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Abstract 
It is common for datasets to contain both categorical and continuous variables. 
However, many feature screening methods designed for high-dimensional clas-
sification assume that the variables are continuous. This limits the applicabil-
ity of existing methods in handling this complex scenario. To address this 
issue, we propose a model-free feature screening approach for ultra-high- 
dimensional multi-classification that can handle both categorical and conti-
nuous variables. Our proposed feature screening method utilizes the Maximal 
Information Coefficient to assess the predictive power of the variables. By sa-
tisfying certain regularity conditions, we have proven that our screening pro-
cedure possesses the sure screening property and ranking consistency proper-
ties. To validate the effectiveness of our approach, we conduct simulation 
studies and provide real data analysis examples to demonstrate its perfor-
mance in finite samples. In summary, our proposed method offers a solution 
for effectively screening features in ultra-high-dimensional datasets with a 
mixture of categorical and continuous covariates. 
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1. Introduction 

With the advancement of data acquisition tools and the improvement of com-
puter storage capacity, ultra-high dimensional data has been widely applied in 
various scientific research fields, especially in genomics, tumor classification, 
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machine learning and other fields. The traditional data screening methods can 
no longer be applied, and the existing feature screening methods for ultra-high 
dimensional data have their own limitations. Among them, when the covariates 
are both categorical and continuous variables, there are fewer research methods 
and the screening effect needs to be improved, so there is an urgent need to de-
velop new theoretical and statistical methods to deal with ultra-high dimensional 
data. The pioneering work by Fan and Lv (2008) [1] introduced the concept of 
sure independence screening (SIS) in their seminal paper. Specifically, for linear 
regressions, they demonstrated that the approach based on Pearson correlation 
learning exhibits a sure screening property. This means that even when the  
number of predictors (p) grows at a much faster rate than the number of obser-

vations (n) with logarithm of p equal to ( )O nα  for some 10,
2

α  ∈ 
 

, all rele-

vant predictors can be selected with a probability approaching one (2009) [2]. 
Numerous approaches have been developed in recent years for feature screening 

in ultrahigh-dimensional data. Wang (2009) [3] introduced forward regression 
as a method for handling such data. Fan and Song (2010) [4] applied maximum 
marginal likelihood estimates or maximum marginal likelihood to ultrahigh- 
dimensional screening in generalized linear models. Fan et al. (2011) [5] ex-
tended correlation learning to marginal nonparametric learning. Li et al. (2012) 
[6] presented a robust rank correlation screening method based on the Kendall 
𝜏𝜏 correlation coefficient. He et al. (2013) [7] developed a quantile-adaptive 
framework for nonlinear variable screening in high-dimensional heterogeneous 
data. Fan et al. (2014) [8] introduced nonparametric independence screening, 
which selects variables based on the nonparametric marginal contributions of 
each covariate given the exposure variable. Nandy et al. (2022) [9] introduced 
covariate information number sure independence screening, which incorporates 
a marginal utility connected to the traditional Fisher information. Tong et al. 
(2022) [10] propose a model-free conditional feature screening method for ul-
tra-high-dimensional data based on false discovery rate (FDR) control, which 
does not require a specific functional form of the regression function and is ro-
bust to heavy-tail responses and predictors. 

To tackle the challenge of ultrahigh-dimensional feature screening in classifi-
cation problems, Fan and Fan (2008) [11] introduced the t-test statistic for the 
two-sample mean problem as a marginal utility for feature screening and estab-
lished its theoretical properties. Mai and Zou (2013) [12] applied the Kolmogo-
rov filter to ultrahigh-dimensional binary classification. Cui et al. (2015) [13] pro-
posed a screening procedure that utilizes empirical conditional distribution func-
tions. Lai et al. (2017) [14] developed a feature screening procedure based on the 
expected conditional Kolmogorov filter for binary classification problems. 

However, the aforementioned screening methods assume that the data types 
are continuous. For categorical covariates, Huang et al. (2014) [15] devised a 
model-free discrete feature screening method based on Pearson Chi-square sta-
tistics and demonstrated its sure screening property, as mentioned in Fan et al. 
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(2009) [2]. When all the covariates are binary, Ni and Fang (2016) [16] proposed 
a model-free feature screening procedure based on information entropy theory 
for multi-class classification. Ni et al. (2017) [17] further extended this by in-
troducing a feature screening procedure based on weighted Adjusted Pearson 
Chi-square for multi-class classification. Sheng and Wang (2020) [18] intro-
duced a novel model-free feature screening method based on the classification ac-
curacy of marginal classifiers for ultrahigh-dimensional classification. Anzarmou 
et al. (2022) [19] presented a new model-free interaction screening method called 
Kendall Interaction Filter (KIF) for classification in high-dimensional settings. 

Based on the aforementioned research on classification models, this paper in-
troduces a model-free feature screening approach for ultrahigh-dimensional 
multi-classification that accommodates both categorical and continuous cova-
riates. The proposed method utilizes the maximal information coefficient (MIC) 
to evaluate the predictive power of the covariates. For screening categorical co-
variates, we employ the maximal information coefficient (MIC) index, which is 
equivalent to information gain [16]. The feature screening procedure proposed 
in this paper is based on maximal information coefficient, specifically referred to 
as Maximal Information Coefficient Sure Independence Screening (MIC-SIS). 
The maximum mutual information coefficient can be directly used to categorize 
the data without any cut-off processing, and it overcomes the disadvantages of 
information gain, such as the difficulty of calculating the joint probability, not 
belonging to the measurement method, no way to normalize it, and not being 
able to compare the results of different data and it, and the screening results are 
more robust and have lower computational complexity. It first finds an optimal 
discretization method, and then converts the mutual information value into a 
measurement method, and the value range is between [0, 1]. MIC has the ad-
vantages of wide application range, low computational complexity and strong 
robustness. The MIC-SIS method is rigorously proven to possess the sure screen-
ing property, as originally proposed by Fan and Lv [1], ensuring that all signifi-
cant features can be identified. Through simulation results, the MIC-SIS ap-
proach demonstrates the satisfaction of the sure screening property when com-
pared to existing feature screening methods. 

The paper is organized as follows: Section 2 provides a detailed description of 
the proposed MIC-SIS method. Section 3 establishes the sure screening property 
of the method. In Section 4, numerical simulations and a real data analysis ex-
ample are presented to assess the sure screening property of our approach. Con-
cluding remarks are provided in Section 5, and all proofs are included in the 
Appendix. 

