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Abstract 
Effects of performing an R-factor analysis of observed variables based on 
population models comprising R- and Q-factors were investigated. Although 
R-factor analysis of data based on a population model comprising R- and 
Q-factors is possible, this may lead to model error. Accordingly, loading es-
timates resulting from R-factor analysis of sample data drawn from a popula-
tion based on a combination of R- and Q-factors will be biased. It was shown 
in a simulation study that a large amount of Q-factor variance induces an in-
crease in the variation of R-factor loading estimates beyond the chance level. 
Tests of the multivariate kurtosis of observed variables are proposed as an in-
dicator of possible Q-factor variance in observed variables as a prerequisite 
for R-factor analysis.  
 

Keywords 
R-Factor Analysis, Q-Factor Analysis, Loading Bias, Model Error,  
Multivariate Kurtosis 

 

1. Introduction 

The factor model [1] [2] allows for the investigation of measurement models in 
psychology and several areas of the social sciences. There are several estimation 
methods for the factor model, and researchers have the choice between several 
different methods for exploratory and confirmatory factor analysis [1] [3] [4] 
[5]. Although a very large number of studies are based on the factor model, the 
real-world phenomena may not correspond exactly to this model. [6] empha-
sized that the factor model may not fit perfectly into real population data. The 
possible difference between the factor model and population real-world data has 
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been termed “model error” [6] [7]. Accordingly, in a factor analysis performed 
on a real-world data sample, misfit of the factor model might be due to sampling 
error and misfit might be due to model error. The modeling of common and 
unique factors together with a large number of minor factors has successfully 
been used in order to generate more realistic data containing model error in si-
mulation studies (e.g., [8]). However, other types of model error that are not 
based on a large number of minor factors may also be relevant for the fit of the 
factor model to real data. As other types of model error have not yet been inves-
tigated, their effect on the estimation of model parameters remains unknown. 
The research problem addressed in the present study is therefore the effect of 
another type of model error on the results of factor analysis. 

The model error considered here is that the covariances between observed va-
riables are affected by covariances between individuals. In psychology and social 
sciences, factor analysis is mainly performed in order to identify latent variables 
explaining the covariation between variables that are observed in samples of in-
dividuals. However, covariances of variables imply a pattern of covariances of 
individuals as shown in the following example (Table 1, Example 1). The perfect 
correlation of variables x1 and x2 may be caused by a common factor and the 
correlation of variables x3 and x4 may be caused by another common factor. As 
the scores of individuals i1 and i2 have a zero variance, the corresponding in-
ter-correlations of individuals are zero. Only a perfect negative inter-correlation 
between individuals i3 and i4 occurs. Whereas the inter-correlations of variables 
can be explained by two uncorrelated factors, the corresponding inter-correlations  
 

Table 1. Mean-centered scores of four individuals (i1 - i4) on four observed variables (x1 - x4), inter-correlations of variables with-
out inter-correlation between individuals and with superimposed inter-correlation between individuals. 

 

Example 1 

Scores Inter-correlation of variables Inter-correlation of individuals 

x1 x2 x3 x4  x1 x2 x3 x4  i1 i2 i3 i4 

i1 −1 −1 −1 −1 x1 1.00    i1 1.00    

i2 1 1 1 1 x2 1.00 1.00   i2 0.00 1.00   

i3 −1 −1 1 1 x3 0.00 0.00 1.00  i3 0.00 0.00 1.00  

i4 1 1 −1 −1 x4 0.00 0.00 1.00 1.00 i4 0.00 0.00 −1.00 1.00 

 

Example 2 

Scores Inter-correlation of variables Inter-correlation of individuals 

x1 x2 x3 x4  x1 x2 x3 x4  i1 i2 i3 i4 

i1 0 −1 −1 −1 x1 1.00    i1 1.00    

i2 0 1 1 1 x2 0.71 1.00   i2 −1.00 1.00   

i3 −1 −1 1 1 x3 −0.71 0.00 1.00  i3 −0.58 0.58 1.00  

i4 1 1 −1 −1 x4 −0.71 0.00 1.00 1.00 i4 0.58 −0.58 −1.00 1.00 

Note. Standard deviations are given behind the slash. 
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of individuals cannot be explained by two uncorrelated factors. In Example 2, 
perfect negative correlations between individuals i1 and i2 and between i3 and i4 
and moderate inter-correlations between the remaining individuals occur, which 
considerably modifies the inter-correlations of variables when compared to Ex-
ample 1. The examples demonstrate the mutual inter-relation of inter-correlations 
of variables and inter-correlations of individuals. In order to elucidate this rela-
tionship, the effect of latent factors explaining the common variance of individ-
uals on the common variance of variables is investigated in the present study.  

