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Abstract 
Spatio-temporal models are valuable tools for disease mapping and under-
standing the geographical distribution of diseases and temporal dynamics. 
Spatio-temporal models have been proven empirically to be very complex and 
this complexity has led many to oversimply and model the spatial and tem-
poral dependencies independently. Unlike common practice, this study for-
mulated a new spatio-temporal model in a Bayesian hierarchical framework 
that accounts for spatial and temporal dependencies jointly. The spatial and 
temporal dependencies were dynamically modelled via the matern exponen-
tial covariance function. The temporal aspect was captured by the parameters 
of the exponential with a first-order autoregressive structure. Inferences about 
the parameters were obtained via Markov Chain Monte Carlo (MCMC) tech-
niques and the spatio-temporal maps were obtained by mapping stable post-
erior means from the specific location and time from the best model that in-
cludes the significant risk factors. The model formulated was fitted to both 
simulation data and Kenya meningitis incidence data from 2013 to 2019 
along with two covariates; Gross County Product (GCP) and average rainfall. 
The study found that both average rainfall and GCP had a significant positive 
association with meningitis occurrence. Also, regarding geographical distri-
bution, the spatio-temporal maps showed that meningitis is not evenly dis-
tributed across the country as some counties reported a high number of cases 
compared with other counties. 
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1. Introduction 

Disease mapping has a long history and is becoming an indispensable tool for 
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epidemiologists in analyzing disease incidence in a geographical location and 
over time. Often, disease counts are characterized by space and time structures. 
In most cases, spatial and temporal dependencies are modelled independently, 
implying that the spatial variation and temporal variation are modelled sepa-
rately without considering their joint interactions [1]. Spatial and temporal de-
pendencies are a phenomenon in which observations made at one location and 
time are impacted by the observations made at different locations in past and 
present times. The spatio-temporal models used in disease mapping have been 
proven to be very complex due to the inherent interactions between space and 
time. This complexity of the spatio-temporal models often leads to oversimplifi-
cation of the model by separating space and time as independent dimensions for 
computational efficiency [2]. Even though separable spatio-temporal models on 
disease mapping are common, it has their drawbacks. One of the limitations is 
that it often leads to spatial and temporal autocorrelation problems, bias esti-
mates, and in certain situations, it fails to allow for space-time interactions be-
tween locations [3] [4]. To fully understand the dynamic evolution of a disease 
in both space and time, it is essential to consider their interdependencies jointly 
to allow for space-time interactions between locations in the modeling process. 

Over the years, studies on spatio-temporal disease mapping have incorporated 
the Besag York Mollie (BYM) model [5] [6] [7]. The BYM model is a type of ge-
neralized linear mixed model (GLMM) that has two spatial random effects; the 
spatially structured and spatially unstructured random effects and a temporal 
component. Details about BYM model are discussed in [8]. Most work in spa-
tio-temporal disease mapping with BYM model takes into account the spatial 
and temporal dependencies independently. Most commonly, the Conditional 
Autoregressive (CAR) models are used to model the spatial dependency, and 
first-order autoregressive (AR1) structures are used to account for temporal de-
pendency. CAR models are usually assigned as priors to one of the spatial ran-
dom effects. However, it has been pointed out that CAR priors are improper, 
and they have the undesirable property of inducing spatial autocorrelation 
through adjacency structure, and informative hyperpriors are needed for post-
erior inference [9] [10]. Other approaches based on splines have also been de-
veloped to account for temporal dependency in disease mapping. For example, 
[11], proposed the use of Basis spline (B-spline) model and [12] used Penalized 
spline (P-spline) model to account for temporal dependency. One limitation 
about splines is that they are heavily influenced by hyperprior specification es-
pecially when the data is limited [13]. This study has extended the BYM model 
by incorporating the spatial and temporal dependencies jointly. 

In this paper, the main focus is to develop a Bayesian Spatio-temporal model 
that accounts for the spatial and temporal dependencies jointly. This will be faci-
litated by using the non-separable, stationary matern covariance function, spe-
cifically, the matern exponential covariance function for space-time process to 
model the spatial and temporal dependencies jointly. This will incorporate the 
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space-time interaction between the geographical locations and also eliminate the 
spatial and temporal autocorrelation problems. The model will then be applied 
to the simulated data set and Kenya meningitis incidence data from 2013 to 
2019. The study also seeks to identify significant risk factors associated with me-
ningitis and the construction of spatio-temporal occurrence maps for different 
years both on the simulation data and real data will be done. 

The rest of the paper is structured as follows: section 2 presents materials and 
methods utilized in the paper. In section 3, results are discussed both for simula-
tion study and real data application, and finally, in section 4, conclusions to this 
study are presented. 

2. Materials and Methods 
2.1. Spatio-Temporal Model 

We develop a spatio-temporal model based on the Poisson regression model. 
For each county we assume ( )~it ity Poisson η , where, ity  denotes meningitis 
cases (or counts) in the ith county at time t and itη  is the mean for Poisson dis-
tribution or the estimated disease count for meningitis cases. We then, formulate 
a spatio-temporal model as follows; 

 it it it itx wη α ε′= + + +β  (1) 

where α  is a common intercept for the entire study region, β  is a vector of 
coefficients, itx′  is a vector of covariates for all the 47 counties, itw  is the spa-
tial-temporal dependencies, and itε  is the white-noise error term for space- 
time interaction. 