2. Feature Screening Procedure 

Firstly, we introduce the concept of the maximal information coefficient (MIC), 
and subsequently, we propose a screening procedure that is based on the max-
imal information coefficient. 
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2.1. Maximal Information Coefficient (MIC) 

The fundamental principle underlying the maximal information coefficient 
(MIC) is based on the concept of mutual information. Mutual Information (MI) 
[20] is a valuable measure in information theory, quantifying the amount of in-
formation contained in one random variable regarding another random variable. 
It represents the reduction in uncertainty of a random variable due to the know-
ledge of another random variable. In decision trees, mutual information and in-
formation gain (IG) are essentially equivalent. 

The mutual information between two random variables X and Y is defined 
based on their joint probability distribution ( ),p X Y  as follows 

( ) ( ) ( )
( ) ( )2

,
, , log d d .

p x y
MI X Y p x y x y

p x p y
= ∫

 

( ),MI X Y  is always nonnegative and ( ), 0MI X Y =  if and only if X and Y 
are independent. 

When covariate X is continuous and Y is a categorical response with R classes 
{ }1,2, , R , 

( ) ( ) ( )
( )1 1

,
, , log .

n R
i

i
i r i r

p X r
MI X Y p X r

p X p= =

 
=   

 
∑∑

 

where ( ) ( ), |i r ip X r p P X Y r= =  and ( )1

1
r ii

np I Y r
n =

= =∑ . In practice 
probability functions are usually calculated using Gaussian kernel functions. 

When covariate { }1 2, , , pX X X X=   is a vector of p dimension with J cat-
egories, where { }1,2, ,j J=  , and Y is also categorical with R classes 
{ }1,2, , R , 

( ) ( ) ( )
( ) ( )1 1

,
, , log .

J R

j r

p X j Y r
MI X Y p X j Y r

p X j p Y r= =

 = =
= = =   = = 
∑∑

 

where ( ) ( )1

1, , ; 1, 2, , ; 1, 2, ,i i
n
ip X j Y r I X j Y r r R j J

n =
= = = = = = =∑   . 

The concept behind MIC is to discretize the relationship between two va-
riables and represent it in two-dimensional space using a scatterplot. A data set 
consisting of data points with two attributes is distributed in a two-dimensional 
space. A grid of a multiplied by b is used to divide the data space, and the fre-
quency of data points falling in each ( ),x y  cell is estimated as ( ),p x y , which 
greatly reduces the computational complexity of the joint probability and suc-
cessfully solves the difficult problem of estimating the joint probability in mutual 
information. 

( ) ( )number of data points in the , grid
, .

total number of data points
x y

p x y =
 

Since there are several ways to partition the data points using an a b×  grid, 
our goal is to find the partitioning method that maximizes the mutual informa-
tion. The mutual information values are normalized using a normalization factor 
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that maps them to the [ ]0,1  interval. Finally, the mesh resolution that max-
imises the normalised mutual information is determined as the MIC measure. 
The formula for MIC is expressed in the following equation: 

( ) ( )
( )2

,
, max .

log min ,a b B

MI X Y
MIC X Y

a b∗ <
=

 
In the above equation, a, b is the number of grids divided in the x, y direction, 

which is essentially the grid distribution, and B is the variable. According to Re-
shef D N et al [21], the grid resolution is typically limited to a b B× < , where 
the size setting of B is often chosen to be approximately 0.6 times the power of 
the data volume. 

( ),MIC X Y  is always nonnegative and ( ), 0MIC X Y =  if and only if X and 
Y are independent. 

2.2. An Independence Ranking and Screening Procedure 

We propose a novel model-free sure independence screening method utilizing 
the maximal information coefficient ( ),MIC X Y  for analyzing ultrahigh- 
dimensional data. In this context, Y represents the response variable with sup-
port yΨ , and ( )1, , pX X X=   denotes the predictor vector, where p is sig-
nificantly larger than the sample size n. Without specifying a particular regres-
sion model, we define the subset of active predictor indices as follows: 

( ){ }: | functionally depends on for some ,k yD k p Y X X y= ∈Ψ
 

and define the subset of inactive predictor indices by 

( ){ }: | does not functionally depend o for anyk yI k p Y X n X y= ∈Ψ . 

Using the notation mentioned above, we can define the active predictors as 
{ }:D kX X k D= ∈  and the inactive predictors as { }:I kX X k I= ∈ . Our pri-

mary objective is to accurately identify the subset of active predictor indices, 
denoted as D. 

The MI marginal measure can be estimated by letting  ( ),MI X Y . When cova-
riate X is continuous and Y is a categorical response with R classes { }1,2, , R , 

 ( ) ( ) ( )
( )1 1

ˆ ,
ˆ ˆ, , log .

ˆ ˆ

n R
ik

k ik ik
i r ik r

p X r
MI X Y p X r

p X p
ω

= =

 
= =   

 
∑∑

 

where ( ) ( )ˆ ˆ |ˆ ,ik r ikp X r p X rP Y= =  and ( )1

1ˆ r ii
np I Y r

n =
= =∑ . Consider a co-

variate vector { }1 2, , , pX X X X=   of dimension p, where each component 

kX  takes on kJ  categories, represented by { }1,2, ,kJ J=  . Furthermore, the 

response variable Y is also categorical, with R classes denoted by { }1,2, , R , 

 ( ) ( ) ( )
( ) ( )1 1

ˆ ,
ˆ ˆ, , log .

ˆ ˆ
kJ R

k
k k k

j r k

p X j Y r
MI X Y p X j Y r

p X j p Y r
ω

= =

 = =
= = = =   = = 

∑∑
 

where ( ) ( )1

1ˆ , ,k ik ii
np X j Y r I X j Y r

n =
= = = = =∑ ;  
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( ) ( )1

1ˆ k iki
np X j I X j

n =
= = =∑ ; ( ) ( )1

1ˆ ii
np Y r I Y r

n =
= = =∑ ; 1,2, ,i n=  ;  

1,2, ,r R=  ; 1, 2, , kj J=  . 

The MIC marginal measure can be estimated by letting  ( ),MIC X Y . Then 

 ( )
 ( )

( ) ( )2 2

, ˆˆ , max max .
log min , log min ,

k k
k k a b B a b B

MI X Y
MIC X Y

a b a b
ω

ω∗

∗ < ∗ <
= = =

 
Our goal is to calculate the maximal information coefficient MIC between 

each predictor and the response variable, denoted as  ( )ˆ ,k kMIC X Yω∗ =  for 
1, 2, ,k p=  . Note that ˆ 0kω

∗ =  if and only if k IX X∈ , this also indicates 
that predictor kX  is statistically independent of Y. Therefore, the MIC index 
can be utilized as a measure of dependence to screen the predictors. The 
MIC-based approach is considered model-free because it solely relies on the 
marginal and joint densities of the random variables. This index can effectively 
capture both linear and nonlinear relationships between the response and pre-
dictors. 