Factor analysis of the covariances or correlations between variables that are 
observed across many individuals is often termed R-factor analysis whereas fac-
tor analysis of the covariances or correlations between individuals observed 
across many variables is termed Q-factor analysis [9] [10]. A data matrix of indi-
viduals for Q-factor analysis is obtained when the matrix of observed variables 
used for R-factor analysis is transposed. Note that the empirical data used for R- 
and Q-factor analysis may be the same, although the number of observed va-
riables will typically be larger than the number of individuals in Q-factor analy-
sis whereas the number of individuals will typically be larger than the number of 
observed variables in R-factor analysis. Moreover, there are other preferences for 
factor extraction and rotation in Q-factor analysis [11] [12] than in R-factor 
analysis. Nevertheless, there is consensus that Q-factor analysis may be useful for 
the investigation of subjective individual views [12] and Q-factor analysis is 
sometimes preferred over R-factor analysis in the context of questionnaire de-
velopment (e.g., [13]).  

The similarities and differences of R- and Q-factor analysis have primarily 
been discussed from the perspective of factor analysis as a tool for data analysis 
[14] [15]. In consequence, the effects of the R- and Q-factor model as data gene-
rating population models on the results of R- or Q-factor analysis have rarely 
been compared. It is therefore widely unknown what happens when data that are 
based on a population model comprising R- as well as Q-factors are submitted to 
R-factor analysis. As models are never true [16], it is not the fact that model er-
ror occurs that is important here, but the question of whether the loading esti-
mates from R-factor analysis are substantially biased when a combined R- and 
Q-factor model holds. Therefore, and because most studies perform R-factor 
analysis, the focus of the present study is on the effect of a combined R- and 
Q-factor model as a population model on subsequent R-factor analysis. It is, 
however, acknowledged that a combined R- and Q-factor population model 
might also be a source of error for Q-factor analysis. 

An example of R-factors in a context where Q-factors may also be relevant is 
the analysis of personality types in the context of personality traits [17], although 
the robustness of the results has been challenged [18]. [18] also noted that only 
42% of the sample was associated with the proposed personality types indicating 
that the types are probably of moderate relevance. Although [17] used clus-
ter-methodology (Gaussian mixture models) for the identification of types, si-
milarities of individuals have also been investigated by means of Q-factor analy-

https://doi.org/10.4236/ojs.2024.141002


A. Beauducel 
 

 

DOI: 10.4236/ojs.2024.141002 41 Open Journal of Statistics 
 

sis [9]. Thus, personality research shows that relevant similarities of variables as 
well as relevant similarities of individuals may co-occur. This does not imply 
that Q-factors yield a superior representation of personality variance or that they 
allow for improved predictions of outcomes like, for example, social adjustment 
or job achievement [19]. For the present study, it is only important to acknowl-
edge that Q-factors may also be relevant for a complete description of the data. 
However, if we accept the idea that Q-factors may co-occur with R-factors, the 
consequences of a population model based on a combination of R- and Q-factors 
for the estimation of model parameters of R-factor analysis should be investi-
gated. This has until now not been done as similarities of individuals have often 
been investigated by means of cluster analysis [17] [18], latent class analysis [20], 
or factor mixture models [21]. The achievements of these approaches for the 
analysis of typological variance are not questioned here. The focus of the present 
study is on the effect of population Q-factors co-occurring with population R- 
factors on the loading estimates of R-factor analysis which does not take into 
account the Q-factors. 

After some definitions, the effects of population models based on R- and 
Q-factors on the covariance and correlation of observed variables and the re-
sulting effects on the estimation of R-factor loadings are described for the popu-
lation. Then, a simulation study is performed in order to give an account of the 
effect of population models comprising R- and Q-factors on loading estimates of 
R-factor analysis. Finally, a method indicating whether a data set contains a re-
levant amount of Q-factor variance is proposed and demonstrated by means of 
simulated data sets. 

2. Definitions 
2.1. Separate R- and Q-Factor Models 

Let RX  be a p × n matrix of p variables observed for n individuals [2]. The 
R-factor model can then be written as 

 R R R R R ,= +X f eΛ Ψ  (1) 

where Rf  is a qR × n matrix of normally distributed common R-factor scores, 

RΛ  is a p × qR matrix of common R-factor loadings, Re  a p × n matrix of 
normally distributed linear independent unique R-factor scores, and RΨ  is a p 
× p diagonal positive definite matrix of unique R-factor loadings. It is further-
more assumed that ( )RE = 0f , ( )

RR R qE ′ =f f I , ( )RE = 0e , ( )R RE ′f e = 0 , 
and ( )R R pE ′ =e e I , so that  

