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Abstract 
Sample size determination typically relies on a power analysis based on a fre-
quentist conditional approach. This latter can be seen as a particular case of 
the two-priors approach, which allows to build four distinct power functions 
to select the optimal sample size. We revise this approach when the focus is 
on testing a single binomial proportion. We consider exact methods and in-
troduce a conservative criterion to account for the typical non-monotonic 
behavior of the power functions, when dealing with discrete data. The main 
purpose of this paper is to present a Shiny App providing a user-friendly, in-
teractive tool to apply these criteria. The app also provides specific tools to 
elicit the analysis and the design prior distributions, which are the core of the 
two-priors approach.  
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1. Introduction 

Sample Size Determination (SSD) is an essential step in the design of a research 
study, especially in clinical trials. Let us denote by θ  the parameter of interest, 
which measures the efficacy of a novel treatment, and assume that we are inter-
ested in testing 0 0:H θ ∈Θ  vs 1 1:H θ ∈Θ , where 0Θ  and 1Θ  form a parti-
tion of the parameter space Θ . 

A well-established strategy for SSD exploits the concept of power function: the 
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study is sized to guarantee a large probability of rejecting the null hypothesis H0, 
when it is actually false. The decision about the rejection of H0 can be made un-
der a frequentist framework or by performing a Bayesian analysis. In this latter 
case, a prior distribution, called the analysis prior, is introduced to incorporate 
in the procedure pre-trial knowledge the researcher wants to take into account, 
together with pre-experimental evidence if available. Moreover, the conjecture 
that the alternative hypothesis is true represents an essential element of the me-
thodology. It can be realized by assuming that the true θ  is equal to a fixed de-
sign value Dθ , suitably selected under H1 and, in this case, the probability of 
rejecting H0 is evaluated by exploiting the sampling distribution of the test statis-
tic conditional on Dθ  (conditional power). Alternatively, we can introduce 
uncertainty on the guessed design value by incorporating another prior distribu-
tion, called the design prior, which assigns negligible probability to values of θ  
under H0. In this latter case, the probability of rejecting H0 is computed by ex-
ploiting the prior predictive distribution of the test statistic under the assump-
tion that θ  is distributed according to the design prior (predictive power). By 
combining frequentist and Bayesian procedures of analysis, with both the condi-
tional and the predictive approach, we can obtain four power functions that we 
can use for sample size determination (see [1]). The general idea is to select the 
minimum sample size necessary to achieve a desired level of power. This me-
thodology, based on the introduction of two distinct prior distributions and thus 
based on the so-called two-priors approach, has been initially formalized by 
Wang and Gelfand [2]. It is now well known with many implementations pre-
sented in the literature (see, among others, [3]-[10]). 

In this paper, we consider the problem of SSD based on power analysis when 
the focus is on single-arm studies based on a single binomial proportion. This 
design is typically used in Phase II of clinical trials, where the parameter of in-
terest is the probability of response to a novel therapy. Sambucini [1] derived the 
four power functions described above by using frequentist and Bayesian exact 
methods at the analysis stage, which are particularly attractive because Phase II 
sample sizes are usually small. It is interesting to remark that, since we are deal-
ing with discrete data, the power functions show a basically increasing, but 
not-monotonic, behaviour as a function of the sample size. This “saw-tooth be-
haviour” requires a modification of the standard criterion to select the optimal 
sample size, if we are interested in having the condition regarding the power 
functions fulfilled also for all the sample size values greater than the optimal one 
([1] [11]). This modification of the SSD criteria has been also introduced in 
Gentile and Sambucini [12], where the four power functions have been derived 
for single-arm trials based on count data. The aim of this paper is to present an 
R Shiny web application (app) developed to implement the SSD criteria provided 
in [1]. Some R functions, contained in already existing packages, are available to 
compute the optimal sample size for a single binomial proportion, but they are 
based only on the frequentist conditional power and rely on asymptotic ap-
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proximations. For instance, the functions pwr.p.test and prop1, implemented in 
the R packages pwr [13] and pwr2ppl [14], exploit the arcsine transformation of 
the proportion [15], whereas the function power.prop1.test of the package 
MKpower uses the normal approximation [16]. Furthermore, some functions 
allow for exact sample size computation, but do not account for the saw-tooth 
behaviour of the power function. Examples are the power_binom_test function 
in the package MESS [17] and the propTestPower function in the package 
EnvStats [18]. The function power.diagnostic.test of the package MKpower ac-
counts for the saw-tooth behaviour, but it aims to size diagnostic tests for an ex-
pected sensitivity or specificity [16]. Functions implementing the exact frequen-
tist conditional power are also available in software specific for sample size de-
terminations. Examples of freeware are G*Power [19] and Lenth’s applet [20]. 
For a more exhaustive list the reader is referred to the textbook by Ryan [15]. 