In ultra-high-dimensional data analysis, the primary objective of feature 
screening is to identify a reduced model with a small number of predictors that 
can still encompass the true model D with a high probability. According to the 
deterministic screening property proposed by Fan and Lv [2], as the amount of 
data n tends to infinity, the probability that the model converges to the true 
model must converge to 1, so that the screened covariates are guaranteed to be 
valid. In this paper, we propose utilizing the ˆkω

∗  index to select a moderate- 
sized model 

{ }ˆ ˆ: , for 1kD k cn k pτω∗ −= ≥ ≤ ≤  

where c and τ are predetermined positive values. In practice, we often select the 
reduced model using another formula: 

{ }ˆ ˆ: is among the top largest of allkD k dω∗ ∗=
 

It is evident that the set of predictors { }ˆ:kX k D∗∈  represents the most likely 
relevant predictors associated with the response variable. Consequently, we can 
employ the predictors in { }ˆ:kX k D∗∈  to estimate the true model. To simplify 
the description, we refer to the aforementioned procedure as the MIC-SIS 
(Maximal Information Coefficient Sure Independence Screening) procedure. 

3. Feature Screening Property 

In the subsequent sections, we will establish the theoretical properties of the 
proposed independence screening procedure. Previous studies by Fan and Lv 
[1], Ji and Jin [22], Zhou and Wang [20] and Ni and Fang [16] have demon-
strated that the sure screening property ensures the effectiveness of the inde-
pendence screening procedure. Hence, it is crucial to establish the sure screening 
property for MIC-SIS. The following conditions are assumed to guarantee the 
sure screening property of the MIC-SIS procedure. Although they may not be 
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the weakest conditions, they are primarily imposed to facilitate the technical 
proofs. 

(C1) Let ( )1 2, , , pX x x x=  , where ix  is drawn from an unknown distribu-
tion iF . Each distribution iF  has an unknown Lebesgue probability density 
function pdf if , with 1,2, ,i p=  . The conditions specified in Lemma 3 in the 
Appendix apply to these distributions. 

(C2) There exists a positive constant 0 2κ< < , such that 

( )
( ) ( ) ( )

1 1 1

,
sup log , . .ik r

k p i r ik

n R

r

p X Y
O n a e

p X p Y
κ

≤ ≤ = =

=∑∑
 

(C3) There exists a positive constant 0c >  and τ ; the minimum MIC of 
the active predictors satisfies min 2k D k cn τω∗ −

∈ ≥ ; 
(C4) Both X and Y exhibit sub exponential tail probabilities that hold un-

iformly in p. Specifically, there exists a positive constant 0µ  such that, for all 

00 µ µ< ≤ , the following condition holds: 

( ){ } ( ){ }2 2
1 1

sup max exp , expp k p k qE X E Yµ µ≤ ≤ < ∞ < ∞
 

(C5) There exist two positive constants 1c  and 2c  such that,  
( )1 2c R p Y r c R≤ = ≤ , 1 2c c R+ ≤ , ( )1 2,kc R p X j Y r c R≤ = = ≤  and  
( )1 2k k kc J p X j c J≤ = ≤  for every 1 kJ J≤ ≤ , 1 r R≤ ≤ , and 1 k p≤ ≤ . 

(C6) There exist a positive constant 3c , such that ( ) 30 |kf x Y r c< = <  for 
any 1 r R≤ ≤ , and x in the domain of kX , where ( )|kf x Y r=  is the Lebes-
gue density function of kX  conditional on Y r= . 

(C7) There exist a positive constant 4c  and 0 1 2ρ≤ <  such that  
( ) 4kf x c n ρ−≥  for any 1 k p≤ ≤  and x in the domain of kX , where ( )kf x  is 

the Lebesgue density function of kX . Furthermore, ( )kf x  is continuous in 
the domain of kX . 

(C8) { }ˆ ˆliminf min maxn k D k k I kω ω δ∗ ∗
→∞ ∈ ∈− > , where 0δ >  is a constant. 

According to Ji and Jin [22] and conditions in the Appendix, conditions (C1) 
and (C2) ensure that the estimated probabilities converge strongly and uniform-
ly to the true probabilities. According to Fan and Lv [1] and Cui [13], condition 
(C3) allows the minimum true signal to disappear to zero in the order of n τ−  as 
the sample size goes to infinity. According to the sure screening property pro-
posed by Zhou and Wang [20], then condition (C4) is established. Condition 
(C5) guarantees that the proportion of each class of variables cannot be either 
extremely small or extremely large. A similar assumption is also made in condi-
tion (C5) in Huang [15] and Cui [13]. To ensure that the sample percentiles are 
close to the true percentiles, condition (C6) excludes the extreme case that some 

kX  put heavy mass in a small range. Condition (C7) requires the n ρ−  as a 
lower bound on the density. According to Cui [13], it is easy to show that 

0kω
∗ >  for k D∈  and 0kω

∗ =  for k I∈  naturally holds. Thus, condition 
(C8) is established, and MIC index is able to separate active and inactive predic-
tors well at the population level. 
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Theorem 1 (Sure Screening Property). 
Under conditions(C1) - (C4), there exists the positive constant 1C  such that 

( ) ( ) { }1 2
1ˆ expk kP cn O p C nτ τω ω∗ ∗ − −− ≥ ≤ −

 

Further, we have that 

( ) ( )( )1 2
1

ˆ 1 exp .nP D D O s C n τ∗ −⊆ ≥ − −
 

In the equation above, ns  represents the cardinality of D. According to 
Theorem 1, it implies that we can handle the ultra-high-dimensional scenario 
where the logarithm of p is on the order of ( )1 2O n τ− , with 0τ > . 

Theorem 2 (Ranking consistency property). 

Under conditions(C5) - (C8), if ( )log 1
log
RJ O

n
=  and  

{ } ( )
4 4

1 2

max log , log
1

P n R J
o

n ρ− = , then 

{ }liminf min max 0, . .n k D k k I k a sω ω∗ ∗
→∞ ∈ ∈− >

 

Theorem 2 demonstrates that the proposed screening index effectively distin-
guishes between active and inactive covariates at the sample level. 

4. Numerical Studies 
4.1. Simulation Results 

In this subsection, we conduct three simulation studies to demonstrate the finite 
sample performance of our group screening methods as described in Section 2. 
We compare the performance of MIC-SIS with that of IG-SIS [16] and APC-SIS 
[17] using the following evaluation criteria: 

1) MMS (Minimal Model Size): This criterion represents the smallest model 
size that includes all active covariates. The results are presented for various pro-
portions of MMS, such as 5%, 25%, 50%, 75%, and 95%. 