2.2. Prior Specifications 

The common intercept α , was assigned a conjugate prior, which was assumed 
to have a normal distribution, ( )2,N α αµ σ . The vector of coefficients β  was 
assumed to have a Multivariate Normal distribution, ( ),MVN β βΣµ . The white- 
noise error term for space-time interaction itε  was assumed to have a normal 
distribution, ( )2~ 0,it N εε τ . The precision parameter 2

ετ  was assigned a con-
jugate prior of an inverse gamma distribution ( )2 ~ - ,Inv Gamma a bε ε ετ . The 
spatial and temporal dependencies itw , followed a zero-mean Multivariate Nor-
mal distribution with the matern covariance function, specifically, the matern 
exponential covariance function. That is; ( )( )~ 0,itw MVN tΣ , where ( )tΣ  is 
the matern exponential covariance function that is dependent on time t. This 
can be expressed as 

( ) exp , , 1, , ; 1, ,i j

t

S S
t i j n t T

θ

  − −
  Σ = = =

    
 

 

where i jS S−  is the Euclidean distance between two locations defined by their 
longitude and latitude coordinates. 1t t tθθ φ θ ξ−= + , ( )2~ 0,t N ξξ σ  i.e. tθ  is 

( )1AR  process. We assumed θφ  to follow a Uniform distribution  
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( )~ 1,1Uniformθφ −  and 2
ξσ  was assigned a priori with a conjugate prior of 

inverse gamma distribution ( )2 ~ - ,Inv Gamma a bξ ξ ξσ . The set of parameters of 

interest was ( )2 2, , , ,θ ε ξα φ τ σ=λ β  and the vector of hyperparameters was 

( )2, , , , , , ,a b a bα α β β ε ε ξ ξµ σ µ= Σψ . The choice of hyperparameters was selected 

in a manner that the prior specification does not swamp the data and hence has 
minimal effect on the overall result. 

2.3. Bayesian Hierarchical Model 

The Bayesian hierarchical model consists of the data model, process model, and 
parameter model. 

2.3.1. The Data Model 
The data model is the probability distribution of the observed cases given the 
parameters of the model. In this study, the observed cases ( ity ) followed a Pois-
son distribution with mean itη  i.e., ( )~it ity Poisson η , 1, ,i n=  , 1, ,t T=   
which was written conditionally as |it ity η , ( )~ itPoisson ηλ  and the likelih-
ood function was given as: 

 
( ) { } { } { } { }( )1 1 11 , 11 ,

1 1

, , | , , , , , | , , ,

e
!

it it

T T n T n T

y
n T it
i t

it

P y y P y y

y

η

η η η η

η−

= =

=

=∏ ∏

   λ λ
 (2) 

2.3.2. The Process Model 
The process model was generated based on the spatio-temporal model specified 
in Equation (1) and further expressed in vector form as: 

 t t t tX wβη ε= + +  (3) 

where tX  in Equation (3) is a design matrix at time t (non-stochastic) with 

( )1n p× +  dimension and 1

p

β

α
β

β

 
 
 =
 
 
  



 has a ( )1 1p + ×  dimension. We as-

sumed tε  to be independent, thus; ( )2~ 0,t t t tX w N Iεη εβ τ− − =  was ex-

pressed conditionally as; ( )2 2| , , ~ 0,t t tX N Iε εη θ τ τβ . Written as: 

 
( )

( ) ( )

2

1
2 2

2 11

| , , ,

1exp
2

t t t

T
t t

T
t t t ttt

f X

I x w I x w

ε

ε
ε

η θ τ

τ η

β

β βη
τ

−

==

  ′= − − − − − 
  

∏ ∑
 (4) 

The spatio-temporal dependency, tw  was also expressed conditionally as: 

 ( ) ( ) ( )( )
1 1
2

1| exp .
2t t t tf w t w t wθ

− − = − Σ


′Σ 


 (5) 

The matern exponential covariance function, ( )tΣ  was given as: 
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( ) { } exp , , 1, , ; 1, ,i j
ijt

t

S S
t i j n t Tσ

θ

  − −
  Σ = = = =

    
  , 

where, we assumed tθ  in the matern exponential covariance function to follow 
an AR1 process written as; 1t t tθθ φ θ ξ−= +  and, ( )2~ 0,t N ξξ σ . We generated 
the conditional distribution of tθ  from 1, ,t t=   as: 

 

( ) ( ) ( ) ( ) ( )

( ) ( )

1 1 2 1 3 2 1

2
22

1 12 22 22

2

, , | | |

11 1 1exp exp
2 22

2
1

t t t

T
t tt

f f f f f

θ
θ

ξ ξξξ

θ

θ θ θ θ θ θ θ θ θ

φ
θ θ φ θ

σ σσσ
φ

−

−=

=

   −   = − − −   
π        

π  − 

∏

 

 (6) 

Now, the process model was given as the product of Equation (4), Equation 
(5), and Equation (6) denoted as ( )1, , ,TP η η λ , written as: 

( ) ( ) ( )

( ) ( )( )

( ) ( )

1
2 2

1 2 1
1

1 1
2

2
22

1 12 22 22

2

1, , , exp
2

1exp
2

11 1 1exp exp
2 22

2
1

T
T

T t t t t t tt
t

t t

T
t tt

P I x w I x w

t w t w

ε
ε

θ
θ

ξ ξξξ

θ

η η τ η η
τ

φ
θ θ φ

β

σ

β

θ
σ σσ

φ

−

=
=

− −

−=

    ′∝ − − − − −  
    

  × Σ − Σ  
  



    −   × − − −    

π        
π

′

  − 

∑∏

∏

 λ



 


