frequency function in the Excel program 
for frequency counting, the class interval is considered closed at its upper limit 
and open at its lower limit. However, an exception is made for the first interval, 
which includes the lower limit or sample minimum. This study utilizes Excel 
version 2021 as the software program. 

3.2. From the Constant Amplitude to the Number of Class  
Intervals 

Within the second group, which defines k class intervals and, from k, obtains the 
constant amplitude w, four rules stand out: square root [5], Sturges [6], Doane 
[7], and Rice University [1] [2]. Each of them is defined below. 

3.2.1. Square Root Rule 
Karl Pearson introduced the square root rule in his book “The Grammar of 
Science”, published in 1892 [5]. Hence, it is the oldest rule for determining the 
number of class intervals [14]. This rule is implemented in various statistical 
packages and is commonly used in data analysis [28]. It is particularly recom-
mended for sample sizes smaller than 100 [1] [29]. The rule is based on parti-
tioning the n sample data into k groups of approximately k elements [6] (Equa-
tion (4)). 

 
times

2

k

n k k k k k k= + + + = × =


  (4) 

By isolating the variable k in the Equation (4), we find that the number of 
class intervals is the square root of the sample size rounded up (Equation (5)). 
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 k n =    (5) 

3.2.2. Sturges’ Rule (1926) 
Esta regla asume simetría en la distribución y se basa en la aproximación de la 
distribución binomial B (n = k − 1, p = 1/2) a la distribución normal cuando k 
tiende a infinito. Se sugiere para tamaños de muestra de 100 a 1000 (100 ≤ n ≤ 
1000). Sin embrago, no está recomendada para tamaños muy grandes, pues 
resulta un número muy pequeño de intervalos de clase [30] [31]. 

This rule assumes symmetry in the distribution and relies on approximating 
the binomial distribution B (n = k − 1, p = 1/2) to the normal distribution N (μ = 
(k − 1)/2, σ2 = (k − 1)/4) when k tends to infinity. It is recommended for sample 
sizes ranging from 100 to 1000 (100 ≤ n ≤ 1000). However, it is not advisable for 
very large sample sizes, as it leads to a very small number of class intervals [30] 
[31]. 

Sturges [6] proposes that, if one has a sample of 16 data, taking as a model the 
binomial distribution B (n = 4, p = 1/2), one could allocate these 16 elements in-
to five groups or class intervals with the following frequencies: 1 data point for 
class 1, 4 data points for class 2, 6 for class 3, 4 for class 4, and 1 for class 5. 
When expressing 16 as a power of 2, the number of class intervals (k) corres-
ponds to the exponent of this power increased by one unit: 16 = 24, k = 4 + 1 = 
5. If there are 32 elements, based on a binomial distribution B (n = 5, p = 1/2), 
they would be allocated into six groups or class intervals with the following dis-
tribution: 1 data point for class 1, 5 data points for class 2, 10 for class 3, 10 for 
class 4, 5 for class 5, and 1 for class 6. When expressing 32 as a power of 2, the 
number of intervals (k) corresponds to the exponent plus one: 32 = 25, k = 5 + 1 
= 6. 

In this approach, the n elements are distributed among k containers or bins, 
considering all distribution possibilities in the context of random sampling, 
without prior knowledge of the number of containers. For the first bin, the count 
includes the number of zero-element groups. In the second bin, it counts the 
number of one-element groups, and this pattern continues, increasing by one 
until the k-th bin is reached, where the elements remain in a single group. Con-
sequently, the number of elements to form different groups is k − 1, with the 
order of the k − 1 elements being irrelevant, and no element repetition is allowed 
within each bin. 

Expressed in arithmetic terms, the options for the first bin involve combina-
torics without repetition of k − 1 elements taken in groups of 0 elements, result-
ing in one option. The options for the second bin involve combinatorics without 
repetition of k − 1 elements taken in groups of 1 element, resulting in k options. 
The options for the third bin involve combinatorics without repetition of k − 1 
elements taken in groups of 2 elements, resulting in [k × (k − 1)]/2 options. The 
options for the k-th bin involve combinatorics without repetition of k − 1 ele-
ments taken in groups of k − 1 elements, resulting in one option. The sum of 
these k combinatorics without repetition results in the total of n elements, which 
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is equivalent to 2 raised to the power of k − 1 (Equation (6)). 
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The value of k is isolated from the Equation (6) and rounded upwards (Equa-
tion (7)). 
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The Sturges rule is widely used and recommended. However, as highlighted 
by Hyndman [32], it is not universally applicable. The rule performs inade-
quately with small and very large samples. It relies on an approximation of the 
symmetric binomial distribution to the normal distribution. Consequently, dev-
iations from symmetry, such as a distribution with a heavy or elongated tail, or a 
marked departure from normality, for instance, a distribution with both tails 
heavily weighted or elongated, can negatively impact its accuracy. 