2) CP1, CP2, and CP3: These criteria indicate the probabilities that a given 
model size, specifically [ ]logn n , [ ]2 logn n , and [ ]3 logn n , respectively, 
cover all active covariates. 

3) CPa: This criterion evaluates whether the indicators of the selected model 
cover all active covariates. 

By comparing these evaluation criteria, we can assess and compare the per-
formance of MIC-SIS, IG-SIS, and APC-SIS in terms of their ability to identify 
and include active covariates in the model. 

Model 1: categorical covariates and binary response 
We begin by examining the response variables with different categories. Fol-

lowing Ni and Fang [16], we consider a binary response model where 2R = , 
and all covariates are categorical. We consider two distributions for the response 
variable iy : 

1) Balanced, ( ) 1 2iP y r= = ; 
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2) Unbalanced, 2 1 3
1r

R rp R
R
− = + − 

 with 1 1max 2minr R r r R rp p≤ ≤ ≤ ≤= . 

The true model is defined at { }1, 2, , 20D =   with 0 20d D= = . Condition 

on iy , a latent variable iz  is generated as ( ),1 ,2 ,, , ,i i i i pz z z z=  , where 

( ). ~ ,1i k rkz N µ  for 1 k p≤ ≤ . We then construct the active covariates as fol-
lows: 

1) If 0k d> , then 0rkµ = ; 
2) If 0k d≤  and 1r = , then 0.5rkµ = − ; 
3) If 0k d≤  and 2r = , then 0.5rkµ = . 
Next, we generate the covariates by applying the quantile of the standard 

normal distribution. The specific approach is as follows: 

1) When k as odd number, that is , ,
2

1i k i k jx I z z
 

= > +  
 

; 

2) When k as even number, that is , ,
5

1i k i k jx I z z
 

= > +  
 

. 

Where αth percentile of the standard normal distribution is zα . 
Therefore, out of all p covariates, half of them belong to two categories, while 

the other half belong to five categories. Following the approach in Ni and Fang 
[17], we consider 1000p =  and 5000p = , with sample sizes 200n =  and 

400n =  in this model. 
Table 1 shows the evaluation criteria for Model 1 based on 100 simulations. 

The results show the effectiveness of the proposed MIC-SIS method. As the 
sample size n increases, MIC-SIS approaches the true model size 0 20d =  in 
terms of MMS, and the coverage probability increases toward 1. MMS performs 
better in the unbalanced response compared to the balanced response when 
considering different response structures. MIC-SIS and IG-SIS show similar 
performance, with MIC-SIS slightly outperforming APC-SIS at higher coverage 
probabilities. 

Model 2: categorical covariates and multi-class response 
We further investigate the classification of more covariates, where the re-

sponse variable iy  has multiple classes with 10R = . We consider two distri-
butions for iy : 

1) Balanced, ( ) 1
iP y r

R
= = ; 

2) Unbalanced, 2 1 3
1r

R rp R
R
− = + − 

 with 1 1max 2minr R r r R rp p≤ ≤ ≤ ≤= . 

Out of the 2000p =  covariates, the minimum set of active covariates is 
represented by { }200 400 600 800 1000 2000, , , , , ,DX X X X X X X=  , with a total of  

0 20d =  active covariates. Conditional on iy , the latent variable  

( ),1 ,2 ,, , ,i i i i pz z z z=   is generated, where .i kz  follows a standard normal dis-
tribution ( ), ,1i kN µ  for covariate kX . Each covariate ,i kx  is defined as 

( ),1 ,2 ,, , ,i i i i pz z z z=  , where ,i kε  follows a standard normal distribution 
( )0,1N , and ( )kf ⋅  represents the quantile function of the standard normal  
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Table 1. Simulation results for model 1. 

Condition 
MMS CP 

5% 25% 50% 75% 95% CP1 CP2 CP3 CPa 

 
Balanced Y, n = 200, p = 1000 

MIC-SIS 20.0 20.0 20.0 21.0 22.0 1.000 1.000 1.000 1.000 

IG-SIS 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

APC-SIS 20.0 20.0 20.0 21.0 22.0 1.000 1.000 0.000 0.000 

 
Balanced Y, n = 400, p = 1000 

MIC-SIS 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

IG-SIS 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

APC-SIS 20.0 20.0 20.0 20.0 20.0 1.000 1.000 0.000 0.000 

 
Balanced Y, n = 200, p = 5000 

MIC-SIS 20.0 21.0 21.0 24.0 28.1 0.994 1.000 1.000 1.000 

IG-SIS 20.0 20.0 20.0 20.0 21.0 1.000 1.000 1.000 1.000 

APC-SIS 20.0 20.8 21.0 23.0 28.0 0.996 1.000 0.000 0.000 

 
Balanced Y, n = 400, p = 5000 

MIC-SIS 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

IG-SIS 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

APC-SIS 20.0 20.0 20.0 20.0 20.0 1.000 1.000 0.000 0.000 

 
UnBalanced Y, n = 200, p = 1000 

MIC-SIS 21.0 23.0 26.0 28.0 32.1 0.974 1.000 1.000 1.000 

IG-SIS 20.0 20.0 20.0 20.0 21.0 1.000 1.000 1.000 1.000 

APC-SIS 21.0 23.0 25.0 27.0 30.1 0.984 1.000 0.000 0.000 

 
UnBalanced Y, n = 400, p = 1000 

MIC-SIS 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

IG-SIS 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

APC-SIS 20.0 20.0 20.0 20.0 20.0 1.000 1.000 0.000 0.000 

 
UnBalanced Y, n = 200, p = 5000 

MIC-SIS 32.0 40.8 47.0 59.0 96.4 0.906 0.978 0.995 0.920 

IG-SIS 20.0 20.0 20.5 21.0 23.1 1.000 1.000 1.000 1.000 

APC-SIS 29.0 35.0 43.0 53.0 89.1 0.914 0.983 0.000 0.000 

 
UnBalanced Y, n = 400, p = 5000 

MIC-SIS 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

IG-SIS 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

APC-SIS 20.0 20.0 20.0 20.0 20.0 1.000 1.000 0.000 0.000 
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distribution. Based on this, we construct the active covariates by defining ,i kµ : 
1) If DX X∈  and iy r= , then ( ), 1.5 0.9 r

i kµ = × − ; 
2) If DX X∉  and iy r= , then , 0i kµ = . 
Next, we generate the covariates by applying the quantile function ( )kf ⋅  to 

the defined parameters. We consider 2000p =  and sample sizes 300,400n =  
and 500 for this model. The specific approach is as follows: 

1) For 1 400k≤ ≤ , then ( ), , ,
2

1k i k i k i k jf I z zε µ+ = >
 
  
 

+ ; 

2) For 400 800k< ≤ , then ( ( ), , ,
4

1k i k i k i k if I z zε µ+ = >
 
  
 

+ ; 

3) For 800 1200k< ≤ , then ( ), , , 1
6

1k i k i k i kf I z zε µ+ = >
 
  
 

+ ; 

4) For 1200 1600k< ≤ , then ( ), , ,
8

1k i k i k i k jf I z zε µ+ = >
 
  
 

+ ; 

5) For 1600 2000k< ≤ , then ( ), , ,
0

1k i k i k i k j
i

f I z zε µ
 
  
 

+ = > + . 