 
 
  

(7) 

2.3.3. The Parameter Model 
The parameter model was given as the product of the prior distributions of the 
set parameters λ , which was denoted as ( )P λ . In this case, α  was contained 
in β  and β  was assumed to follow a Multivariate Normal distribution, 

( ),MVN β βΣµ . Thus, ( )P λ  is given as: 

 

( ) ( ) ( ) ( ) ( )
11 1
22

11

2 2 2 2

12 exp
2

1 1exp exp

p

aa

P

bb
ξε

β β β β

ξε

ε ε ξ ξτ τ σ σ

+ −−−

++

  ′= π Σ − − Σ −  
  

            × − × −                        

λ β µ β µ

 (8) 

The joint posterior distribution was given as the proportional of the product 
of the data model, the process model, and the parameters model denoted as 

( )1 1, , , | , ,T TP y yη η λ . Thus, by applying Bayes’ rule, the joint posterior dis-
tribution was expressed as: 

 ( ) ( ) ( ) ( )1 1 1 1 1, , , | , , , , | , , , , , |T T T T TP y y P y y P Pη η η η η η∝    λ λ λ λ  (9) 

where P(.) in Equation (9) is the probability density function. The right-hand side of 
Equation (9) entails, ( )1 1, , | , , ,T TP y y η η  λ  the data model, ( )1, , |TP η η λ  
the process model, and ( )P λ  the parameter model. The study assumed the 
hyperparameters are independent of the parameter model i.e.,  
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( ) ( )( )dim
iiP P=∏ λλ λ . 

2.4. Parameter Estimation 

In the Bayesian framework, the unknown parameters of the model are treated as 
random variables with assigned prior distributions. While the Bayesian method 
has proven to be effective for parameter estimation, it often presents challenges 
due to the intractability of the posterior distribution, making direct sampling 
impossible especially when the conditional distributions of the parameters are 
unknown. The remedy to this problem is to employ the Markov Chain Monte 
Carlo (MCMC) method called Metropolis-Hastings within Gibbs sampling al-
gorithm to sample from the unknown distribution [14] [15]. The Metropolis- 
Hastings within Gibbs sampling algorithm is a sampling technique that inte-
grates the Metropolis-Hastings algorithm within the iterative process of a Gibbs 
sampler [14]. The full conditional for 2 2, , , , tθ ε ξφ τ σ θβ , and tη  were determined 
as follows: 

( ) ( )
( )

1 12 2
2 2

, , , | , ,
| , , , , ,

| , , , , ,
T T

t t t
t t t

P y y
P

P y
θ ε ξ

θ ε ξ

λη η
φ τ σ

φ τ σ η θ
∝
∫

y
 

θβ η
β

 

( ) ( )
( )

1 12 2
2 2

, , , | , ,
| , , , , ,

| , , , , ,
T T

t t t
t t t

P y y
P

P
θ ε ξ

θ ε ξ

λη η
φ τ σ

φ τ σ η θ
∝
∫

y
y

 

η θβ
β

 

( ) ( )
( )

1 12 2
2 2

, , , | , ,
| , , , , ,

| , , , , ,
T T

t t t
t t t

P y y
P

P
ε θ ξ

ε θ ξ

λη η
τ φ σ

τ φ σ
∝
∫

y
y

 

θ
θ

β η
β η

 

( ) ( )
( )

1 12 2
2 2

, , , | , ,
| , , , , ,

| , , , , ,
T T

t t t
t t t

P y y
P

P
ξ ε θ

ξ ε θ

λη η
σ τ φ

σ τ φ
∝
∫

y
y

 

θ
θ

β η
β η

 

( ) ( )
( )

1 12 2
2 2

, , , | , ,
| , , , , ,

| , , , , ,
T T

t t t
t t t

P y y
P

P
ξ ε θ

ξ ε θ

λη η
σ τ φ

σ τ φ
∝
∫

y
y

 

θ
θ

η β
η β

 
The full conditional distribution for tθ  was determined in three phases using 

the formula below. The first phase was when time 1t = , the second phase was 
when time 2t =  to time 1t T= − , and the last phase was when time t T= . 

( ) ( )
( )

1 12 2
1 2 2

1

, , , | , ,
| , , , , ,

| , , , , ,
T T

t t t
t t t

P y y
P

P
ξ ε θ

ξ ε θ

λη η
θ σ τ φ

θ σ τ φ
=

=

∝
∫

y
y

 

β η
β η

 

( ) ( )
( )

1 12 2
2 to 1 2 2

2 to 1

, , , | , ,
| , , , , ,

| , , , , ,
T T

t T t t
t T t t

P y y
P

P
ξ ε θ

ξ ε θ

λη η
θ σ τ φ

θ σ τ φ
= −

= −

∝
∫

y
y

 

β η
β η

 

( ) ( )
( )

1 12 2
2 2

, , , | , ,
| , , , , ,

| , , , , ,
T T

t T t t
t T t t

P y y
P

P
ξ ε θ

ξ ε θ

λη η
θ σ τ φ

θ σ τ φ
=

=

∝
∫

y
y

 

β η
β η

 
The full conditional distribution for 2

ετ  and 2
ξσ  were found to be known 

and that of , , tθφβ η , and tθ  were unrecognizable, thus difficult to sample 
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from them directly leading to the utilization of Metropolis-Hastings within 
Gibbs algorithm to sample from the conditional posterior distributions of the 
parameters in the spatio-temporal model formulated. The samples obtained 
were used to estimate the model parameters under the Squared Error Loss Func-
tion (SELF) and Mean Absolute Error Loss Function (MAELF). For each para-
meter, both the posterior mean and median as well as the Bayesian credible in-
tervals were calculated. The convergence of the samples generated from the 
posterior marginals of the parameters was assessed using the trace plot as shown 
in the appendix. 