In practice, when the interest is focused on a single binomial proportion, 
many software tools have been developed to implement the standard procedures 
for SSD, based on power analysis conducted using the frequentist conditional 
approach. Instead, to our best knowledge, up until now, no software tool has 
been available to implement exact criteria based on the other three power func-
tions. Thus, we developed an R Shiny App [21] [22] that provides a user-friendly 
and interactive environment to obtain the optimal sample size according to the 
criteria based on the two-priors approach and derived in [1]. The app allows the 
visualization of the behaviour of the four power functions as the sample size in-
creases and lets the user decide whether to take into account or not the 
saw-tooth behaviour of the power when selecting the sample size. It also con-
tains specific tools to suitably select the analysis and the design prior distribu-
tions. 

The rest of the paper is organized as follows. In Section 2, we revise the exact 
procedures, based on the two-priors approach, to select the optimal sample size 
for a single binomial proportion. Section 3 discusses some strategies to elicit the 
prior distributions. In Section 4, we present the Shiny App and illustrate its fea-
tures through an example. Finally, Section 5 contains some concluding remarks. 

2. Exact SSD Methods for a Single Binomial Proportion  

In this Section, we revise the exact SSD procedures based on four possible power 
functions, assuming that interest is on one-sample testing problems with a bi-
nary response [1]. 

Specifically, let us suppose that we are interested in testing the proportion of 
responders to a novel therapy. We consider n patients, each of whom receives 
the same treatment dosage, and classified as responders or not to the therapy by 
using a binary variable Y. We assume that we are interested in testing 

0 0:H θ θ=  vs 1 0:H θ θ> , where θ  denotes the parameter of interest, i.e. the 
true response rate, while 0θ  is a fixed target value that should represent the ef-
ficacy rate of the standard of care and is usually estimated through historical data. 
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2.1. Frequentist Power Functions  

Initially we assume that, at the analysis stage, the decision of rejecting the null 
hypothesis is made under a frequentist framework. The test statistic to use is the 
number of responders out of the n patients, Yn, whose sampling distribution of is  

( ) ( )| bin ; , , for 0, , ,n n n nf y y n y nθ θ= =   

where ( )bin ; ,n p⋅  denotes the probability mass function of a binomial with pa-
rameters n and p. Therefore, the frequentist rejection region at level α  is 

{ }{ }0
0,1, , :H n nR y n y r= ∈ ≥ , where the critical value r is given by  

 { } ( )0min 0,1, , : bin ; , .
n

i k
r k n i n θ α

=

 = ∈ ≤ 
 

∑
 (1) 

Note that, since the binomial distribution is discrete, the actual Type I error 
rate does not hit α  exactly, but it is always less than or equal to it. In order to 
exploit the power function for SSD purposes, at the design stage, we need to 
consider a scenario under which the alternative hypothesis is true. A first possi-
bility is to specify a design value Dθ  for θ  that belongs to H1. In this case, we 
obtain the frequentist conditional power  

( ) ( ) ( ) ( )0|
bin ; , ,D

n
n

n
C D
F n H nf

y r
n Y R y n

θ
η θ

⋅
=

= ∈ = ∑  

where ( )| D
nf θ⋅

  denotes the probability measure associated with the sampling 
distribution of Yn for Dθ θ= . Note that ( )C