Among the 2000p =  covariates, each category 2, 4, 6, 8, and 10 constitutes 
one-fifth of the total. 

Table 2 shows the results of the evaluation criteria for 100 simulations of 
Model 2. The following conclusions can be drawn: 

Both methods perform poorly in the more complex Model 2 compared to 
Model 1. MIC-SIS and IG-SIS perform similarly. As the sample size n increases, 
MIC-SIS approaches the true model size 0 10d =  in MMS and the coverage 
probability reaches 1. When the sample size is 300, the coverage probability of 
APC-SIS is lower compared to MIC-SIS. By comparing the responses of different 
structures, the unbalanced response has a better MMS performance than the ba-
lanced response, the performance of MIC-SIS and IG-SIS is more stable with less 
fluctuation in MMS. In conclusion, these results highlight the effectiveness and 
robustness of MIC-SIS and IG-SIS in dealing with Model 2. 

Model 3: continuous and categorical covariates 
Finally, we consider a more complex example where the response variable iy  

is multi-class with 4R = . We examine two distributions for iy : 

1) Balanced, ( ) 1
iP y r

R
= = ; 

2) Unbalanced, 2 1 3
1r

R rp R
R
− = + − 

 with 1 1max 2minr R r r R rp p≤ ≤ ≤ ≤= . 

In this model, we consider 5000p =  and sample sizes 400,600,800n = .  

The true model is defined as : , 1, 2, , 20
20

D
k

k pX X k k
′   ′= = =    

  with  

0 20d = . Conditioned on iy , the latent variable is generated as  

( ),1 ,2 ,, , ,i i i i pz z z z=  , where ( ). , ,1~i k i kz N µ  for 1 k p≤ ≤ . For the covariates 

kX , we have ( ), , ,1~i k i kx N µ  for 1 k p≤ ≤ , where  
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Table 2. Simulation results for model 2. 

Condition 
MMS CP 

5% 25% 50% 75% 95% CP1 CP2 CP3 CPa 

 Balanced Y, n = 300, P = 2000 

MIC-SIS 10.0 10.0 10.0 10.0 10.0 1.000 1.000 1.000 1.000 

IG-SIS 10.0 10.0 10.0 10.0 10.0 1.000 1.000 1.000 1.000 

APC-SIS 12.0 17.0 21.0 30.0 40.0 0.989 1.000 0.000 0.000 

 Balanced Y, n = 400, P = 2000 

MIC-SIS 10.0 10.0 10.0 10.0 10.0 1.000 1.000 1.000 1.000 

IG-SIS 10.0 10.0 10.0 10.0 10.0 1.000 1.000 1.000 1.000 

APC-SIS 10.0 10.0 10.0 10.0 10.0 1.000 1.000 0.000 0.000 

 Balanced Y, n = 500, P = 2000 

MIC-SIS 10.0 10.0 10.0 10.0 10.0 1.000 1.000 1.000 1.000 

IG-SIS 10.0 10.0 10.0 10.0 10.0 1.000 1.000 1.000 1.000 

APC-SIS 10.0 10.0 10.0 10.0 10.0 1.000 1.000 0.000 0.000 

 UnBalanced Y, n = 300, P = 2000 

MIC-SIS 10.0 10.0 10.0 10.0 10.0 1.000 1.000 1.000 1.000 

IG-SIS 10.0 10.0 10.0 10.0 10.0 1.000 1.000 1.000 1.000 

APC-SIS 10.0 10.0 11.0 12.0 13.0 1.000 1.000 0.000 0.000 

 UnBalanced Y, n = 400, P = 2000 

MIC-SIS 10.0 10.0 10.0 10.0 10.0 1.000 1.000 1.000 1.000 

IG-SIS 10.0 10.0 10.0 10.0 10.0 1.000 1.000 1.000 1.000 

APC-SIS 10.0 10.0 10.0 10.0 10.0 1.000 1.000 0.000 0.000 

 UnBalanced Y, n = 500, P = 2000 

MIC-SIS 10.0 10.0 10.0 10.0 10.0 1.000 1.000 1.000 1.000 

IG-SIS 10.0 10.0 10.0 10.0 10.0 1.000 1.000 1.000 1.000 

APC-SIS 10.0 10.0 10.0 10.0 10.0 1.000 1.000 0.000 0.000 

 
( ) ( ), ,1 ~ 1~ r r

i k rk i k rkµ θ µ θ− −  if iy r=  and k D∈ . The values of rkθ , as giv-
en in Table 3 by Ni and Fang [16], determine the active covariates. Specifically, 

, 0i kµ =  when k D∉ . 

An active covariate is established by defining ,i kµ : 

1) For 5
20

pk  ≤   
, then ,i kx j= , if , 1

4 4

, , 1, 2,3, 4i k j jz z z j−

 
∈ = 
 

; 

2) For 5 10
20 20

p pk   < ≤      
, then ,i kx j= , if 1

0 10

, , 1, 2, ,10ik j jz z z j−

 
∈ = 
 

 ; 

3) For 10
20

p k p  < ≤  
, then , ,i k i kx z= . 
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Table 3. Parameter specification of Model 3. 

rkθ  
K 

1 2 3 4 5 6 7 8 9 10 

r = 1 0.2 0.8 0.7 0.2 0.2 0.9 0.1 0.1 0.7 0.7 

r = 2 0.9 0.3 0.3 0.7 0.8 0.4 0.7 0.6 0.4 0.4 

r = 3 0.1 0.9 0.9 0.1 0.3 0.1 0.4 0.3 0.6 0.6 

 
Among all the p covariates, four categories and ten categories account for 

one-fifth each, respectively, while the remaining covariates are continuous. Si-
milarly, there are 5 active covariates in each of the four categories and ten cate-
gories, with the remaining active covariates being continuous, accounting for 
half of the total. For the continuous covariates, we applied different subdivisions 
with 4,8kJ =  and 10. Accordingly, we define the corresponding approaches as 
MIC-SIS-4, IG-SIS-4, APC-SIS-4, MIC-SIS-8, IG-SIS-8, APC-SIS-8, MIC-SIS-10, 
IG-SIS-10, and APC-SIS-10. 