 ( ) 2
R R R R R R .E ′ ′= = +X XΣ Λ Λ Ψ  (2) 

Let QX  be a n × p matrix of n individuals for which p variables were ob-
served. The Q-factor model can then be written as  

 Q Q Q Q Q ,= +X f eΛ Ψ  (3) 

where Qf  is a qQ × p matrix of normally distributed common Q-factor scores, 
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QΛ  is a n × qQ matrix of common Q-factor loadings, Qe  is a n × p matrix of 
normally distributed linear independent unique Q-factor scores, and QΨ  is a n 
× n diagonal positive definite matrix of unique Q-factor loadings. It is further-
more assumed that ( )Q 0E =f , ( ) QQ Q qE ′ =f f I , ( )Q 0E =e , ( )Q QE ′f e = 0 , 

( )Q Q nE ′ =e e I , so that 

 ( ) 2
Q Q Q Q Q Q.E ′ ′= = +X XΣ Λ Λ Ψ  (4) 

It is assumed that the observed variables RX  and QX  are statistically in-
dependent with 

 

( ) ( )( )( )( )

( )( )

1
R Q R R R R Q Q Q Q

1
R R Q Q R R Q Q R R Q Q R R Q Q

1

1

,

E E p

E p

−

−

′ ′ ′ ′= + + −

′ ′ ′ ′ ′ ′= + + + −

= 0

X X f e f e

f f f e e f e e

Λ Ψ Λ Ψ

Λ Λ Λ Ψ Ψ Λ Ψ Ψ  (5) 

for ( )QE ′ = 0X  and with ( )R QE ′ = 0f f , ( )R QE ′ = 0f e , ( )R QE ′ = 0e f , and  

( )R QE ′ = 0e e . 

2.2. A Combined Model of R- and Q-Factors 

The data in the following section are assumed to be analyzed from the perspec-
tive of R-factor analysis whereas the observed variables RQX  are based on an 
aggregation of variables resulting from R- and Q-factors. This can be written as  

 RQ R Q ,n′= +X X X C  (6)  

where RX  represents the part of the observed variables based on R-factors and 

QX  is the transposed matrix of observed individuals based on Q-factors. Al-
though adding RX  and QX  is only possible for n = p, it should be noted that 
-in the combined model of R- and Q-factors, only RQX  is observed whereas 

RX  and QX  are parts of the assumed population model. Therefore, not all R- 
and Q-factors need not to be well represented by the observed variables in RQX  
when R-factor analysis is performed. For a complete description of the popula-
tion model n = p is nevertheless assumed in the following. Moreover, as  

( )QE ′X  is not necessarily zero, there is the symmetric and idempotent center-
ing matrix 1

n n n nn− ′= − 1 1C I , based on the n × n identity matrix nI  and the n × 
1 column unit-vector nI , for row mean centering of Q′X  on the right side of 
Equation (6). It has been noted by [15] and others that mean centering of Q′X  
implies that the variance that would be based on a single common factor (qQ = 1) 
in QX  would be eliminated in R-factor analysis of RQX . Therefore, only the 
condition qQ > 1 is considered here. It follows from Equation (6) that the cova-
riances of RQX  are 

 ( ) ( )RQ RQ RQ R R RQ RQ Q Q ,nE E′ ′ ′ ′= = + + +X X X X H H X C XΣ  (7) 

with RQ R CQ=H X X  and CQ Qn=X C X . The element in the first row and first 
column of RQH  is computed as { }RQ11 R11 CQ11 R12 CQ21 R1 CQ 1n nh x x x x x x= + + + . 
As RX  and CQX  are mean-centered, symmetrically distributed and as  

( )R QE ′ = 0X X  all elements in the brackets are from the normal product distri-
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bution [22] [23], which is symmetric so that ( )RQ11 0E h = . This holds for all 
elements of RQH  so that ( )RQE = 0H . Therefore, Equation (7) can be written 
as  

 ( ) ( )2
RQ R R R Q Q Q Q Q Q Q Q .n nE E′ ′ ′ ′= + + +f C f e C eΣ Λ Λ Ψ Λ Λ Ψ Ψ  (8) 

2.3. Bias of Estimated R-Factor Loadings 

For Q′X  being mean centered ( ( )Q 0E ′ =X ) Equation (8) implies that the va-
riance of the elements in RQΣ  is also affected by Q-factors. For ( )Q 0E ′ =X  the 
numerator of the variance of the elements in 2

Q Q Q′e eΨ  is  

 ( ) ( )( ) ( )( )2 2 2 2 2
Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q ,SSQ tr E E ′′ ′ ′ ′ ′= − − 

 
e e e e e e e e e eΨ Ψ Ψ Ψ Ψ  (9) 

where SSQ denotes the sum of squares. It follows from ( )QE ′ = 0X , ( )Q QE ′ = 0e e , 