F nη  represents the probability of 
correctly rejecting H0 using a frequentist procedure, when θ  is equal to Dθ . 
However, we can add flexibility to the procedure by avoiding the use of a fixed 
design value. In fact, it is possible to introduce uncertainty on the suitable design 
value to specify by eliciting a design prior distribution, ( )Dπ θ . This latter is an 
instrumental tool that allows to model design expectations on θ , under the as-
sumption that the treatment is effective. Consequently, it should be chosen as an 
informative distribution, as we will discuss further in Section 3. In our specific 
case, given a beta design prior, ( ) ( )beta | ,D D Dπ θ θ α β= , the prior predictive 
distribution of Yn is  

 ( ) ( )beta-bin ; , , , for 0, , ,D D D
n n n nm y y n y nα β= =   (2) 

where ( )beta-bin ; , ,p q n⋅  is the probability mass function of a beta-binomial 
with parameters p, q and n. Therefore, the frequentist predictive power is given 
by  

( ) ( ) ( ) ( )0
beta-bin ; , ,D

n
n

n
P D D
F n H nm

y r
n Y R y nη α β

⋅
=

= ∈ = ∑  

where 
( )D

nm ⋅
  denotes the probability measure associated with the prior predic-

tive distribution of Yn in (2) and r is the critical value defined in (1). Note that 
( )P

F nη  provides the probability of correctly rejecting H0 using a frequentist 
procedure, when θ  is guessed to belong to the alternative hypothesis, where it 
is distributed according to ( )Dπ θ . 
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2.2. Bayesian Power Functions  

Alternatively, it is possible to perform the analysis under a Bayesian framework. 
This choice allows us to take into account pre-experimental information availa-
ble on the treatment, for instance, based on historical data or on the subjective 
opinions of experts. The information is incorporated through the elicitation of 
another prior distribution on the parameter, the analysis prior distribution, 

( )Aπ θ . By exploiting conjugate analysis results, we consider a beta density,  
( ) ( )beta ; ,A A Aπ θ θ α β= , so that the corresponding posterior distribution is  

( ) ( )| beta ; , .A A A
n n n ny y n yπ θ θ α β= + + −  

Under this setup, to build a Bayesian equivalent of a power function, we need 
to determine the set of values of nY  that, if observed, would lead to rejecting 
the null hypothesis. In line with Spiegelhalter et al. [23], we name this condition 
on the random result as the “Bayesian significance” and establish that it consists 
in rejecting H0 if the posterior probability of the alternative hypothesis is suffi-
ciently high. Thus, in our specific case, Yn can be considered “significant” in a 
Bayesian perspective if  

 
( ) ( )0|

1A
n nYπ

θ θ ε
⋅

> > −  (3) 

where 
( )|A

n nYπ ⋅
  denotes the probability measures associated with the posterior 

distribution of θ  and ε  is a probability threshold typically selected as a small 
value. The condition in (3) is a random object at the design phase because it de-
pends on the future result Yn. Nevertheless, for a fixed value of n, the probability 
that it is fulfilled increases with Yn. Therefore, the Bayesian rule consists in re-
jecting H0 if nY r≥  , where  

 { } ( ) ( ){ }0|
min 0,1, , : 1 .A

n k
r k n

π
θ θ ε

⋅
= ∈ > > −

   (4) 

Then, we need to compute the probability that the Bayesian significance con-
dition is fulfilled under the optimistic assumption that the treatment is effective. 
Once again, we may realize this assumption by using either a conditional or a 
predictive approach. In the first case, we fix a suitable design value Dθ  under 
H1 and define the Bayesian conditional power as  

( ) ( ) ( ) ( ) ( )0||
1 bin ; , .AD

n nn
n

n
C D
B nYf

y r
n y n

πθ
η θ θ ε θ

⋅⋅
=

 = > > − =   ∑


   

In the second case, we elicit a design prior distribution for θ , as described 
above, and obtain the Bayesian predictive power, that is  

( ) ( ) ( ) ( ) ( )0|
1 beta-bin ; , , .D A

n n n
n

n
P D D
B nm Y

y r
n y n

π
η θ θ ε α β

⋅ ⋅
=

 = > > − =   ∑


   

Clearly, both the power functions ( )C
B nη  and ( )P

B nη  provide the probabil-
ity of correctly rejecting H0 using a Bayesian procedure, under the assumption 
that the alternative hypothesis is true. Moreover, it is worth pointing out that the 
Bayesian predictive power is the one that allows to model both prior knowledge 
and uncertainty on the design value: it includes the other power functions as 
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special cases. In fact, if we consider a point-mass design distribution on Dθ , 
then no design uncertainty is involved, and the predictive approach coincides 
with the conditional one. On the other hand, If no pre-experimental information 
is available, a non-informative analysis prior can be elicited and the Bayesian 
powers coincide with the frequentist one. 