2.5. Identification of Risk Factors and Model Selection 

A significant interest in understanding the evolution of meningitis lies in identi-
fying associated risk factors that influence its occurrence. This study utilized the 
stepwise regression approach, in particular, the backward selection method in 
building regression models. Backward selection is a criterion for building regres-
sion models starting with a full model (model with all covariates) to a null model 
(model with the intercept only). The study builds regression models permuta-
tionally based on the number of covariates. 

The study later computed a scale deviance for all the reduced models to test 
the significance and contribution of each covariate in the model. Scale deviance 
denoted by *D  was defined as: 

( )* 2 log logRed FullD L L= − −  
where RedL  is the likelihood of the reduced model and FullL  is the likelihood 
of the full model. 

The log-likelihood of each reduced model in the study was calculated based on 
the number of regression coefficients present in each model. The scale deviance, 

*D  followed a chi-square distribution with k-p degrees of freedom, * 2~ k pD χ − , 
where k is the total number of regression coefficients in the full model and p is 
the total number of regression coefficients in the reduced model. The scaled de-
viance, D*, was later used in performing the hypotheses tests on the sets of re-
gression coefficients in the model. Statistically significant predictors were consi-
dered useful and cannot be dropped from the model, and thus, they were identi-
fied as risk factors that influence the occurrence of meningitis based on this 
study. 

The model performance was examined via Deviance Information Criterion 
(DIC) which is due to [16]. The DIC was computed for each model and the 
model with the smallest DIC was assumed the best. 

2.6. Disease Mapping 

The spatio-temporal maps were obtained by mapping stable posterior means for 
the specific location and time from the best model that includes the significant 
risk factors. The posterior means were evaluated from the posterior samples ob-
tained in the MCMC sampling. This enabled the examination of the spa-
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tio-temporal variability (geographic patterns and temporal dependence) and also 
helped in evaluating risk areas. All the computation was performed in R pro-
gramming language. 

3. Results 

This section presents the results obtained for both the simulation study and real 
data application. 

3.1. Simulation Study 

The spatio-temporal model formulated was fitted to the simulated data to test 
the methodological development of the study. The simulation is based on yearly 
disease counts along with three covariates based on 47 counties in Kenya for 10 
years. The years were assumed to start from 2011 to 2020. A real case study will 
be examined in section 3.2. The dataset used for simulation was generated using 
the following algorithm. 

1) Setting the value of the true parameters  

( ) ( )2 2, , , , 0.5,0.5,0.5,0.01,0.01θ ε ξα φ τ σ =β  respectively (these parameter values 
were chosen arbitrarily). 

2) Builds a data frame consisting of the 47C =  counties based on their re-
spective longitude and latitude of the county headquarters (county center). 

3) Create a Euclidean distance D. 
4) Specify the time frame. 
5) Create a function consisting of the 47 counties, time, and the true parame-

ters of the Spatio-temporal model, set N to be the dimension of the counties. 
6) For time 1t =  to T, do the following steps. 
Step 6.1: Simulate the matern parameter 1t t tθθ φ θ ξ−= + , ( )2~ 0,t N ξξ σ  
Step 6.2: Create matern exponential covariance matrix, ( )tΣ , using a Eucli-

dean distance 
Step 6.3: Simulate ( )( )0,Σt MVN t=w  
Step 6.4: For iteration 1s =  to C (county), do the following sub-steps 
Step 6.4.a: Simulate the covariate vector 

( )1, , 1 11, 2s tx runiform a b= = = , ( )2, , 2 21, 5s tx runiform a b= = =  and  
( )3, , 3 30, 2s tx runiform a b= = = , and equate it to ( ), 1, , 2, , 3, ,, ,s t s t s t s tx x x′ =x  

Step 6.4.b: Simulate the white noise error term for space-time interaction 
(random error term) ( )2

, ~ 0,s t N εε τ  
Step 6.4.c: Compute , , , ,s t s t s t s tx wη α ε′= + + +β  
Step 6.4.d: Simulate ( ), ,s t s tY Poisson η=  
Due to the complexity of the model, the study simulated only one set of data 

which was used to sample the parameters of interest from the joint posterior 
distribution via the Metropolis-Hastings within Gibbs sampling technique. For 
each parameter, trace plots were constructed to assess the convergence of the 
samples generated from the posterior marginals of the parameters, see Appendix 
A. Based on the plots, we can observe that the trace plot of 2 2, , , , tθ ε ξφ τ σ θβ  and 
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tη  were first in converging while that for α  (intercept) was slow in converg-
ing but it eventually converged. The poor mixing of chain for α  could as a re-
sult of high variation of the parameter α . The true value, estimated posterior 
mean value, and 95% credible intervals for each parameter were also included in 
their respective trace plot. We can observe that the true values for 2, , , tθ ξφ σ θβ  
and tη  all fall within their corresponding 95% credible set and they were also 
close to their estimated mean value apart from 2