( )2
Q Q QE ′ = 0e eΨ , and ( )Q Q nE ′ =e e I  that the eigen-decomposition of  
2

Q Q Q Q Q Q′ ′=e e K V KΨ , where QV  is a n × n matrix containing the eigenvalues in 
the main diagonal in descending order with Q Q Q Q Qn′ ′= = =K K K K I V . Accord-
ing to [24] (p. 248) the trace of the power of a positive semidefinite square ma-
trix is equal to the trace of the power of the eigenvalues of the matrix so that 

 ( ) ( ) ( ) ( )2 2 2 2 2
Q Q Q Q Q Q Q Q Q Q QSSQ tr tr tr′ ′ ′= = =e e e e e e VΨ Ψ Ψ Ψ . (10) 

When all unique Q-factors and all common Q-factors account for the same 
amount of variance of each observed variable ( ( ) ( )Q Q Q1 2diag diag ′= =Σ Λ Λ

2
QΨ ), the right-hand side of Equation (10) can be written as 

 ( )2 2
Q Q

1
2

tr nσ=Ψ . (11) 

It follows from ( )2
Q Q Q 0SSQ ′ >e eΨ  that 2

Q Q Q′e eΨ  introduces variability into 
the elements of RQΣ . For ( )Q 0E ′ =X  the numerator of the variance of  

Q Q Q Q′ ′f fΛ Λ  is  

 
( )

( )( ) ( )( )
Q Q Q Q

Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q .

SSQ

tr E E

′ ′

 ′′ ′ ′ ′ ′ ′ ′ ′= − − 
 

f f

f f f f f f f f

Λ Λ

Λ Λ Λ Λ Λ Λ Λ Λ
 (12) 

It follows from ( )Q Q Q QE ′ ′ = 0f fΛ Λ  that the eigen-decomposition of  

Q Q Q Q Q Q Q′ ′ ′=f f L W LΛ Λ , where QW  is a n × n diagonal matrix with qQ non-zero 
eigenvalues in decreasing order and 

QQ Q Q Q q′ ′= =L L L L I . The numerator of the 
variance of the elements of Q Q Q Q′ ′f fΛ Λ  is 

 ( ) ( ) ( )2
Q Q Q Q Q Q Q Q Q Q Q Q Q ,SSQ tr tr′ ′ ′ ′ ′ ′= =f f f f f f WΛ Λ Λ Λ Λ Λ  (13) 

which implies that the variance of the elements in Q Q Q Q′ ′f fΛ Λ  is greater zero. 
When all unique Q-factors and all common Q-factors account for the same 
amount of variance of each observed variable ( ( ) ( )Q Q Q1 2diag diag ′= =Σ Λ Λ

2
QΨ ), the right-hand side of Equation (13) can be written as 

 ( )
2 2

2 2 2
Q Q Q2

QQ

.
22

n ntr tr
qq

σ σ
 

= =  
 

W  (14) 
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It follows from Equations (14) and (10) and for n > qQ that  
( ) 12 2 2

Q Q Q2 0.5n q nσ σ
−
> , i.e., that common Q-factors introduce n/qQ times more 

variability into the elements of RQΣ  than unique Q-factors. More generally, 
Equations (10) and (11) imply that some variability in the elements of RQΣ  is 
introduced by the common and unique Q-factors. To sum up, Q-factors tend to 
enhance the variance of the covariances of observed variables (Equations (10) 
and (11)). However, the abovementioned analyses do not inform on the size of 
the respective effects and which amount of Q-factor variance might substantially 
distort an R-factor solution.  

3. Simulation Study on the Effect of Q-Factors on R-Factor  
Loadings 

3.1. Conditions and Specifications 

A simulation was performed in order to give an account of the bias of R-factor 
loadings that is due to Q-factors when the data are based on R- as well as 
Q-factors. As the number of individuals or cases n is part of the Q-factor model, 
the finite population of the simulation study has to comprise a large number of 
samples of a given n. The first population was based on 2000 samples of n = 300 
cases, the second population comprised 2000 samples of n = 600 cases, and the 
third population comprised 2000 samples of n = 900 cases. Accordingly, the 
conditions of the simulation study were qR = 3, qQ = 3, and p = 15. To investigate 
the effect of Q-factors on the variability of R-factor loading estimates, the salient 
loading sizes were set equal within each population model. The size of salient 
loadings in the common R-factor loading matrices RΛ  was λR ∈ {0.50, 0.70} 
and the size of salient loadings in common Q-factor loading matrices QΛ  was 
λQ = 0.90. The non-salient loadings were zero in all population models. Accord-
ing to Equations (1), (3) and (6), the R- and Q-factor loadings were combined in 
order to generate the observed variables. This can be written as  