3.2.3. Doane’s Rule (1976) 
It is a variant of the Sturges rule used in the presence of a skewed distribution 
[33]. The number of bins is determined by the formula provided in Equation (8): 

 

( )

( ) ( ) ( )

( ) ( ) ( )

1

1

1

1
2 2

1

1

1 log log 1

1 log log 2 log 1 log 2

1 log log 2 ln 1 ln 2

b

b

b

b
k n

s

b
n

s

b
n

s

 
 = + + +
 
 

 

 
 


  = + + +
  

  
 

 



  = + + +
  

  



 (8) 

In this formula, the skewness measure is the skewness coefficient based on 
Karl Pearson’s standardized third central moment [5]. It can be obtained from 
the sample mean of the cubed standardized values (with the standard deviation 
without the Bessel correction), as shown in Equation (9). 
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The standard deviation or error of Karl Pearson’s [34] skewness coefficient 
(√b1) is calculated using the population formula proposed by Egon Sharpe 
Pearson [35] for a variable with a normal distribution. This formula relies solely 
on the sample size (n) and remains valid even when the distribution of the vari-
able is not normal, provided it has a finite mean and variance, and as the sample 
size (n) tends to infinity (Equation (10)). 
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( )( )
2

1
6 2

~ 0,
1 3
n

b N
n n

µ σ
 −

= =  + + 
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3.2.4. Rice University Rule 
It was developed in the statistics department at Rice University [1] [2] and, like 
the square root and Sturges rules, depends solely on the sample size. According 
to this rule, the number of class intervals (k) is determined by rounding upward 
twice the cube root of the sample size, as shown in Equation (11). This factor 
precisely corresponds to the denominator of the rules proposed by Scott [8] and 
Freedman and Diaconis [9]. 

 1 332 2k n n   = × = ×     (11) 

It can be seen as a simplification of these rules when the homogeneous ampli-
tude (w) is redefined to include the minimum and maximum values of the sam-
ple without exceeding them (⌈R/w⌉ = kaj; waj = R/kaj) and a value approximating 
is given the range. This value is about seven times the sample standard deviation 
from the Scott’s rule (Equation (12)) or eight times the semi-interquartile range 
from Freedman-Diaconis rule (Equation (13)). These broad ranges allow for the 
inclusion of extremely atypical cases, defined as those more than three standard 
deviations from the mean or more than three times the interquartile range from 
the median. 
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After determining the number of intervals (k) using one of these four rules, 
the constant amplitude (w) is obtained by dividing the sample range (numera-
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tor), or the difference between the maximum value (minuend) and the mini-
mum value (subtrahend) of the sample, by the number of intervals (denomina-
tor), as shown in Equation (14). 

 
{ }( ) { }( )1 1

max minn n
i ii i

x xRw
k k

= =
−

= =  (14) 

4. Method 

On the one hand, 35 samples were randomly drawn from a standard continuous 
uniform distribution with seven different sizes (20, 35, 50, 50, 100, 100, 200, 500, 
and 1000), five samples for each size. The extraction was performed using the 
Excel random number generator. 

{ } [ ]1
u 0,1n

i i
u U

=
= ⊂  

Using the inverse transform sampling method, a total of 350 samples were 
generated from the initial set of 35 uniformly distributed samples. Seventy of 
these samples followed symmetric mesokurtic distributions. Specifically, 35 
samples were drawn from a normal distribution with a location parameter μ = 5 
and a squared scale σ2 = 6.25 (Equation (15)), and the other 35 samples were 
generated from a beta distribution with shape parameters α = 30 and β = 30 
(Equation (16)). 

 ( ) ( ) ( )1 1 25 2.5 ; ~ 5, 6.25i ix u X N µ σ− −Φ = + Φ = =  (15) 

 ( ) ( ) ( )1 30, 30 ; ~ Beta 30, 30
iX i uQ u I Xα β α β−= = = = =  (16) 

Out of the total of 350 samples, 70 followed leptokurtic symmetric distribu-
tions, Specifically, 35 were drawn from the Laplace distribution with a location 
parameter μ = 5 and a scale parameter β = 2.5 (Equation (17)), and the remain-
ing 35 were obtained from the logistic distribution with a location parameter x₀ 
= 5 and a scale parameter γ = 2.5 (Equation (18)). 
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uQ u X s
u

µ
 

= + × = = − 
 (18) 

Out of the total of 350 samples, 70 followed symmetric platykurtic distribu-
tions. Specifically, 35 were drawn from the arcsine distribution with threshold 
parameters 0 and 1 (Equation (19)), and the remaining 35 from the semicircular 
distribution with a radius of 2 (Equation (20)). The standard arcsine distribution 
is equivalent to a beta distribution of shape parameters: α = 0.5 and β = 0.5, 
whose quantile function corresponds to an inverse regularized incomplete beta 
function: 1

uiI −  (α = 0.5, β = 0.5), as seen in Equation (20) The semicircular dis-
tribution with parameter R (radius) corresponds to a beta distribution of shape 
parameters: α = 1.5 and β = 1.5, once transformed: X = 2 × R × (B − 1), where B 
~ Beta (α = 0.5, β = 0.5) and X ~ Arcsine (R = 2), as shown in Equation (21). 