2.3. Sample Size Determination Criteria  

Whatever the power function chosen, the standard SSD criterion selects the op-
timal n as the minimum value such that the power exceeds a threshold of inter-
est γ . Hence, the optimal sample sizes are obtained as  

 ( ){ }min : , , , , .I I
J Jn n n I C P J F Bη γ= ∈ ≥ = =  (5) 

where the superscript refers to the approach used at the design stage, while the 
subscript refers to the approach used at the analysis stage. However, given the 
saw-tooth shape of the power curves as a function of n, a slightly different and 
more conservative SSD criterion can be adopted. The idea is to select the smal-
lest sample size such that the condition on the power is fulfilled also for all the 
sample size values greater than it, that is  

 ( ){ }* *min : , , , , , .I I
J Jn n n n n I C P J F Bη γ= ∈ ≥ ∀ ≥ = =  (6) 

This latter criterion prevents the condition of interest from being satisfied for 
the selected sample size, but no longer satisfied for some larger values of n. 

3. Prior Distributions Selection  

This section discusses some strategies to elicit the design and analysis prior dis-
tributions, accounting for their different aims. We start focusing on the design 
prior distribution ( )Dπ θ . The idea is to express the hyperparameters in terms 
of the prior mode Dθ  and the prior sample size Dn  by using [1] [24]:  

 ( )1 and 1 1.D D D D D Dn nα θ β θ= + = − +  (7) 

We can center ( )Dπ θ  on the design value we would consider in the condi-
tional approach and regulate the concentration through the choice of the prior 
sample size. It is crucial to emphasize that ( )Dπ θ  should be an informative 
distribution. First, it serves to realize the assumption that θ  belongs to the al-
ternative hypothesis. Furthermore, as n approaches infinity, ( )P

B nη  and 
( )P

F nη  tend to the probability assigned to the alternative hypothesis by ( )Dπ θ , 
denoted by 

( ) ( )0Dπ
θ θ

⋅
>  [25]. Thus, 

( ) ( )0Dπ θ
θ θ>  should be close to one to 

ensure that the power tends to 1 as n goes to infinity. We suggest the use of two 
possible strategies to ensure that the design prior distribution satisfies these fea-
tures. Once Dθ  has been specified, we determine Dn  numerically so that: 

1) ( )Dπ θ  assigns a probability close to one to the alternative hypothesis;  
2) ( )Dπ θ  assigns a probability close to one to a symmetric interval  

( ),D Dθ δ θ δ− + , where δ  is a non-negative real number such that 0
Dθ δ θ− ≥ . 

Both these procedures are implemented in the Shiny App described in the 
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next Section. Finally, as Dn  tends to infinity, ( )Dπ θ  tends to assign all the 
probability mass to the prior mode Dθ , resulting in no variability introduced 
around it. Consequently, the predictive and conditional approaches align. 

The elicitation of analysis prior distribution can be based on historical data or 
on subjective opinions of experts. However, one of the most common ways of 
proceeding is to choose a non-informative density or a density based on very 
weak information, to avoid the possibility of underweighting the results of the 
current experiment in determining the analysis outcome. Thus, for instance, we 
may rely on the Uniform distribution on the interval ( )0,1  by specifying 

1A Aα β= =  or on the non-informative Jeffreys prior by setting 0.5A Aα β= = . 
As an alternative and similarly to the choice of ( )Dπ θ , we can express the 
hyperparameters of the analysis prior distribution in terms of prior mode, Aθ  
and prior sample size An , where An  is typically fixed equal to one, or equal to 
a very low value, in order to obtain a weakly informative prior distribution. This 
way of proceeding allows to express skepticism, neutrality or optimism about 
large treatment effects through the choice of the prior mode Aθ . Finally, let us 
notice that if we introduce no prior information, i.e. if An  is set equal to 0, the 
Bayesian and the frequentist setup coincide. 