 ( )RQ R R R R Q Q Q Q .n′ ′ ′= + + +X f e f e CΛ Ψ Λ Ψ  (15) 

Although the relative effect of R- and Q-factors can be determined by the size 
of the respective common and unique R- and Q-factor loadings, it is helpful to 
control for the relative effect of R- and Q-factors more directly by means of 

 ( )( )0.5
RQ R R R R R Q Q Q Q Q ,nw w − ′ ′ ′= + + +X f e D f e CΛ Ψ Λ Ψ  (16) 

with 2 2
R Q1 w w= +  and ( ) ( )( )Q Q Q Q Q Q Q Qn ndiag ′ ′ ′ ′= + +D f e C C f eΛ Ψ Λ Ψ , which 

is needed to standardize the transposed part of the observed variables based on 
Q-factors. The usual metric of standardized factor loadings was maintained in 
the population with ( )2

R R Rp diag ′= +I Λ Λ Ψ  and ( )2
Q Q Qn diag ′= +I Λ Λ Ψ . The 

observed variables were computed from Equation (16) by means of qR common 
factor scores Rf , p unique factor scores Re , n/qQ common factor scores Qf , 
and n unique factor scores Qe , which were generated from normal distributions 
with μ = 0 and σ = 1 by the Mersenne twister random number generator inte-
grated in IBM SPSS, Version 26.0. 
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For 2
R 1.00w =  and 2

Q 0.00w =  Equation (16) yields a conventional R-factor 
model. For 2

R 0.50w =  and 2
Q 0.50w = , half of the unique R-factor variance is 

replaced by common and unique Q-factor variance. Four levels of 2
Rw  (1.00, 

0.75, 0.50, and 0.25) with the corresponding 2
Qw  were combined with two levels 

of λR and three sample sizes n, which leads to 4 × 2 × 3 = 24 populations, each 
comprising 2000 samples. 

Each set of p observed variables was submitted to R-factor analysis. The de-
pendent variables of the simulation study were the mean and standard deviation 
of the estimated loadings RΛ̂  resulting from principal-axis R-factor analysis of 
the sample data with subsequent orthogonal target-rotation [25] of the estimated 
R-factor loadings RΛ̂  towards the R-factor loadings RΛ  of the population 
model based on R- and Q-factors. Therefore, differences between the means of 

RΛ̂  and cannot be due to different rotations of the factors. 

3.2. Results 

The most important result of the simulation study is that the standard deviation 
of the salient loadings increases with decreasing 2

Rw  (Table 2). The results of 
2
R 1.00w =  show the standard deviations of the loadings that are only due to 

sampling error, as rotational variation of loadings was excluded by means of or-
thogonal target-rotation towards the population loadings. Especially, the results 
of 2

R 0.25w =  show that the standard deviation of the loading estimates was 
about twice as large as the variation due to sampling error, when there was a 
substantial amount of Q-factor variance. This additional loading variation is a 
bias of the loading estimates as there was no salient loading variation in the pop-
ulation. 

In order to show the possible effect of the loading variation (comprising sa-
lient and non-salient loadings) on factor identification, a scatterplot of the tar-
get-rotated loadings of factors 1 and 2 is presented for λR = 0.50 in Figure 1 and 
for λR = 0.70 in Figure 2. Obviously, the overlap of salient and non-salient load-
ings for samples of n = 300 cases is substantial for λR = 0.50 and 2

R 0.25w =  and 
might be an obstacle for factor identification (Figure 1). In contrast, salient and  
 
Table 2. Mean and standard deviation of target-rotated salient loading estimates of 
R-factor analysis for λR = 0.50, 0.70 for 2

Rw  = 0.25, 0.50, 0.75, and 1.00 (n = 300, 600, 
900). 

2
Rw  

λR = 0.50 λR = 0.70 

n = 300 n = 600 n = 900 n = 300 n = 600 n = 900 

0.25 0.50/0.12 0.50/0.08 0.50/0.07 0.70/0.06 0.70/0.04 0.70/0.03 

0.50 0.50/0.09 0.50/0.06 0.50/0.05 0.70/0.05 0.70/0.03 0.70/0.03 

0.75 0.50/0.07 0.50/0.05 0.50/0.04 0.70/0.04 0.70/0.03 0.70/0.02 

1.00 0.50/0.06 0.50/0.04 0.50/0.04 0.70/0.04 0.70/0.02 0.70/0.02 

Note. Standard deviations are given behind the slash. 
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Figure 1. Scatterplot of R-factor loading estimates Rλ̂  of factor 1 and 2 based on 2000 samples (n = 300, 600, 900) drawn from 

populations based on λR = 0.50, qR = 3 R-factors ( 2
Rw  = 1.00) and from populations comprising qR = 3 R- and qQ = 3 Q-factors 