https://doi.org/10.4236/ojs.2024.141006


J. M. D. L. Rubia 
 

 

DOI: 10.4236/ojs.2024.141006 130 Open Journal of Statistics 
 

 
( ) ( )

( ) ( )

1 0.5, 0.5 ;

~ Arcoseno 0, 1 Beta 0.5, 0.5
iX i uQ u I

X a b

α β

α β

−= = =

= = ≡ = =
 (19) 

 ( ) ( ) ( )14 1.5, 1.5 2; ~ Semicircular 2
iX i uQ u I X Rα β−= = = − =  (20) 

Out of the total of 350 samples, 70 followed distributions with skewness and 
platykurtosis. Specifically, 35 were drawn from the triangular distribution with 
parameters a = b = 0 and c = 1 (Equation (21)), and the remaining 35 from the 
PERT distribution with parameters a = 1, b = 4 and c = 5, where a is the mini-
mum, b is the peak or mode and c is the maximum (Equation (22)). 

 ( )1 1 ; ~ Triangular 0, 0, 1iX u X a b c= − − = = =  (21) 
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Finally, out of the total 350 samples, 70 followed distributions with skewness 
and leptokurtosis. Specifically, 35 were drawn from an exponential distribution 
with a rate parameter λ = 1/2 (Equation (23)), and the other 35 are obtained 
from a lognormal distribution with a location parameter μln(X) = 0 and a scale 
parameter σln(X) = 0.25 (Equation (24)). 

 ( ) ( ) ( )2ln 1 ; ~ exp 0.5X i iQ u u X λ= − − =  (23) 
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The six empirical rules for determining the number (k) and width (w) of bins 
were applied to the 350 random samples, resulting in 2100 empirical histograms. 
The probability of the k class intervals (I) of each empirical histogram was cal-
culated using the cumulative distribution function of the corresponding distri-
bution to generate the theoretical histogram. The difference between the empir-
ical and theoretical histograms was measured using the average Euclidean dis-
tance between the relative frequency fn(Ii) and the expected probability pX(Ii) for 
each bin ( 1,2, ,i k=  ). This difference is referred to as the Average Discrepancy 
(AD) and is shown in Equation (25). 
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On the other hand, a sample of 1000 uniformly distributed data with perfect 
symmetry was generated in the interval (0, 1), starting at 0.001 and ending at 
0.999, with a data spacing of 0.000998. Ten theoretical samples were created us-
ing the corresponding density functions to represent their density curves. Each 
density curve, confined within the sample range, was used to visually assess (by a 
single judge) whether the empirical histogram reproduces the curve corres-
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ponding to the distribution, using four ordered categories: 1 = not at all, 2 = a 
little, 3 = quite a lot, and 4 = completely, referred to as the Recognition Level 
(RL). 

An index, termed the Accuracy Index (AI), was established using the Average 
Discrepancy (AD) and Recognition Level (RL). Initially, the difference between 
empirical and theoretical histograms (AD) is transformed into scores ranging 
from 1 to 4, where 4 signifies maximum accuracy and 1 denotes minimum inac-
curacy among the 2100 samples (5 samples per triple condition: 10 distribution 
types × 7 sample sizes × 6 rules), as shown in Equation (26). 
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 (26) 

Subsequently, AD and RL are summed, resulting in a random variable (DT) 
with a potential range of 2 to 8 (Equation (27)). This combined variable is then 
transformed into the Accuracy Index (AI) with values ranging from 0 to 100, 
where 0 signifies total inaccuracy and 100 indicates total accuracy (Equation 
(28)). 

 RLTS D= +  (27) 

 ( )
( ) ( )

min 22AI 100 100 100
max min 8 2 6

TS S D GRS
S S
− + −−

= × = × = ×
− −

 (28) 

The normality of the distributions for AD, RL, and AI was assessed using Sha-
piro-Francia W’ test [36] and K2 test [37]. Means for each of the three variables 
were compared across three factors: rule (six levels), sample size (seven levels), 
and distribution (ten levels). This was done through a three-factor aligned rank 
transformation analysis of variance [38]. Pairwise comparisons were conducted 
using Fisher’s least significant difference test [39] with Holm-Bonferroni correc-
tion applied to control the family rate error [40]. The effect size was estimated 
using the partial eta coefficient: η2 = F × df1/(F × fd1 + df2). Interpretation of η2 
values was as follows: less than 0.02 indicates a very small effect size, between 
0.02 and 0.129 is considered small, between 0.13 and 0.259 is medium, and 
greater than or equal to 0.26 is considered large [41] [42]. Data analyses were 
performed using EXCEL 2023, IBM SPSS Statistics 29, and R 4.3. The signific-
ance level was set at 0.05. 

5. Results 
5.1. Average Discrepancy (AD) 

The distribution of the average discrepancy between the observed and expected 
histograms (AD) showed positive skewness or right-tailedness (g1 = 1.237, 95% 
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CI [1.133, 1.342]) and platykurtosis or shortened tails with respect to the shoul-
ders (g2 = −0.227, 95% CI [−0.332, −0.122]). This indicates a departure from a 
normal distribution (Shapiro-Francia W’ statistic = 0.885, p < 0.001; 
D’Agostino-Berlanger-D’Agostino K2 statistic = 433.868, p < 0.001). See Figure 
1. 