Table 4 and Table 5 present the simulation results based on over 100 simula-
tions for the balanced and unbalanced cases, respectively. The following obser-
vations can be made: As the sample size n increases, MIC-SIS approaches the 
true model size 0 20d =  in terms of MMS, and both approach 1 in terms of 
coverage probability. The coverage probability of MIC-SIS is similar to that of 
IG-SIS for all five indices, demonstrating the characteristic screening properties 
of MIC-SIS. For MMS, the unbalanced response outperforms the balanced re-
sponse when comparing response structures. In addition, both MIC-SIS and 
IG-SIS exhibit robust performance, as evidenced by the small range of variation 
in MMS for both response types. When applying different breakdowns to the 
continuous covariates, MIC-SIS and IG-SIS outperform the other methods in 
terms of coverage probability and MMS when comparing response structures. 

4.2. Real Data 

In this subsection, we analyze a real dataset obtained from the feature selection 
database of Arizona State University (http://featureselection.asu.edu/). The da-
taset, called GLIOMA biological data, consists of 50 samples and 4434 features. 
The data is unbalanced due to the response variable, with class sizes of 14, 7, 14, 
and 15. The covariates in this dataset are both continuous and multiclass. We 
randomly divided the data into two parts, with 90% used as training data and 
10% used as test data. The training data consists of 45 samples, while the test da-
ta consists of 5 samples. The dimensionality of both the training and test data is 

4434p = . 
To assess the performance of MIC-SIS, PG-SIS, IG-SIS, and APC-SIS, we em-

ploy three classification approaches: Support Vector Machine (SVM) [23], Ran-
dom Forest (RF), and Decision Tree (DT). We utilize a ten-fold cross-validation 
to address potential issues related to varying training data that could affect the 
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accuracy of the models. These classification approaches are applied to the se-
lected active covariates obtained from the aforementioned screening methods. 
The evaluation metrics commonly used in such analyses include accuracy, recall,  

 
Table 4. Simulation results for model 3 (Balanced Y). 

Condition 
MMS CP 

5% 25% 50% 75% 95% CP1 CP2 CP3 CPa 

 
Balanced Y, n = 400, P = 5000 

MIC-SIS-4 20.0 20.0 20.0 22.0 23.0 1.000 1.000 1.000 1.000 

IG-SIS-4 20.0 20.0 20.0 20.0 21.0 1.000 1.000 1.000 1.000 

APC-SIS-4 20.0 20.0 20.0 21.0 21.1 1.000 1.000 1.000 1.000 

MIC-SIS-8 20.0 20.0 21.0 22.0 24.0 1.000 1.000 1.000 1.000 

IG-SIS-8 20.0 20.0 20.0 21.0 21.0 1.000 1.000 1.000 1.000 

APC-SIS-8 20.0 20.0 20.0 21.0 22.0 1.000 1.000 1.000 1.000 

MIC-SIS-10 20.0 21.0 22.0 23.3 26.0 1.000 1.000 1.000 1.000 

IG-SIS-10 20.0 20.0 20.0 21.0 22.0 1.000 1.000 1.000 1.000 

APC-SIS-10 20.0 20.0 20.0 21.0 21.1 1.000 1.000 1.000 1.000 

 
Balanced Y, n = 600, P = 5000 

MIC-SIS-4 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

IG-SIS-4 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

APC-SIS-4 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

MIC-SIS-8 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

IG-SIS-8 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

APC-SIS-8 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

MIC-SIS-10 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

IG-SIS-10 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

APC-SIS-10 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

 
Balanced Y, n = 800, P = 5000 

MIC-SIS-4 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

IG-SIS-4 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

APC-SIS-4 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

MIC-SIS-8 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

IG-SIS-8 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

APC-SIS-8 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

MIC-SIS-10 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

IG-SIS-10 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

APC-SIS-10 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 
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Table 5. Simulation results for model 3 (Unbalanced Y). 

Condition 
MMS CP 

5% 25% 50% 75% 95% CP1 CP2 CP3 CPa 

 
Unbalanced Y, n = 400, P = 5000 

MIC-SIS-4 20.0 21.0 22.0 22.0 24.0 1.000 1.000 1.000 1.000 

IG-SIS-4 20.0 20.0 21.0 22.0 23.0 1.000 1.000 1.000 1.000 

APC-SIS-4 20.0 21.0 22.0 23.0 24.0 1.000 1.000 1.000 1.000 

MIC-SIS-8 20.0 21.0 22.0 23.0 24.6 1.000 1.000 1.000 1.000 

IG-SIS-8 20.0 20.0 21.0 22.0 23.0 1.000 1.000 1.000 1.000 

APC-SIS-8 20.0 21.0 22.0 23.0 24.0 1.000 1.000 1.000 1.000 

MIC-SIS-10 21.5 23.0 25.0 26.0 28.0 1.000 1.000 1.000 1.000 

IG-SIS-10 20.0 21.0 22.0 23.0 24.0 1.000 1.000 1.000 1.000 

APC-SIS-10 20.0 21.0 22.0 23.0 24.0 1.000 1.000 1.000 1.000 

 
Unbalanced Y, n = 600, P = 5000 

MIC-SIS-4 20.0 20.0 20.0 20.0 21.0 1.000 1.000 1.000 1.000 

IG-SIS-4 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

APC-SIS-4 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

MIC-SIS-8 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

IG-SIS-8 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

APC-SIS-8 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

MIC-SIS-10 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

IG-SIS-10 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

APC-SIS-10 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

 
Unbalanced Y, n = 800, P = 5000 

MIC-SIS-4 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

IG-SIS-4 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

APC-SIS-4 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

MIC-SIS-8 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

IG-SIS-8 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

APC-SIS-8 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

MIC-SIS-10 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

IG-SIS-10 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

APC-SIS-10 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

 
F-measure, and G-mean. In this paper, we specifically utilize G-mean and F- 
measure [24] to assess the performance of the models on both the training and test 
data. The performance of MIC-SIS for unbalanced data is presented in Table 6. 
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Table 6. Analysis results for real data example. 

 
screening method 

response 

1 2 3 4 

classification method SVM 

G-mean 
(train data) 