( 2
Rw  = 0.25). 

 
non-salient loadings can clearly be separated for n = 300 cases, λR = 0.50 and 

2
R 1.00w =  or for samples sizes of n = 600 and n = 900. For all conditions based 

on λR = 0.70, the overlap of salient and non-salient loadings was small, indicat-
ing that factor identification would be possible (Figure 2). To sum up, when a 
substantial amount of Q-factor variance is expected, large sample sizes should be 
analyzed or very large R-factor loadings should be the expected as a basis for 
successful factor identification.  
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Figure 2. Scatterplot of R-factor loading estimates Rλ̂  of factor 1 and 2 based on 2000 samples (n = 300, 600, 900) drawn from 

populations based on λR = 0.70, qR = 3 R-factors ( 2
Rw  = 1.00) and from populations comprising qR = 3 R- and qQ = 3 Q-factors 

( 2
Rw  = 0.25). 

4. An Indicator of Q-Factor Variance 

As R-factor analysis of data from a population based on a relevant amount of 
Q-factor variance may result in biased R-factor loadings, it is interesting to know 
whether there is a relevant amount of Q-factor variance in a data set. Note that a 
population model based on an additive combination of R- and Q-factors implies 
that a row-centered matrix of individual R-factor scores is combined with a 
row-and-column-centered matrix of individual Q-factor scores (Equations (15) 
and (16)). [26] demonstrated that the eigenvalues of R- and Q-factor analysis of 
a row-and-column-centered matrix are identical, so that a high similarity of ei-
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genvalues should be expected for combined R- and Q-factor models, even when 
the resulting matrix is not perfectly column-centered. Therefore, Q-factor analy-
sis will yield a number of substantial eigenvalues, even when the data can per-
fectly be described by R-factor analysis. Thus, the eigenvalues of Q-factor analy-
sis do not inform unambiguously on the amount of Q-factor variance.  

It is therefore proposed to consider the bivariate scatterplot of observed va-
riables in order to ascertain whether between-subject variance that could be due 
to R-factors is combined with a substantial amount of within-subject variance 
that could be due to Q-factors. Different within-subject profiles that might be 
caused by qQ > 1 Q-factors imply that not all differences between two observed 
z-standardized variables z1 and z2 are equal. For qQ = 2, for example, there could 
be one group of participants with z1 − z2 > 0 and a second group with z1 − z2 < 0. 
It follows that the variance of the z-score differences d, σd, is greater zero for qQ 
≥ 2. According to [27] (p. 64) the correlation can be written as 

 
1 2

21 2.z ,z dρ σ= −  (17) 

As qQ ≥ 2 implies σd > 0, it follows from Equation (17) that 
1 2

1z ,zρ < . An 
example for n = 145 cases and qQ = 3 is given for 

1 2
0.40z ,zr =  in Figure 3 (dots). 

The concentration of points on three lines is extreme for qQ = 3, so that the biva-
riate distribution is quite different from the bivariate distribution for the same 
correlation and qQ = 0 (Figure 3, crosses). For qQ = 0 there is a bivariate normal 
distribution, which is clearly not the case for qQ = 3. As the distributions in Fig-
ure 3 are not skewed, only tests of the multivariate kurtosis were performed with 
the macro provided by [28] at α = 0.05. Srivastava’s [29] test for multivariate 
kurtosis (β2,p = 2.26, N(β2,p) = −2.59, p < 0.01), Small’s [30] test of multivariate 
kurtosis (Q2 = 298.95, df = 2, p < 0.01), and Mardia’s [31] test indicate a signifi-
cant departure from multivariate normal kurtosis (β2,p = 6.36, N(β2,p) = −2.47, p 
< 0.05). 

The example shows that a bivariate distribution clearly based on qQ = 3 may 
result in a platykurtic departure from the kurtosis of the bivariate normal distri-
bution. Even when different reasons for platykurtic multivariate distributions 
are possible, tests of the multivariate kurtosis may also indicate that qQ > 1. Vis-
ual inspection of scatterplots may be performed when significant departures 
from the multivariate normal distribution occur because a pattern with separable 
clouds of points will provide further evidence for the presence of Q-factors.  