In comparing the means of AD across the factors of Distribution type (D), 
Sample size (n), and Rule to determine the number and width of class intervals 
(Rule) using aligned rank transformation analysis of variance, the main effect of 
all three factors was found to be significant (Table 1). 

The effect size of Sample size on AD was large (Table 1). The larger the sam-
ple size, the smaller the AD (Figure 2). The linear correlation, as indicated by 
Spearman’s coefficient, between Sample size (n) and ranks (aligned with respect 
to the Sample size) for AD is very high: rS = −0.925, p < 0.001. 
 

 

Figure 1. Box plot (left graph) and histogram with the density curve by Kernel (Gaussian) 
estimation superimposed (right graph) of AD. The width and number of class intervals 
was established by the Friedman-Diaconis rule. 
 
Table 1. Aligned rank transform ANOVA for the average discrepancy between the 
observed and expected frequencies of class intervals. 

Factors SS df1 df2 MS F p-value pη2 ES 

D 62706824.74 9 1680 6967424.97 17.37 <0.001 0.085 s 

n 678789373.9 6 1680 113131562.32 2097.68 <0.001 0.882 l 

Rule 34437330.12 5 1680 6887466.02 16.46 <0.001 0.047 s 

D × n 41067732.2 54 1680 760513.56 1.82 <0.001 0.055 s 

D × Rule 1502654.22 45 1680 33392.32 0.08 1 0.002 vs 

n × Rule 44323209.93 30 1680 1477440.33 3.57 <0.001 0.060 s 

D × n × Rule 98998460.43 270 1680 366660.96 0.95 0.686 0.133 m 

Note. Factors: D = Distribution type, n = Sample size, Rule = Rule to determine the 
number and width of class intervals, × = interaction between factors. SS = sum of squares, 
df = degrees of freedom, MS = mean squares, F = testing statistic, p-value = right-tailed 
probability in a Snedecor-Fisher F distribution with degrees of freedom df1 and df2, pη2 = 
partial eta squared as effect size estimator, ES = effect size (Cohen, 1992): l = large, m = 
medium, s = small, and vs = very small. 
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Figure 2. Plot of means conditioned on Sample Size of the ranks (aligned with respect to 
the Sample Size) for AD. 
 

The size of the effect of the distribution on AD was small (Table 1). The low-
est mean rank (aligned with respect to the distribution) for the AD appeared 
with the exponential distribution, while the highest mean rank was observed 
with the arcsine distribution. 

Out of 45 pairwise comparisons, 25 (55.6%) were found to be significant after 
Holm-Bonferroni correction. The normal distribution exhibited a significantly 
lower mean rank than the arcsine and a higher mean rank than the exponential 
distribution. The beta distribution showed a lower mean rank than the arcsine 
and a higher mean rank than the exponential, Laplace, logistic, and lognormal 
distributions. The Laplace distribution had a significantly lower mean rank than 
the arcsine, semicircular, triangular, and PERT distributions. The logistic distri-
bution also had a lower mean rank than the arcsine, semicircular, triangular, and 
PERT distributions, but a higher mean rank than the exponential. The arcsine, 
semicircular, triangular, and PERT distributions had higher mean ranks than the 
exponential and lognormal. The exponential distribution had a lower mean rank 
than the lognormal (Figure 3). 

The effect size of the Rule on AD was small (Table 1). Out of the 15 differ-
ences, 10 (66.7%) were found to be significant after Holm-Bonferroni correction. 
The square root rule and Doane had the lowest mean ranks (aligned with respect 
to the Rule) for AD, while Scott’s had the highest mean rank. The average ranks 
of the square root and Rice rules were significantly lower than those of the Scott, 
Friedman-Diaconis, and Sturges rules. The mean rank of the Sturges rule was 
significantly lower than that of the Scott rule but higher than that of the Doane 
rule. The mean rank of the Doane rule was significantly lower than those of the 
Scott and Friedman rules. The mean ranks of the square root, Rice, and Doane 
rules were equivalent. The Friedman-Diaconis rule had an average rank equiva-
lent to that of Sturges and Scott (Figure 4). 
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Figure 3. Plot of means conditional on the Distribution type of the ranks (aligned with 
respect to the Distribution type) for AD. 
 

 

Figure 4. Plot of means conditional on the Rule of the ranks (aligned with respect to the 
Rule) for AD. 
 

The interaction of Sample size with Distribution type and Rule had significant 
effects on AD with small effect sizes, but not the interaction between Distribu-
tion type and Rule (Figure 5). Neither was the third-order interaction signifi-
cant. 