ετ  which was outside its 95% 
credible set. We believe the reason why the true value for 2

ετ  happens to be 
outside its credible set could have been attributed to the characteristics of the 
sample set generated for this study, which, in turn, led the credible set to be 
narrower. Point estimate and Bayesian credible set for each parameter were also 
computed and the results are shown from Tables 1-4. Table 1 provides the 
summaries of the parameters 2, ,θ εα φ τ , and 2

ξσ  respectively from the posterior 
sample of size 20,000 (i.e. the number of MCMC iterations). It can be seen that 
the true values of , θα φ , and 2

ξσ  are all within their corresponding 95% credi-
ble interval set apart from 2

ετ  which is outside the credible set which could be a 
result of the sample generated in this study. The table further provides the post-
erior mean and the posterior median of the parameters stated via SELF and 
MAELF respectively. Table 2 provides the summaries of the regression coeffi-
cients 1 2,β β  and 3β  from the posterior sample of size 20,000. It can be ob-
served that the true values are all within the 95% credible intervals. It also pro-
vides the estimates using SELF which is the posterior mean and the MAELF 
which is the posterior median. 

Table 3 shows the summaries of the matern parameter tθ  that governs the 
interaction of the locations at different times. tθ  depends on time t and it was 
simulated to take values from time, 1t =  to 10t = . It can be observed from 
Table 3 that the true value for 3θ  to 10θ  are within their corresponding 95%  

 
Table 1. Posterior mean, median, and 95% credible intervals for 2, ,θ εα φ τ , and 2

ξσ . 

Parameters True Value Mean Median 95% Confidence Interval 

α  0.5 0.9009 0.8758 (−0.5105, 2.6048) 

θφ  0.5 0.7720 0.8221 (0.2786, 0.9884) 

2
ετ  0.01 2.0475 2.0421 (1.8565, 2.2544) 

2
ξσ  0.01 0.0176 0.0150 (0.0063, 0.0437) 

 
Table 2. Posterior mean, median, and 95% credible intervals for β . 

Parameter, ( β ) True value Mean Median 95% Credible Interval 

1β  0.5 0.5270 0.5220 (−0.3316, 1.3880) 

2β  0.5 0.4806 0.4825 (0.2232, 0.7257) 

3β  0.5 0.7456 0.7447 (0.2758, 1.2113) 
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credible set apart from 1θ  and 2θ  which falls out of the 95% credible set. Note 
that we were evolving the matern parameter tθ  via the AR1 process, which 
means that the observations at the current time point are influenced by the re-
cent observation. In this note, 1θ  lack prior information, which also affects 2θ , 
thus causing the credible set to be wider. Despite the true value of 1θ  and 2θ  
falling outside the credible set due to the aforementioned reasons, there is a pos-
itive indication that the matern exponential covariance function has captured 
the space-time interaction effect between locations and time. 

Table 4 provides the summaries of posterior mean, true value, median, and 
95% credible intervals for parameter ,i tη  (the mean for Poisson distribution) 
which depends on both space (county) and time, t for a few locations and times  

 
Table 3. Posterior mean, median, and 95% credible intervals for tθ  at different times. 

Parameter, ( tθ ) Time True Value Mean Median 95% Credible Interval 

1θ  1 0.4331 0.0289 0.0234 (0.0013, 0.0871) 

2θ  2 0.2219 0.0295 0.0250 (0.0019, 0.0824) 

3θ  3 0.0695 0.0295 0.0253 (0.0025, 0.0786) 

4θ  4 0.0282 0.0294 0.0253 (0.0025, 0.0798) 

5θ  5 0.0024 0.0293 0.0252 (0.0020, 0.0756) 

6θ  6 0.0062 0.0297 0.0257 (0.0023, 0.0812) 

7θ  7 0.0050 0.0295 0.0254 (0.0021, 0.0815) 

8θ  8 0.0006 0.0291 0.0250 (0.0018, 0.0786) 

9θ  9 0.0136 0.0287 0.0246 (0.0013, 0.0800) 

10θ  10 0.0217 0.0270 0.0226 (0.0012, 0.0807) 

 
Table 4. Posterior mean, median, and 95% credible intervals for tη  at different counties 

and at different times (t). 

Parameter, ( tη ) County, (c) Time, (t) True value Mean Median 95% Credible Interval 

( )1,1η
 1 1 2.3680 2.3843 2.1839 (0.3721, 5.4697) 

( )5,4η
 5 4 4.5877 4.7158 4.6408 (2.1585, 7.7396) 

( )10,7η
 10 7 2.4074 2.3869 2.2181 (0.4003, 5.4320) 

( )20,7η
 20 7 3.5069 3.5500 3.4151 (1.0403, 6.7647) 

( )30,3η
 30 3 3.6489 3.3447 3.2082 (0.9404, 6.4711) 

( )38,3η
 38 3 3.0421 4.4188 4.3412 (1.7754, 7.6089) 

( )40,7η
 40 7 3.6504 4.7483 4.6614 (2.1355, 7.8196) 

( )45,6η
 45 6 4.7043 4.3970 4.3090 (1.8578, 7.4275) 

https://doi.org/10.4236/ojs.2023.136045


F. A. Otieno et al. 
 

 

DOI: 10.4236/ojs.2023.136045 903 Open Journal of Statistics 
 

that were randomly chosen. It can be observed that all the credible intervals for 

tη  contained the true value. 
For model selection and identification of significant risk factors for the simu-

lation study, the study built 8 spatio-temporal models (one full model and seven 
reduced models) based on the three simulated covariates, 1itx , 2itx , and 3itx  
using the stepwise regression approach explained in section 2.5. The 8 models 
are shown below and the results for each of the model is presented in Table 5. 
The importance of using the stepwise regression was to build regression models 
by removing covariates step by step until the pre-set significance level is met for 
all the covariates. This was done to assess the significance and contribution of 
each covariate in the model. 