In order to investigate the usefulness of tests for the kurtosis of the multiva-
riate normal distribution as indicators for qQ > 1, tests were performed for qR = 
qQ = 3 and p = 15. The tests were based on 2000 samples with n = 300, 600 and 
900 with λQ = 0.90, λR = 0.50 and 0.70, 2

Rw  = 0.10, 0.25, 0.50, 1.00, and α-levels 
of 0.05, 0.10, and 0.20. As the test is employed in order to evaluate conditions for 
R-factor analysis, an alpha-level beyond the conventional 0.05-level might be 
justified. Note that the 2

R 1.00w =  condition is a condition without any effect of 
Q-factors, so that no detection rate beyond chance level should be expected for 
this condition. Overall, the highest detection rates for data with substantial 
Q-facror variance were found for Mardia’s coefficient (see Table 3). However,  
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Figure 3. Scatterplot of z1 and z2, n = 145, qQ = 3, and 
1 2

0.40z ,zr = . 

 
Table 3. Percentage of p-values of tests of kurtosis indicating significant departures from 
multivariate normality at α = 0.05, 0.10, and 0.20, for n = 300, 600, and 900, p = 15, λR = 
0.50 and 0.70, λQ = 0.90. 

2
Rw  λR Method 

n = 300 
α = 0.05/0.10/0.20 

n = 600 
α = 0.05/0.10/0.20 

n = 900 
α = 0.05/0.10/0.20 

0.25 0.50 
Small 

Srivastava 
Mardia 

76.7/83.6/90.6 
84.3/87.5/90.5 
97.6/98.4/99.0 

97.7/99.1/99.5 
99.6/99.8/99.9 

100.0/100.0/100.0 

99.9/99.9/99.9 
100.0/100.0/100.0 
100.0/100.0/100.0 

0.50 0.50 
Small 

Srivastava 
Mardia 

35.1/43.9/56.2 
53.6/61.3/69.9 
79.3/83.3/88.0 

66.9/76.1/84.2 
90.1/93.1/95.6 
99.8/99.9/99.9 

84.8/89.7/93.6 
98.7/99.2/99.6 

100.0/100.0/100.0 

0.75 0.50 
Small 

Srivastava 
Mardia 

8.1/15.0/26.2 
10.7/17.4/28.1 
15.7/23.1/33.7 

13.3/21.0/33.6 
24.3/31.7/43.2 
51.3/59.6/69.4 

18.0/26.4/39.8 
39.3/47.2/58.8 
76.0/81.6/87.7 

1.00 0.50 
Small 

Srivastava 
Mardia 

6.2/11.3/21.0 
3.4/8.7/20.1 

7.5/15.2/27.9 

5.3/10.8/20.9 
4.7/9.6/18.8 
6.8/12.7/24.5 

5.8/9.9/19.8 
5.1/10.6/21.5 
5.8/11.3/22.8 

0.25 0.70 
Small 

Srivastava 
Mardia 

34.4/43.4/56.9 
85.1/88.7/92.4 
96.6/97.5/98.6 

65.9/73.8/82.7 
99.5/99.6/99.8 

100.0/100.0/100.0 

83.2/88.8/93.5 
100.0/100.0/100.0 
100.0/100.0/100.0 

0.50 0.70 
Small 

Srivastava 
Mardia 

13.3/21.1/33.7 
54.8/62.7/71.0 
75.2/80.2/85.3 

25.0/35.5/48.5 
89.8/92.6/95.8 
99.3/99.7/99.9 

35.8/46.2/59.4 
98.6/99.3/99.5 

100.0/100.0/100.0 

0.75 0.70 
Small 

Srivastava 
Mardia 

6.5/18.1/22.8 
11.9/18.1/29.0 
13.8/20.9/32.2 

7.9/14.5/25.2 
25.1/32.4/43.5 
45.0/54.4/64.4 

8.4/15.6/27.6 
38.4/46.4/58.0 
71.2/77.9/84.2 

1.00 0.70 
Small 

Srivastava 
Mardia 

6.5/11.6/21.3 
3.5/8.7/19.7 

7.5/15.0/27.4 

6.0/10.9/22.5 
4.8/10.5/19.8 
6.8/12.6/23.5 

5.3/9.9/19.7 
4.8/10.3/19.6 
5.6/11.6/23.3 
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for n = 300 and 2
R 1.00w =  the rate of false positives is slightly above chance for 

Mardia’s coefficient. As the power for the identification of substantial Q-factor 
variance was sufficiently high for Srivastava’s and Small’s tests without substan-
tial false positives 2

R 1.00w = , these tests might be recommended. 

5. Discussion 

As R-factor analysis of variables observed for a large number of individuals is the 
dominant form of factor analysis in several areas of social sciences, it might 
happen that R-factor analysis is routinely performed even when the population 
model comprises R- and Q-factors. For example, in the domain of personality 
research, it has been assumed that Q-factors or type-factors may be relevant in 
addition to the well-known R-factors (e.g., [17] [32] [33]). This leads to the 
question of whether performing an R-factor analysis of data from a population 
model comprising R- and Q-factors may result in biased loading estimates. 
R-factor analysis of data from population models comprising R- and Q-factors 
was therefore investigated.  