Concerning the interaction between Distribution type and Sample size, in-
creasing sample size favors the arcsine distribution more due to the downward 
trend of its mean in aligned ranks and disfavors the Laplace distribution because 
of its upward trend (Figure 6). Regarding the interaction between Rule and 
Sample size, Scott’s and Friedman’s rules are the most favored by increasing 
sample size. On the contrary, Doane’s rule is the most disadvantaged. Sturges’ 
rule is also not helped by increasing sample size. The square root and Sturges 
rules do not exhibit a clear trend (Figure 7). 
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Figure 5. Plot of means conditional on the Distribution type and Rule of the ranks 
(aligned with respect to the interaction between the Distribution type and Rule) for AD. 
 

 

Figure 6. Plot of means conditional on the Distribution type and Sample size of the ranks 
(aligned with respect to the interaction between the Distribution type and Sample size) 
for AD. 
 

 

Figure 7. Plot of means conditional on the Rule and Sample size of the ranks (aligned 
with respect to the interaction between the Rule and Sample size) for AD. 
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5.2. Recognition Level (RL) 

The distribution of the ordinal variable of Recognition Level (RL) showed nega-
tive asymmetry (Bowley’s coefficient of skewness = −1, bias = 0, std error = 0, 
99% percentile bootstrap confidence interval [−1, −1]; percentile coefficient of 
skewness = −0.333, bias = 0.0013, std error = 0.019, 99% percentile bootstrap 
confidence interval [−0.3333, −0.2007]) and platykurtosis or shortened tails in 
relation to the shoulders (Percentile kurtosis = −0.096, bias = 0.0008, std error = 
0.0079, 99% percentile bootstrap confidence interval [−0.0965, −0.0132). The 
confidence interval is widened to 99% because the standard error is so small that 
it causes the upper and lower limits of the 95% interval to coincide. See Figure 8. 

By comparing RL among the factors of Distribution type (D), Sample size (n), 
and the Rule to determine the number and width of class intervals (Rule) using 
an aligned rank transformation analysis of variance, the main effect of the three 
factors was significant (Table 2). 

The effect size of the Sample size on RL was large (Table 2). The larger the 
sample size, the smaller the RL. The linear correlation, as indicated by the 
Spearman coefficient between the Sample size and the ranks (aligned with re-
spect to the distribution) for RL was high, rS = 0.638, p < 0.001 (Figure 9). The 
correlation of Sample size was significantly smaller with RL than with AD: 
Rosner-Glynn transformation [43]: rS(n, AD) = −0.920, Rosner-Glynn transfor-
mation [43]: r(n, AD) = −0.877; rS(n, RL) = 0.482, Rosner-Glynn transformation 
[43]: r(n, RL) = 0.479; rS(AD, RL) = −0.532; Rosner-Glynn transformation [43]: 
−0.521; Meng-Rosenthal-Rubin z statistic [44] = −49.449, p-value ≤ 0.001; r(n, 
AD) − r(n, RL) = −1.356; 95% CI (−1.958, −1.809); effect size: d = √(n − 3) × |z| 
= 1710.835. 
 
Table 2. Aligned rank transform ANOVA for the recognition level between the observed 
and expected frequencies of class intervals. 

Factors SS df1 df2 MS F p-value pη2 ES 

D 281535821.3 9 1680 31281757.92 108.62 <0.001 0.368 l 

n 334602801.2 6 1680 55767133.53 219.57 <0.001 0.440 l 

Rule 10568611.27 5 1680 2113722.25 4.77 <0.001 0.014 vs 

D × n 110663206.5 54 1680 2049318.64 5.27 <0.001 0.145 m 

D × Rule 103832566.9 45 1680 2307390.38 5.91 <0.001 0.137 m 

n × Rule 48556148.91 30 1680 1618538.30 3.82 <0.001 0.064 s 

D × n × Rule 100622795.5 270 1680 372677.02 0.94 0.739 0.131 m 

Note. Factors: D = Distribution type, n = Sample size, Rule = Rule to determine the 
number and width of class intervals, × = interaction between factors. SS = sum of squares, 
df = degrees of freedom, MS = mean squares, F = testing statistic, p-value = right-tailed 
probability in a Snedecor-Fisher F distribution with degrees of freedom df1 and df2, pη2 = 
partial eta squared as effect size estimator, ES = effect size (Cohen, 1992): l = large, m = 
medium, s = small, and vs = very small. 
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Figure 8. Box plot (left graph) and bar chart (right graph) for recognition level. 
 

 

Figure 9. Plot of means conditional on the Sample size of the ranks (aligned with respect 
to the Sample size) for RL. 
 

The effect size of distribution on RL was large (Table 2). The smallest mean 
ranks (aligned with respect to the Distribution type) for RL appears with the se-
micircular distribution, and the highest with the exponential distribution. Out of 
45 comparisons, 33 (73.3%) were significant, and 12 (26.7%) were not, after 
Holm-Bonferroni correction. The mean ranks for RL were equivalent between 
the normal, beta, and logistic distributions. The mean ranks between the Lap-
lace, arcsine, triangular, and PERT distributions were also equivalent. In turn, 
the mean rank of the lognormal distribution was equivalent to those of the Lap-
lace, arcsine, and triangular distributions (Figure 10). 