4. Shiny App  

This Section presents a Shiny App that implements the sample size criteria de-
scribed in Section 2. It is available at the following link: 

https://susanna-gentile.shinyapps.io/SSD_singlearm.  
The Shiny package in R enables the creation of interactive web apps directly 

from R ([21] [22]). Our Shiny App aims to provide an intuitive and user-friendly 
tool for applying the methodologies discussed in this paper. The main functio-
nalities of the app are:  
 To allow computing the optimal sample size according to the four power 

functions;  
 To implement both the standard and the conservative criterion to select the 

optimal sample size;  
 To display, if requested, the power function behaviour as a function of n;  
 To enable storing the design parameters and results into a table and to 

download it as a CSV file;  
 To help to select the analysis and the design prior distributions and to visual-

ize them.  
Thus, the users can select either the conservative criterion in (6), accounting 

for the saw-tooth behaviour, or the standard criterion. We suggest using the first 
criterion. However, we let this choice be at the user’s discretion as there is no 
unanimous agreement on the appropriateness of this methodology [15]. The 
tools to select the design and analysis prior are organized into two separate pa-
nels. As previously stressed, the two distributions have different aims and should 
be distinguished. 

https://doi.org/10.4236/ojs.2024.141004
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4.1. User Interface Structure 

We start by describing the User Interface (UI). The UI changes accordingly to 
the methodologies chosen to conduct the design and analysis phases, as depicted 
in Figures 1-4. In the upper part of the UI, users can input the design parame-
ters, split into three groups.  

General setting: The inputs include the historical control 0θ , the power level 
γ , and the maximum sample size. Users can choose whether to use the conserv-
ative criterion (the default), the standard one, or both.  

Analysis stage: The inputs depend on the planned final analysis. For a fre-
quentist analysis, the app requires the Type-I error probability α  (Figure 1). 
For a Bayesian analysis, the app requires the Bayesian significance level 1 ε−  
and the analysis prior’s hyperparameters. Users can exploit the “Analysis prior” 
panel to select them (Figure 3, panels (a) and (b)).  
 

 

Figure 1. User interface when the aim is to compute C
Fn , when 0 0.2θ = , 0.8γ = , 0.05α =  and 0.4Dθ = . We consider both 

the conservative and the standard criterion. 
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(a) 

 
(b) 

Figure 2. User interface and design priors’ selection panel when the aim is to compute P
Fn , when 0 0.2θ = , 0.8γ = , 0.05α =  

and 1.5Dθ = . Dn  is selected so that ( ) ( )0 0.999Dπ
θ θ

⋅
< = . (a) User interface and results for the frequentist predictive power; 

(b) Design prior selection panel. 
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(a) 

 
(b) 

Figure 3. User interface and analysis priors’ selection panel when the aim is to compute C
Bn , when 0 0.2θ = , 0.4Dθ = , 0.8γ =  

and 0.05ε = . For the analysis prior, we set 0.3Aθ =  and An  is selected so that ( ) ( )0 0.8Aπ
θ θ

⋅
< = . (a) User interface and 

results for the Bayesian conditional power; (b) Analysis prior selection panel. 
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Figure 4. User interface when the aim is to compute P
Bn , when 0 0.2θ = , 0.8γ =  and 0.05ε = . The design and the analysis 

priors are the ones selected previously. 
 

Design stage: The inputs depend on the approach used to realize the optimis-
tic assumption that the experimental treatment is effective. The app requires the 
design value Dθ  for the conditional approach (Figure 1) and the hyperpara-
meters of the design prior distribution for the predictive approach. We recom-
mend using the “Design prior” panel to select the design prior (Figure 2, Panel 
(b)). 