Model 1; 1 1 2 2 3 3
ˆ ˆ ˆˆˆ it it ity x x xα β β β= + + +  

Model 2; 1 1 2 2
ˆ ˆˆˆ it ity x xα β β= + +  

Model 3; 1 1 3 3
ˆ ˆˆˆ it ity x xα β β= + +  

Model 4; 2 2 3 3
ˆ ˆˆˆ it ity x xα β β= + +  

Model 5; 1 1
ˆˆˆ ity xα β= +  

Model 6; 2 2
ˆˆˆ ity xα β= +  

Model 7; 3 3
ˆˆˆ ity xα β= +  

Model 8; ˆŷ α=  
Model selection is the process of selecting the best model from a set of candi-

date models. In this work, the approach utilized in model selection was based pri-
marily on DIC. The DIC was computed for all eight models as −2loglikelihood + 
2pD, where pD is the effective number of the parameters present in that particu-
lar model. The DIC computed was later compared to all the eight models and 
the model with the smallest DIC was considered the best. It is clear from Table 5 
that the full model (model 1) has the lowest DIC value (213.2963) suggesting 
that model 1 is the best in the simulation study. The subsequent analysis which 
was the construction of spatio-temporal maps was therefore generated based on 
the best model which in this case was the full model. To compare disease cases, 
two spatio-temporal maps were created. One displays the simulated disease  

 
Table 5. Model comparison for the 8 Spatio-temporal models. 

Models DIC −2 loglikelihood D* 2
0.05,k pχ −  p-value 

Model 1 213.2963 205.2963    

Model 2 215.6407 209.6407 4.3444 3.8410 0.0371 

Model 3 215.9094 209.9094 4.6131 3.8410 0.0317 

Model 4 216.5483 210.5483 5.2520 3.8410 0.0219 

Model 5 217.5214 213.5214 8.2251 5.9910 0.0165 

Model 6 216.1748 212.1748 6.8785 5.9910 0.0321 

Model 7 219.9835 215.9835 10.6872 5.9910 0.0048 

Model 8 249.8568 247.8568 42.5605 7.8150 0.0000 
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count (see Figure 1) and the other one presents the estimated disease count 
from the best model that includes the significant risk factors (see Figure 2). 

Figure 1 shows the spatio-temporal maps for simulated disease counts from 
2011 to 2020. The regions coloured red signify the high number of disease cases 
while the regions coloured purple indicate the low number of cases. The maps 
reveal an increasing trend in disease incidence over the 10 years. Notably, counties 
in the Rift Valley, Coastal, Nairobi, North Eastern, and Western regions of Kenya 
exhibit a significantly high risk of disease. The persistence of high incidence in 
these regions suggests the presence of underlying factors contributing to their ele-
vated risk throughout the study period. Figure 2 displays the spatio-temporal 

 

 
Figure 1. Spatio-temporal maps for simulated disease counts from 2011-2020. 

 

 
Figure 2. Spatio-temporal maps for estimated disease counts from the best model using 
simulated data. 
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evolution of the estimated disease counts in Kenya from 2011-2020 using simu-
lated data. The maps were obtained by mapping posterior means from the spe-
cific location and time from the best model as stated in section 2.6. There is a 
rising trend for estimated disease counts from the model over the years 
(2011-2020). Considering that the spread of the disease was linked to three si-
mulated covariates that showed significant influence, we believe that these fac-
tors might have played a role in the observed increase in risk over time. Upon 
visual inspection, there is a close resemblance between the map for observed si-
mulated counts and that of estimated counts. 

3.2. Application to Kenya Meningitis Incidence Data 

The model formulated in Equation (1) was also fitted to a real dataset, in partic-
ular, the Kenya meningitis incidence data from 2013 to 2019. We chose menin-
gitis data as a practical application to our model. The dataset was obtained from 
the Kenya Health Services for all the 47 counties. Due to data availability con-
straints, we incorporated only two covariates in the model, Gross County Prod-
uct (GCP) and averaged rainfall for all 47 counties in Kenya. The GCP and av-
eraged rainfall data were extracted from the Kenya National Bureau of Statistics 
(KNBS) and weather and climate websites respectively. The two covariates were 
in different units and therefore standardization technique, in particular, the 
Z-transformation technique was applied to normalize them, thus making them 
directly comparable. Posterior estimates for each parameter were obtained using 
the MCMC approach and the results are shown in Tables 6-9. Table 6 shows 
the posterior summary statistics (mean, median, and 95% credible interval) of 

2, ,θ εα φ τ , and 2
ξσ  respectively. From the table, it can be observed that the post-

erior mean of the common intercept α  is 25.9428 and it lies within a 95% 
credible interval (23.5370, 28.4434). This shows that the average number of me-
ningitis occurrences in the region is about 25.9428. Moreover, the posterior 
mean for 2,θ εφ τ , and 2

ξσ  are all within their corresponding 95% confidence 
interval. 