The effect size of the Rule on RL was very small (Table 2). The square root 
and Friedman-Diaconis rules had the lowest mean ranks (aligned with respect to 
the Rule) for RL, and Scott’s rule had the highest mean rank. Out of the 15 dif-
ferences, 3 (20%) were significant after the Holm-Bonferroni correction. The 
mean rank of the Scott rule was significantly higher than those of the square root 
and Friedman-Diaconis rules, and the mean rank of the Sturges rule was signifi-
cantly higher than that of the square root rule (Figure 11). 
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Figure 10. Plot of means conditional on the Distribution type of the ranks (aligned with 
respect to the Distribution type) for RL. 
 

 

Figure 11. Plot of means conditional on the Rule of the ranks (aligned with respect to the 
Rule) for RL. 
 

In RL, the second-order interaction effects were significant, but the 
third-order one was not. The effect size of the interactions of the Distribution 
type with the Sample size and the Rule was medium, and the size of the interac-
tion between the Sample size and the Rule was small (Table 2). 

Regarding the interaction between the Distribution type and the Rule, the arc-
sine distribution achieves the best mean ranks in RL with the square root, Rice, 
Sturges, and Doane rules, and the lowest ranks with the Friedman-Diaconis and 
Scott rules. The rules of Scott and Friedman-Diaconis favor the triangular dis-
tribution. This last rule also stands out with the semicircular distribution and 
PERT (Figure 12). 
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Figure 12. Plot of means conditional on the Rule and Distribution type of the ranks 
(aligned with respect to the interaction between the Rule and Distribution type) for RL. 
 

Regarding the interaction between Distribution type and Sample size, the 
smallest sample sizes (20 and 35) favor the exponential distribution, while the 
size of 1000 has a detrimental effect on it. Sample sizes of 20, 50, and 1000 gen-
erate notable differences. With a size of 20, the Laplace distribution has the low-
est mean rank, and the triangular and exponential distributions have the highest. 
With a size of 50, the Laplace distribution achieves the highest mean rank, and 
the exponential and semicircular distributions have the lowest. With 1000, the 
exponential and arcsine distributions have the lowest mean ranks, while the se-
micircular has the highest (Figure 13). 

Regarding the interaction between the Rule and the Sample size, an increase 
in the sample size favors the Doane, Rice, and Sturges rules due to the upward 
trend of the curve. Conversely, the rules of Scott, Friedman-Diaconis, and the 
square root are detrimental due to the downward trend of the curve (Figure 14). 

The correlation between AD and RL was significant, negative, and with a high 
strength of association (rS = −0.532, IC al 95% [−0.568, −0.495], t [2098] = 
−28.753, p < 0.001). 

5.3. Accuracy Index (AI) 

Because the variable exhibits negative asymmetry (g1 = −0.451, IC al 95% 
[−0.556, −0.346]), where the left tail is longer than the right, and platykurtosis 
(g2 = −0.297, IC al 95% [−0.506, −0.088]), indicating shortened tails with respect 
to the shoulders, it deviates from normality (Shapiro-Francia W’ statitic = 0.960, 
p < 0.001). See Figure 15. 

By comparing the means of the Accuracy Index across the factors of Distribu-
tion type (D), Sample size (n), and the Rule to determine the number and width 
of class intervals (Rule) using an aligned rank transformation analysis of va-
riance, the main effect of the three factors was significant (Table 3). 
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Figure 13. Plot of means conditional on the Sample size and Distribution type of the 
ranks (aligned with respect to the interaction between the Sample size and Distribution 
type) for RL. 
 

 

Figure 14. Plot of means conditional on the Rule and Sample size of the ranks (aligned 
with respect to the interaction between the Rule and Sample size) for RL. 
 

 

Figure 15. Box plot (left graph) and histogram with the density curve by Kernel (Gaussian) 
estimation superimposed (right graph) of Accuracy Index. The width and number of class intervals 
was established by the Friedman-Diaconis rule. 
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Table 3. Aligned rank transform ANOVA for the accuracy index between the observed 
and expected frequencies of class intervals. 

Factors SS df1 df2 MS F p-value pη2 ES 

D 257913572.4 9 1680 28657063.60 94.74 0.000 0.337 l 

n 517065512.9 6 1680 86177585.49 581.71 0.000 0.675 l 

Rule 7153980.931 5 1680 1430796.19 3.21 0.007 0.009 vs 

D × n 94580933.65 54 1680 1751498.77 4.40 0.000 0.124 s 

D × Rule 99671808.35 45 1680 2214929.07 5.66 0.000 0.132 m 

n × Rule 37865991.61 30 1680 1262199.72 2.93 0.000 0.050 s 

D × n × Rule 97261252.08 270 1680 360226.86 0.91 0.851 0.127 s 

Note. Factors: D = Distribution type, n = Sample size, Rule = Rule to determine the 
number and width of class intervals, × = interaction between factors. SS = sum of squares, 
df = degrees of freedom, MS = mean squares, F = testing statistic, p-value = right-tailed 
probability in a Snedecor-Fisher F distribution with degrees of freedom df1 and df2, pη2 = 
partial eta squared as effect size estimator, ES = effect size (Cohen, 1992): l = large, m = 
medium, s = small, and vs = very small. 
 