Once all the required inputs have been provided, the “Results” Panel prints on 
the left a summary of the design parameters, the optimal sample size, and the 
critical value. On the right, if requested, the power as a function of n is displayed. 
Users can save the results in a table by clicking “Save results”. The table can then 
be downloaded as a CSV file (Figure 1). The info icons provide some sugges-
tions on the choice of the parameters. 
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Note that if the user changes the target value parameter 0θ , he will have to 
insert the other design parameters again. This mechanism prevents the app from 
crashing if the old input parameters are inconsistent with the new target value 
and the corresponding hypothesis system. Once the user provides 0θ , the app 
will check if all the inputs satisfy the boundaries before computing the results 
and inform the user otherwise. 

The maximum sample size input allows the user to specify the maximum 
sample size available. If the optimal sample size exceeds the maximum, the app 
prints a message and the power corresponding to the maximum sample size in 
the “Result” panel. By default, the app still computes the optimal sample size 
according to the selected criterion, as shown in the plot on the right. However, 
suppose the optimal sample size is greater than 1000. In that case, the app stops, 
and the user can decide whether to increase the maximum sample size by mod-
ifying the input parameter, as suggested by a printed message. This boundary 
also prevents the app from crashing if the optimal sample size at the desired level 
does not exist, which may happen if the prior distributions are not well specified. 

4.2. Tools for Selecting the Prior Distributions 

The “Design prior” panel appears if the user opts for the predictive approach at 
the design stage (Figure 2, Panel (b)). The panel requires the specification of the 
prior mode Dθ . Then, the “Select the prior sample size Dn ” drop-down list 
allows to select Dn  according to three possible strategies:  

By assigning a fixed probability to the alternative hypothesis: 
the resulting ( )Dπ θ  assigns the selected probability to the alternative hypo-

thesis.  
By assigning a fixed probability to an interval: 
the resulting ( )Dπ θ  assigns the selected probability to a symmetric interval 

[ ]0 0,θ δ θ δ− + .  
Manually: the user can select the prior sample size.  
As emphasized in the previous section, the design prior should be highly in-

formative and assign a negligible probability to the null hypothesis. The first two 
methods implement the strategies described in the previous Section and ensure 
this condition by selecting Dn  numerically. However, users can also choose 

Dn  at their discretion. In this case, we encourage users to verify if the probabil-
ity assigned to the alternative hypothesis is greater than the desired power level 
γ . To help the user in the choice, this probability corresponding to the inserted 

Dn  is printed under the hyperparameters. Regardless of the selected method, 
the design distribution is displayed on the right. Finally, the “Update prior pa-
rameters” button allows for updating the corresponding inputs in the user inter-
face with the hyperparameters of the chosen distribution. 

The “Analysis prior” panel appears when the user decides to conduct the 
analysis stage under a Bayesian framework (see Figure 3, Panel (b)). Firstly, the 
user needs to specify the prior mode Aθ . Then, the drop-down list “Select the 
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prior sample size An ” allows selecting the prior sample size An  “Manually”, 
i.e., at the user’s discretion, or “Automatically”. In the latter case, we select An  
by fixing the probability of the alternative hypothesis 

( ) ( )0>Aπ
θ θ

⋅
 . The range 

of possible probabilities is determined numerically by ensuring that:  
1) The hyperparameters Aα  and Aβ  are both greater than 1, so that 
( )Aπ θ  admits a mode in Aθ ;  

2) The prior sample size An  is less than 100.  
As outputs, the panel returns the hyperparameters and a graphical representa-

tion of the analysis prior. If the user opts for selecting An  manually, the proba-
bility assigned to the alternative hypothesis is also shown for a check. If the user 
opts for the automatic selection, the app prints the prior sample size An  instead. 
Finally, Aα  and Aβ  can be stored in the corresponding UI values by clicking 
on “Update prior parameters”. 

4.3. Illustrative Example 

We now illustrate an example of the app utilization. When inserting the inputs, 
we suggest starting from the target value 0θ  so that the app can automatically 
check if the other parameters are well selected. 