Table 7 shows the posterior summary statistics of the covariate coefficient β . 
It can be observed that there is a significant and positive relationship between 
average rainfall and meningitis occurrence. This is because the estimated post-
erior mean of average rainfall is positive (4.2376) and is within the 95% credi-
ble set. Similarly, a notable significant and positive relationship exists between 
GCP and meningitis occurrence as evidenced by the positive posterior mean 
(31.4808) falling within a 95% credible interval. This therefore indicates that av-
erage rainfall and GCP are factors associated with meningitis occurrence in 
Kenya. These significant risk factors will therefore help policymakers in the de-
velopment (in particular where and when) and implementation of the interven-
tion to be undertaken concerning the management of meningitis in Kenya. Av-
erage rainfall was used to account for climatic factors and since Kenya has two 
distinct seasons (dry and wet), it served as a proxy to determine if a region  
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Table 6. Posterior mean, median, and 95% credible intervals for 2, ,θ εα φ τ , and 2
ξσ . 

Parameters Mean Median 95% Credible Interval 

α  25.9428 26.0098 (23.5370, 28.4434) 

θφ  0.6965 0.7838 (−0.0611, 0.9892) 

2
ετ  470.3430 467.9256 (394.3319, 556.0817) 

2
ξσ  0.0010 0.0005 (0.0000, 0.0053) 

 
Table 7. Posterior mean, median, and 95% credible intervals for covariate coefficient β . 

Covariates Mean Median 95% Credible Interval 

Average rainfall 4.2376 4.2305 (1.7631, 6.6843) 

GCP 31.4808 31.5454 (29.0711, 33.8914) 

 
Table 8. Posterior mean, median, and 95% credible intervals for tθ  at different time. 

Parameter, ( tθ ) Time Mean Median 95% Credible Interval 

1θ  1 0.0391 0.0335 (0.0014, 0.1227) 

2θ  2 0.0384 0.0338 (0.0031, 0.0997) 

3θ  3 0.0379 0.0332 (0.0027, 0.0992) 

4θ  4 0.0378 0.0334 (0.0021, 0.1001) 

5θ  5 0.0373 0.0318 (0.0029, 0.0985) 

6θ  6 0.0386 0.0347 (0.0020, 0.1038) 

7θ  7 0.0396 0.0351 (0.0033, 0.1067) 

 
Table 9. Posterior mean, median, and 95% credible intervals for tη  at different counties 

and at different times (t). 

Parameter, ( tη ) County, (c) Time, (t) Mean Median 95% Credible Interval 

( )1,1η
 1 1 48.6108 48.5645 (36.2418, 61.6172) 

( )5,4η
 5 4 1.0169 0.7110 (0.0269, 3.7355) 

( )10,7η
 10 7 3.0007 2.6799 (0.6126, 7.1402) 

( )20,7η
 20 7 2.0547 1.7250 (0.2478, 5.7125) 

( )30,3η
 30 3 2.0259 1.7007 (0.2473, 5.6310) 

( )38,3η
 38 3 12.0490 11.8244 (6.3742, 19.1485) 

( )40,7η
 40 7 3.1410 2.7922 (0.6578, 7.6542) 

( )45,6η
 45 6 50.0138 49.7484 (37.1190, 64.0171) 
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experienced a dry or wet season at a particular time. Meningitis incidence is high 
during the dry season and less during the rainy season [17]. During the rainy 
season, there are fewer irritating conditions that prevent the outbreak from de-
veloping further, and during the dry season, there is a presence of bacteria which 
facilitates the spread of meningitis. GCP accounted for socioeconomic factors 
and was used as a measure of the county's economic level. According to [18], re-
gions with high poverty levels, high economic burdens, and low per capita in-
come have the highest burden of meningitis. This is due to the adverse impact 
on quality of life caused by poverty and economic strain, including poor living 
conditions and difficulties accessing healthcare. 

Table 8 shows the posterior summary statistics (mean, median, and 95% 
credible interval) of the matern parameter tθ . From the table, it is clear that all 
the posterior mean estimates of tθ  that is from time 1 to 7 lies within their 
corresponding 95% credible interval, suggesting that the matern exponential co-
variance function has captured the interaction effect of locations at different 
time points. Table 9 displays the posterior summary statistics (mean, median, 
and 95% credible interval) of some of the estimates of tη  which were randomly 
chosen. It can be noted that all the credible intervals for tη  contained the esti-
mated mean value. 

Factors such as climatic, socioeconomic, and demographic have been found to 
have a quantitative impact on meningitis occurrence [19]. This study examined 
two risk factors; climatic factors and socioeconomic factors as factors associated 
with meningitis occurrence in Kenya. Climatic factors were accounted for with 
average rainfall and socioeconomic factors were accounted for with GCP. Four 
spatio-temporal models (one full model and three reduced models) were formu-
lated using the method highlighted in section 2.5. The four models are given be-
low and the results obtained are given in Table 10 below and explained in the 
cases thereafter in Appendix B. 

Model 1: 1 2
ˆˆˆ ˆ avgrain gcpy α β β= + +  

Model 2: 1ˆ ˆˆ avgry ainα β= +  
Model 3: 2

ˆˆ ˆ gy cpα β= +  
Model 4: ˆ ˆy α=  
From cases 1 to 3, see Appendix B, it is evident that average rainfall and GCP 

are jointly significant predictors in the model. This therefore suggests that climatic 
factors and socioeconomic factors are risk factors associated with meningitis  

 
Table 10. Model comparison for the 4 Spatio-temporal models. 