The effect size of the Sample size on Accuracy Index was large. The larger the 
sample size, the higher the accuracy rate (Table 3). The linear correlation, as 
measured by the Spearman coefficient between the Sample size and the ranks 
(aligned in relation to Sample size) for the Accuracy Index, is positive with a 
very strong strength of association, rS = 0.807, p < 0.001 (Figure 16). 

The effect size of the distribution on the Accuracy Index was large (Table 3). 
The highest mean rank (aligned with respect to Distribution type) for the Accu-
racy Index appears with the exponential distribution, and the lowest with the 
semicircular distribution. In both cases, there is a significant difference com-
pared to the other distributions. Out of 45 comparisons, 32 (71.1%) were signif-
icant after Holm-Bonferroni correction. The 13 equivalences (28.9%) were ob-
served between the normal distribution and the beta and logistic distributions, 
between the beta and the logistic distributions, between the Laplace distribution 
and the arcsine, triangular, PERT, and lognormal distributions, between the lo-
gistic and the PERT distributions, between the arcsine distribution and the tri-
angular, PERT, and lognormal distributions, as well as between the triangular 
distribution and PERT and lognormal distributions (Figure 17). 

The effect size of the Rule on the Accuracy Index was very small (Table 3). 
Out of the 15 differences, 6 (40%) were significant, and 9 (60%) were not. The 
mean ranks (aligned with respect to the Rule) for the Accuracy Index corres-
ponding to the square root and Friedman-Diaconis rules were lower than the 
mean ranks corresponding to the Sturges, Doane, and Scott rules. However, 
none were significant after the Holm-Bonferroni correction (Figure 18). 

The second-order interaction effects on the Accuracy Index were significant. 
The interaction between Distribution type and Rule had a medium effect size, 
and the other two interactions had a small effect size, but the third-order inte-
raction was not significant (Table 3). 
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Figure 16. Plot of means conditional on the Sample size of the ranks (aligned with 
respect to the Sample size) for accuracy index. 
 

 

Figure 17. Plot of means conditional on the distribution type of the ranks (aligned with 
respect to the Distribution type) for accuracy index. 
 

 

Figure 18. Plot of means conditional on the Rule of the ranks (aligned with respect to the 
Rule) for accuracy index. 
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The effect of the interaction between Distribution type and Rule is primarily 
attributed to the arcsine distribution. The highest mean ranks (aligned with re-
spect to this interaction) for Accuracy Index appear with the square root, Rice, 
and Doane rules, and the lowest with the Friedman-Diaconis and Scott rules. 
The triangular distribution can also be highlighted, with an inverse pattern. Its 
highest mean ranks appear with the Friedman-Diaconis and Scott rules, and the 
lowest with the other three rules. The normal distribution performs best with 
Scott’s rule and worst with the square root rule. The semicircular and PERT dis-
tributions favor the Friedman-Diaconis rule (Figure 19). 

The effect of the interaction between Distribution type and Sample size main-
ly impacts the exponential and semicircular distributions. The former is better 
recognized with small sample sizes, and the latter with large sample sizes (Figure 
20). 

Regarding the interaction between Rule and Sample size, the Scott and Fried-
man-Diaconis rules benefit the least from the increase in sample size, while the 
Doane and Rice rules benefit the most. With a sample size of 20, the Fried-
man-Diaconis rule stands out, followed by the square root rule. With a sample 
size of 35, the square root rule excels. Scott’s rule performs well with medium 
sample sizes of 50, 100, and 200 data points, while Doane’s rule excels with large 
sample sizes of 500 and 1000 data points. Starting at a size of 200, the pattern is 
clearly ascending for the Doane and Rice rules, and with some ambiguity at the 
end for the Sturges rule. In contrast, it is clearly descending for the Scott and 
Freedman-Diaconis rules, and with some ambiguity at the end for the square 
root rule (Figure 21). 
 

 

Figure 19. Plot of means conditional on the distribution type and rule of the ranks 
(aligned with respect to the interaction between the distribution type and rule) for 
accuracy index. 
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Figure 20. Plot of means conditional on the sample size and distribution type of the ranks 
(aligned with respect to the interaction between the Sample size and Distribution type) 
for accuracy index. 
 

 

Figure 21. Plot of means conditional on the sample size and rule of the ranks (aligned 
with respect to the interaction between the Sample size and Rule) for accuracy index. 