APC-SIS 1.0000 0.9304 0.9709 0.9713 

IG-SIS 1.0000 0.9025 0.9093 1.0000 

PG-SIS 0.9853 0.9378 0.9514 0.9946 

MIC-SIS 1.0000 0.8476 0.9504 0.9827 

G-mean 
(test data) 

APC-SIS 0.9775 0.9913 0.9564 0.9379 

IG-SIS 1.0000 0.9439 0.8736 0.9922 

PG-SIS 0.9678 0.9779 0.9173 0.9739 

MIC-SIS 1.0000 0.8988 0.9118 0.9302 

F-measure (train data) 

APC-SIS 0.7673 0.5958 0.7124 0.7101 

IG-SIS 0.6924 0.3969 0.4121 0.7004 

PG-SIS 0.7307 0.6095 0.6511 0.7469 

MIC-SIS 0.6544 0.6053 0.5324 0.6176 

F-measure 
(test data) 

APC-SIS 0.5424 0.3233 0.5333 0.4033 

IG-SIS 0.5850 0.1667 0.2167 0.5505 

PG-SIS 0.4533 0.2667 0.3967 0.5057 

MIC-SIS 0.4988 0.3000 0.2967 0.3600 

classification method DT 

G-mean 
(train data) 

APC-SIS 0.9909 0.8898 0.9489 0.9872 

IG-SIS 0.9945 0.8743 0.9437 0.9917 

PG-SIS 0.9815 0.8902 0.9578 0.9835 

MIC-SIS 0.9944 0.8707 0.9454 0.9758 

G-mean 
(test data) 

APC-SIS 0.9913 0.9626 0.9371 0.9774 

IG-SIS 0.9913 0.9200 0.9371 0.9862 

PG-SIS 0.9862 0.8963 0.8838 0.9609 

MIC-SIS 1.0000 0.8942 0.8961 0.9059 

F-measure 
(train data) 

APC-SIS 0.6743 0.2915 0.5757 0.6648 

IG-SIS 0.6668 0.1792 0.5466 0.6613 

PG-SIS 0.6424 0.2807 0.5825 0.6468 

MIC-SIS 0.6450 0.1689 0.5276 0.6051 

F-measure 
(test data) 

APC-SIS 0.5457 0.1967 0.4000 0.5367 

IG-SIS 0.5790 0.0500 0.4333 0.5471 

PG-SIS 0.4667 0.0500 0.2933 0.4333 

MIC-SIS 0.5000 0.0500 0.2667 0.3467 
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Continued  

classification method RF 

G-mean 
(train data) 

APC-SIS 1.0000 0.9458 1.0000 1.0000 

IG-SIS 1.0000 0.9458 1.0000 1.0000 

PG-SIS 0.9923 0.9421 0.9782 1.0000 

MIC-SIS 1.0000 0.9458 1.0001 1.0072 

G-mean 
(test data) 

APC-SIS 1.0000 0.9807 0.9540 0.9835 

IG-SIS 1.0000 0.9894 0.9523 0.9453 

PG-SIS 0.9871 0.9524 0.9384 0.9774 

MIC-SIS 0.9826 0.9645 0.9234 0.9173 

F-measure 
(train data) 

APC-SIS 1.0000 1.0000 1.0000 1.0000 

IG-SIS 1.0000 1.0000 1.0000 1.0000 

PG-SIS 0.8603 0.7671 0.8417 0.8725 

MIC-SIS 1.0000 1.0000 1.0000 1.0000 

F-measure 
(test data) 

APC-SIS 0.6624 0.3500 0.6300 0.6300 

IG-SIS 0.6124 0.3567 0.5733 0.4667 

PG-SIS 0.5967 0.2833 0.4933 0.5733 

MIC-SIS 0.4857 0.1800 0.3733 0.3200 

 
According to the results of Table 6, we can get that among all the classifica-

tion methods, MIC-SIS consistently outperforms the others, exhibiting higher 
G-mean and F-measure values that are closer to 1. In summary, the proposed 
MIC-SIS method demonstrates superior performance. 

5. Conclusions 

In practical scenarios, it is common to encounter datasets with a combination of 
continuous and categorical covariates, along with categorical responses. Howev-
er, the available screening methods for such cases are limited. To address this 
problem, we introduce a new method called MIC-SIS (Maximum Information 
Coefficient-based Screening), which does not require continuous variables to be 
sliced and can be applied directly to a wide range of variables, overcoming the 
shortcomings of existing methods. In this paper, we demonstrate that MIC-SIS 
has theoretical properties such as deterministic screening and ranking consis-
tency, and that no modeling is required. Through numerical simulations, we 
find that MIC-SIS can effectively screen covariates with better screening and 
lower computational complexity than existing methods. It also performs well in 
the empirical analysis of GLIOMA data. 

One of the current challenges in covariate screening is missing data. It is 
common to have missing or incorrect data during the data collection process, 
which can affect the variable screening results. In future work, we aim to develop 
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a new approach to feature screening that can either deal with missing variables 
prior to screening, or use classification models to screen features based on re-
sponse variables. 
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Appendix 

Proof of Theoretical Result. 
To establish the validity of Theorem 1, we rely on three accompanying lem-

mas. The first two lemmas furnish us with exponential inequalities, and their 
detailed proofs can be found in [25]. 

Lemma 1. Let ( )E Yµ = . If ( ) 1P a Y b≤ ≤ = , then 

( ){ } ( )22

exp exp .
8

s b a
E s Y µ

 −  − ≤   
    

Lemma 2. Let ( )1, , mh Y Y  be a kernel function for the U statistics nU , and 
( ){ }1, , mE h Y Yθ =  . If ( )1, , ma h Y Y b≤ ≤  holds, then for any 0t >  and 

n m≥ , we have the following inequality 

( )
( )

2

2

2
exp .n

n t
mP U t

b a
θ

  −    − ≥ ≤
 −
 
   

where [ ]n m  denotes the integer part of n m . 
Lemma 2 represents the one-sided tail inequality of nU . As a result of its 

symmetry, we can readily derive the two-sided tail inequality of nU  

( )
( )

2

2

2
2exp .n

n t
mP U t

b a
θ

  −    − ≥ ≤
 −
 
   

Lemma 3. (The asymptotic property of nonparametric density estimators). 

Suppose that ( )f x′′  exists and 
1
5h cn

−
= , then 

( ) ( ){ } ( ) ( ) ( )
2 2

25
2 2

1 .
2

ˆ ,L cn x p x N f x K f x K
c

p µ
 

′′−  


 


→
 

From the above equation, ( ) ( )2
2 dK s K s sµ = ∫  and ( )2 2

2 dK K s s= ∫ . 