Let us start by considering the frequentist conditional power; the correspond-
ing UI is shown in Figure 1. We assume that the aim is to test the null hypothe-
sis that the actual response rate is less than or equal to 0 0.2θ =  at level 

0.05α = . We set 0.4Dθ =  as we consider clinically relevant an increase of 0.2. 
The desired power level is 0.8γ = . We set the maximum sample size to 200 and 
consider both the standard and the conservative criterion. The two optimal 
sample sizes are respectively 35 and 38, due to the saw-tooth behaviour. 

Then, we switch to a predictive approach by selecting “Predictive” in the De-
sign Stage window. This choice leads to the User Interface in Figure 2. We rely 
on the “Design prior” panel to select the design prior hyperparameters. More 
specifically, we consider the same design value 0.4Dθ =  and select Dn  using 
the “By assigning a fixed probability to the alternative hypothesis” method. Since 
we require that the design prior assigns the 

( ) ( )0 0.999Dπ
θ θ

⋅
> = , the resulting 

beta density ( ) ( )beta ; 18.13, 26.69D D Dπ θ θ α β= = = . The optimal sample size 
is 40 for the standard criterion and 46 for the conservative one. As expected, P

Fn  
is greater than C

Fn  because we are accounting for the uncertainty around the 
design value Dθ . 

Let us suppose now that there is an optimistic prior opinion toward the 
treatment efficacy, and the most plausible value for the parameter, according to 
experts, is 0.3θ = . We switch to a Bayesian analysis framework to incorporate 
this information. Figure 3 and Figure 4 show the Shiny App screenshots for the 
Conditional and Predictive approaches. We set 0.05ε =  to ensure comparabil-
ity with the previous results and use the “Analysis Prior” panel to select Aα  
and Aβ . More specifically, we set 0.3Aθ = , while An  is selected so that  

( ) ( )0 0.8Aπ
θ θ

⋅
> = . The resulting analysis prior is  

https://doi.org/10.4236/ojs.2024.141004


S. Gentile, V. Sambucini 
 

 

DOI: 10.4236/ojs.2024.141004 103 Open Journal of Statistics 
 

( ) ( )Beta 2.35, 4.15A A Aπ θ α β= = = , corresponding to a prior sample size  

4.50An = . Considering the conditional approach, as in Figure 3, the optimal 
sample size according to the conservative criterion is 30C

Bn = . Specifically, 
C C
B Fn n<  because the selected analysis prior distribution expresses a modest en-

thusiasm towards treatment efficacy. Similarly, if we adopt a predictive approach 
to account for the uncertainty around the design value, as in Figure 4, the op-
timal sample size is = 34P

Bn . As expected, the latter is greater than C
Bn  due to 

the predictive approach but smaller than the corresponding frequentist sample 
size P

Fn . 

5. Conclusions 

The methodologies based on the two-priors approach allow to exploit four dif-
ferent power functions to determine the optimal sample size. We revise these 
procedures when the focus is on single-arm studies based on a single binomial 
proportion. Although there are several R packages and software tools to imple-
ment the classical procedures for SSD, based on the frequentist conditional ap-
proach, easy-to-use computational tools to implement criteria based on the oth-
er three power functions are not yet available. To fill this gap, we developed an 
interactive and used-friendly Shiny application, whose main functionalities are 
presented in this paper. 

In addition to allowing the calculation of the optimal sample size, the Shiny 
app allows us to check the behaviour of the four power functions as the sample 
size varies and let the users choose between the standard and the conservative 
criterion for SSD, which takes into account the saw-tooth behaviour of the pow-
er functions. Moreover, since the distinction between analysis and design priors 
is an essential element of the implemented procedures, the app provides two 
separate panels to help the selection of both the prior distributions: different 
strategies to elicit these priors can be used and the app allows us to visualize the 
corresponding plot. 

Finally, let us notice that in this paper we refer to single-arm designs in phase 
II of clinical trials. These designs are frequently used to determine whether a 
new treatment is likely to meet a basic level of efficacy, before comparing it with 
the standard therapy in larger and randomized phase III trials, and the efficacy is 
commonly measured as a response rate. However, the SSD procedures imple-
mented in the Shiny App we present can be used to size experiments conducted 
in fields other than the clinical one, as long as based on a single binomial pro-
portion. 
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