6. Conclusions 

The AD statistic is strongly influenced by sample size, exhibiting a linear rela-
tionship with a very high strength of association. To a much lesser extent, it is 
affected by distribution type and the rule used to determine the number and 
amplitude of class intervals, with these two factors having small effect sizes. The 
arcsine distribution, characterized as a bimodal platykurtic distribution, gene-
rates the maximum discrepancy, while the exponential distribution achieves the 
minimum discrepancy. Platykurtic distributions exhibit more discrepancy than 
leptokurtic distributions. The square root, Rice, and Doane rules, with means 
equivalent to each other, have significantly less discrepancy than the Scott, 
Friedman-Diaconis, and Sturges rules. Consequently, Rice’s rule, which can be 
based on the Scott and Friedman-Diaconis rules, generates less discrepancy be-
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tween the empirical and theoretical histograms than these two rules. The inte-
raction between rule and distribution type, as well as the triple interaction, are 
not significant. The second-order interactions of sample size with the rule and 
the distribution type are significant and small in size. The increase in sample size 
favors platykurtic distributions more, as well as the Scott and Friedman rules, 
that is, the conditions that generate the most discrepancy. 

The Recognition Level is influenced by the sample size, with a large effect size. 
The relationship between sample size and Recognition Level is linear, demon-
strating a strong association, although significantly lower than the Average Dis-
crepancy. The type of distribution has a significant and large effect, with the least 
recognition given to the platykurtic semicircular distribution and the highest 
recognition to the leptokurtic exponential distribution. Rule type also has a sig-
nificant, but small, effect size. Scott and Sturges rules have the highest recogni-
tion level, while the square root and Friedman-Diaconis rules have the least. In-
termediate recognition levels are observed with Doane and Rice rules. 

The increase in sample size primarily favors the recognition of the semicircu-
lar distribution. With small samples, the exponential and triangular distributions 
are the best recognized. The increase in size mainly favors the Doane and Rice 
rules and harms the Scott, Friedman-Diaconis, and square root rules. In the in-
teraction between rule and distribution, it should be noted that the arcsine dis-
tribution, being a bimodal distribution, is poorly recognized by the Scott and 
Friedman rules, whereas the recognition of the triangular distribution is favored 
by these two rules. Recognition of Rice’s rule is independent of the distribution. 

Consistent with the results for Average Discrepancy and Recognition Level, 
the sample size has a significant and large effect on Accuracy Index. The rela-
tionship between sample size and the Accuracy Index is a direct linear one with 
a very large strength of association. The distribution type also has a significant 
and large effect, with the lowest accuracy occurring with the symmetrical and 
platykurtic semicircular distribution, and the highest accuracy with the positive 
asymmetric and leptokurtic exponential distribution. However, as with the Rec-
ognition Level, no greater accuracy is observed with leptokurtic distributions 
than with platykurtic ones. 

The effect of the Rule on Accuracy Index is significant, but small. The Accu-
racy Index achieves its highest accuracy with the Scott, Doane, and Sturges rules, 
and its lowest with the Friedman-Diaconis and square root rules, with Rice’s rule 
falling in between. Second-order interactions are significant. The increase in 
sample size favors the distribution where the Index has less accuracy, the semi-
circular one, and the Doane, Sturges, and Rice rules. The distribution where the 
Index shows more accuracy, which is the exponential, and the rules of Scott, 
Friedman-Diaconis, and square root, benefit less from the increase in population 
size. The rules of Scott and Friedman-Diaconis perform poorly with the arcsine 
distribution but show the greatest accuracy with the triangular one. 

Rice’s rule improves with increasing sample size. It performs better than the 
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Friedman-Diaconis rule, especially in relation to the arcsine distribution, but not 
as well as Scott’s rule, except with this same distribution. In terms of the Accu-
racy Index, its profile resembles that of the square root rule across the 10 distri-
butions and is akin to Doane’s rule concerning sample size, differing from the 
profiles of the Scott and Friedman-Diaconis rules, which resemble each other. 
Among the seven rules, Scott’s stands out, except with the arcsine distribution. 
In this case, the square root and Rice’s rules are the better options. Consistent 
with other studies [19], the square root rule exhibits the lowest accuracy, except 
with the arcsine distribution, and is the one that benefits the least from an in-
crease in the sample. 

As limitations of the study, it should be noted that rules based on the minimi-
zation of arguments, such as the rules of Rudemo [16], Shimazaki and Shino-
moto [17], Liu, Hussain, Tan, and Dash [18], or Knuth [21], were not taken into 
consideration. This decision was made due to their complexity in programming 
and their absence in the statistical packages currently in use. Additionally, the 
rule based on a homogeneous density but a heterogeneous width of k bins [15] 
[45] was also excluded, since it is limited to goodness-of-fit tests. Very large 
sample sizes, such as 2000, 5000, 10,000, or more data points, were not included 
either. Nevertheless, the scope of the present study aligns with common data 
analyses in research in psychology and related fields. In these domains, rules de-
termining the number of bins and sample sizes, such as the aforementioned, are 
not commonly encountered. 

The accuracy of the empirical histogram in reproducing the shape of the dis-
tribution was assessed through average discrepancy (between the empirical and 
expected histogram), recognition level (of the theoretical histogram), and an ac-
curacy index (a combination of the two previous variables). However, there are 
other measures, such as integrated mean square error or the Kullback-Leibler 
divergence [46], which were more related to empirical rules that are not consi-
dered due to their computational complexity. 
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