It was shown that R-factor analysis of data based on a population model com-
prising R- and Q-factors leads to biased R-factor loading estimates. For such da-
ta R-factor analysis introduces variability into the loading estimates. Thus, when 
the observed variables have equal R-factor loadings in a population model com-
prising R- and Q-factors, the loading estimates resulting from R-factor analysis 
of the observed variables will have variability beyond chance level. This bias of 
R-factor loading estimates and the variation of R-factor loading estimates 
beyond chance level were also shown in a simulation study. It was illustrated in 
the simulation study that the additional loading variability may hamper factor 
identification. These results show that effects of model error beyond the effect of 
minor factors [7] may be of relevance for factor analysis. The variability of 
R-factor loadings beyond chance level caused by Q-factors implies that signific-
ance testing of R-factor loadings cannot protect completely against erroneous 
conclusions when the data are drawn from populations comprising R- and 
Q-factors. Although the terminology of the present study was based on the dis-
tinction of variables and individuals, which is important in the social sciences, 
the present results are of relevance whenever the common variance of scores is 
combined with the common variance of transposed scores in a two-way array of 
scores. 

From an applied perspective, the present results imply that the reproducibility 
of R-factor loadings may not only be hampered by sampling error, insufficient 
reliability of variables and an insufficient number of variables per factor, but also 
by the presence of Q-factors. The reproducibility crisis [34] resulted in a strong-
er focus on statistical power, stronger research designs, preregistration, and rep-
lication studies. The present study shows that different forms of model error 
and, more specifically, Q-factors may also be considered as a reason for insuffi-
cient reproducibility of research results when results are based on R-factor anal-
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ysis. 
As the use of R-factor analysis for data drawn from a population based on R- 

and Q-factors may result in biased R-factor loading estimates, it might be of in-
terest to detect Q-factor variance in observed variables as a prerequisite of 
R-factor analysis. As eigenvalues of correlation matrices may be ambiguous and 
because Q-factor variance leads to platykurtic multivariate distributions of ob-
served scores, it was proposed to use tests for the multivariate normality as indi-
cators for Q-factor variance. In a simulation study, Mardia’s test of the multiva-
riate kurtosis was more sensitive for the detection of relevant Q-factor variance 
than Srivastava’s and Small’s test. However, a slight tendency of false positive 
results was also found with Mardia’s test so that Srivastava’s and Small’s test 
might also be recommended. As different reasons are possible for departures of 
the kurtosis from the kurtosis of the multivariate normal distribution are possi-
ble, an inspection of scatterplots is recommended when a test of the multivariate 
kurtosis of the data is significant. The inspection of scatterplots may be com-
bined with pairwise tests of the bivariate kurtosis in order to eliminate observed 
variables with substantial Q-factor variance from R-factor analysis. As there 
might be different reasons for departures of the multivariate kurtosis from mul-
tivariate normality, it may be considered to normalize the data (e.g., [35]) before 
tests for the departure of multivariate kurtosis from normality are applied be-
cause normalization may reduce departures from normality due to outliers and 
other reasons whereas the Q-factor related scatterplot structure of parallel clouds 
of points is unlikely to be affected by normalization. The possibility to improve 
the specificity of tests of multivariate kurtosis for the identification of Q-factor 
patterns by means of normalization may be investigated in future simulation 
studies.  

To sum up, the present paper is a caveat that R-factor analysis of data from 
population models comprising R- and Q-factors will result in biased R-factor 
loading estimates. The bias is due to the fact that the model of R-factor analysis 
does not correspond exactly to the population model comprising R- and Q-factors. 
Tests of the multivariate kurtosis might be used for the detection of Q-factor va-
riance as a prerequisite for R-factor analysis. Further research should compare 
the effect of model error due to Q-factor variance on the results of R-factor 
analysis with the effect of model error based on minor factors as has been dis-
cussed by [7]. Another avenue of future research would be the investigation of 
the combined effect of R- and Q-factors in the context of parallel factor analysis 
(PARAFAC, [36]), where several two-way arrays of data are analyzed. It might 
be interesting to enter a two-way array for R-factor analysis as well as its trans-
position into PARAFAC in order to investigate whether a simultaneous estima-
tion of R- and Q-factors allows for reduction bias of factor loadings. The com-
bined effect of both types of model error based on minor factors and model er-
ror based on Q-factor variance might be investigated in future research as it may 
occur in real data. 
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