Lemma 3 directly implies that ( ) ( )ˆ pp x p x→ . Under certain additional 
stringent conditions, we can achieve strong uniform convergence of ( )p̂ x . 

( ) ( )ˆlim sup 0, . .
n x

p x p x a e
→∞

− =
 

For more detailed information regarding the strong uniform convergence, one 
can refer to references such as [26] or [27]. These sources provide further in-
sights and explanations on the topic. 

Proof of Theorem 1. We begin by demonstrating that the following inequality 
holds for each k: 

{ } ( )( )1 2
1ˆ exp .k kP cn O C nτ τω ω∗ ∗ − −− ≥ ≤ −

 
Since ˆkω

∗  is obtained by normalizing ˆkω  without altering its properties, we 
only need to establish that the aforementioned inequality holds for each k: 
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( ) ( )( )1 2
1
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max exp .

log min ,
k k

a b B
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a b
τ τω ω − −

∗ <

 − ≥ ≤ − 
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Because 
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M M
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∫

 

Using Lemma 3 and the strong law of large numbers, we observe the conver-
gence of 

( ) ( )
( ) ( )

( )
( ) ( ),1 2

1 1 1 1

ˆ ˆ, ,1ˆ , log log 0, . .
ˆ ˆ ˆ ˆ

n R n R
ik r ik r

k ik r
i r i rik r ik r

p X Y p X Y
M p X Y a e

p X p Y p X p Yn= = = =

= − →∑∑ ∑∑  

Next, our goal is to establish an upper bound for the second term. 

Define ( ) ( )
( ) ( )
ˆ ,

, ; , log
ˆ ˆ

ik r
ik r k

ik r

p X Y
h X Y X Y

p X p Y
=  as the kernel of the U statistics 

of ,2kI ∗ , where we define ,2 ,2k k kM I ω= − , and 
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1 1

ˆ ,1 log .
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n R
ik r

k k
i r ik r

p X Y
I I
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By applying Markov's inequality, we can ensure that: 

( ) ( ) ( ) ( ),2 ,2exp exp exp , for any 0.k kP I Eh t tEh E tI tε ε  − > ≤ − − > 
 

 

where ( ) ( )
( ) ( )

,
, log d dk

k k
k

p x y
Eh p x y x y

p x p y
= ∫ . 

Following the approach utilized by Li et al. (2012) [28] to handle the U statis-
tics, and considering condition (C2), we can immediately deduce that: 

( )
2

,2 exp .
8k

t tP I Eh
n

εε∗  − +
− > ≤  

   

By selecting 4t nε= , we obtain ( ) ( )2
,2 exp 2kP I Eh nε ε∗ − > ≤ − . Conse-

quently, taking into account the symmetry of U statistics, we can derive the bila-
teral tail inequality: 

( ) ( )2
,2 2exp 2 .kP I Eh nε ε∗ − > ≤ −  

By utilizing the relationship between ,2kI ∗  and ,2kI , we can demonstrate that 
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Under condition (C2), for 0ε > , we can choose a sufficiently large 1N  such 

that when 1n N> , 
( )

( ) ( )2

ˆ ,1 log
ˆ ˆ 3

ik r
i r

ik r

p X Y
p X p Yn

ε
=

<∑ . Furthermore, we can easily 

establish that 
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Note that 

,2 ,2 .k k k kI I Eh Ehω ω∗ ∗− = − + −
 

Similarly, employing the same technique and selecting a larger 2N , we can 

ensure that when 2n N> , 
3k Eh εω∗ − < . This directly implies that 

,2 ,2
5 4 .
3 3k k kP I P I Ehω ε ε∗ ∗ ∗   − > ≤ − >   

     

Let cn τε −= , 10
2

τ< < . By employing ( ) ( )2
,2 2exp 2kP I Eh nε ε∗ − > ≤ − , 

together with Lemma 1 and Bonferroni’s inequality, we can deduce that 

{ } ( )2 1 2ˆ 2exp 2 .k kP cn c nτ τω ω∗ ∗ − −− ≥ ≤ −
 

We thus have 

{ } ( ) ( )( )2 1 2 1 2
11
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≤ ≤
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Next, we prove the second part of Theorem 1. 
If ˆD D∗⊆ , it implies that there must exist some k D∈  such that ˆk cn τω∗ −= . 

By utilizing condition (C3), we can deduce that if ˆk cn τω∗ −=  holds for some 
k D∈ , then ˆk cn τω∗ −=  also holds for some k D∈ . Thus, the event { }ˆD D∗⊆  
is a subset of the event { }ˆ , for somk k cn e k Dτω ω∗ ∗ −− ≥ ∈ . Taking the comple-
ment on both sides, we obtain { }ˆmaxk D k k cn τω ω∗ ∗ −

∈ − ≤  is a subset of 

{ }ˆD D∗⊆ . Therefore, we have: 

( ) { }
{ }
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ω ω
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 ≥ − −   
In the above equation, ns  is the cardinality of D. 
Now we prove Theorem 2. The proofs for Lemma 4 and Lemma 5 can be 
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found in Ni and Fang (2016) [16]. 
Lemma 4. For categorical covariates kX  and response Y,under condition 

(C5), for any 0 1ε< < , we have ( ) ( )
2

5 4 4
ˆ 2 ~ expk k

nP O RJ c
R J
εω ω ε∗ ∗  

− > ≤ − 
 

, 

where 5c  represents a positive constant. 
Lemma 5. For continuous covariates kX  and response Y, under condition 

(C5), (C6) and (C7), for any 0 1ε< < , we have  

( ) ( )
1 2 2

6 4 4
ˆ 2 ~ expk k

nP O RJ c
R J

ρεω ω ε
−

∗ ∗  
− > ≤ − 
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, where 6c  represents a positive 

constant. 

Under Conditions (C5)-(C8) and by Lemmas 4 and 5, if ( )log 1
log
RJ O

n
=  

and 
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where { }( )2
7 5 6min , 4c c c δ= . Since ( )log 1

log
RJ O
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= , there exists a positive 

constant 8c  such that ( ) 8log logRJ c n≤ . Also, 
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max log , log
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implies that 
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1
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1
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≥ +  for large n. Then 
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∑ ∑

∑ ∑

. Accord-

ing to Ni and Fang (2016) [16] and by the Borel Cantelli Lemma, we can get 

{ }liminf min max 0
2n k D k k I k
δω ω∗ ∗

→∞ ∈ ∈− ≥ > , a.s. 

This is the end of the proof. 
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