Models DIC −2 loglikelihood D* 2
0.05,k pχ −  p-value 

Model 1 724.2428 718.2428    

Model 2 762.8767 758.8767 40.6339 3.8410 0.0000 

Model 3 794.5123 790.5123 72.2695 3.8410 0.0000 

Model 4 949.8568 947.8568 229.6140 5.9910 0.0000 
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occurrence in Kenya. Table 10 also shows DIC values for the four models stated 
above. It can be observed from Table 10 that model 1 (full model) has the lowest 
DIC value (724.2428) compared to other spatio-temporal models fitted to me-
ningitis count data. Similar to the simulation study, the subsequent analysis, 
which involves creating spatio-temporal maps was performed using the best 
model, which includes the significant risk factors. We created spatio-temporal 
maps for the observed meningitis counts (see Figure 3) and the estimated counts 
from the best model that includes the significant risk factors (see Figure 4). 

 

 
Figure 3. Spatio-temporal maps of observed meningitis count across the 47 counties in 
Kenya from 2013-2019. 

 

 
Figure 4. Posterior estimated Spatio-temporal maps of meningitis count across the 47 
counties in Kenya from the best spatio-temporal model. 
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Figure 3 shows the spatio-temporal maps for observed meningitis cases across 
the 47 counties in Kenya for seven years (2013-2019). The regions colored dark 
red indicate the high number of meningitis cases while light-colored regions 
show the low number of cases. From the figure, the maps keep changing signifi-
cantly over the seven years, highlighting areas where more attention should be 
given by policymakers It is clear from Figure 3 that the lowest cases of meningi-
tis were reported in the years 2013, 2015, and 2016 while the highest cases were 
recorded in 2014, 2017, 2018, and 2019. Counties reporting high incidences are 
counties in Rift Valley, Nairobi, Coastal, and Western side of Kenya which ap-
peared as hot spot areas. The spread of meningitis was found to be associated 
with GCP and average rainfall, suggesting that these factors may have contri-
buted to the high risk in these counties. Therefore, further attention should be 
given to these counties especially when planning prevention and intervention 
and also in managing the disease. 

Figure 4 displays the Spatio-temporal maps of estimated meningitis counts 
from the best spatio-temporal model for the year 2013 to 2019. The model has 
shown some apparent hot spots in the years 2015, 2016, 2017, 2018, and 2019. In 
2015, 2016, and 2017 the hot spot areas are counties in the Rift Valley, Nairobi, 
and western side of Kenya. In 2018 and 2019 the hot spot areas increased with 
some appearing along the Eastern side and the North Eastern region of Kenya. 
Upon visual inspection, the spatial and temporal patterns of the estimated me-
ningitis counts show a close relationship with the actual count data. For in-
stance, continuities can be seen with the clustering of high meningitis cases in 
the Western side, Rift Valley, and Nairobi region when compared with the ob-
served counts map. However, we note that in the actual count data, Tana River 
County had a high incidence of meningitis cases in the last three years, yet the 
model did not yield similarly elevated estimates for this county. There could be 
several reasons attributed to this. One possibility is that there could be an unfo-
reseen surge in cases that the model cannot capture. Alternatively, there might 
have been an improvement in surveillance measures within Tana River County, 
resulting in reported meningitis cases that the model cannot fully explain. It's 
also possible that we are missing an important covariate, such as population, that 
could provide a more accurate understanding of the situation. Consequently, a 
further investigation should be able to be carried out to explain this phenome-
non in Tana River County. In this regard, it is worth mentioning that meningitis 
is not evenly distributed across the country as some counties record a high 
number of cases compared to others. 

4. Conclusion 

The study highlights the importance of incorporating and modelling spatial and 
temporal dependencies jointly in the spatio-temporal disease mapping. The study 
contributes to the field of disease mapping by developing a spatio-temporal model 
in the Bayesian hierarchical framework that accounts for the spatial and tempor-
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al dependencies jointly across both space and time. The spatial and temporal 
dependencies were dynamically modelled together via the matern exponential 
covariance function where the parameter of the matern exponential tθ  was 
treated as a function of time with first-order autoregressive structure so that it 
captures the space-time interactions between geographical locations and over 
time. Parameter estimation was performed using the MCMC approach and the 
posterior estimates were computed from a posterior sample of size 20,000 which 
was used to explain the model results. Spatio-temporal maps were obtained by 
mapping stable posterior means for the specific location and time from the best 
model that includes the significant risk factors. Both simulation data and Kenya 
meningitis incidence data from 2013 to 2019 were employed in the model along-
side two covariates GCP and average rainfall. The study found that both average 
rainfall and GCP are positively associated with meningitis occurrence in Kenya. 
Concerning the geographical distribution of meningitis cases in Kenya, the spa-
tio-temporal maps showed that meningitis is not evenly distributed across the 
country as some counties reported a high number of cases compared to other 
counties. Counties situated in the Rift Valley, Western side, Coastal, and Nairobi 
regions exhibit a notable high risk of meningitis, thus requiring prioritized at-
tention in intervention planning. We believe the model developed will aid the 
policymakers and public health authorities in understanding the joint dynamic 
of the evolution of disease across different locations and over time. In this paper, 
we did not do a comparative study with existing models in the literature. We 
propose a further study on the comparison with other models be undertaken. A 
more Bayesian approach to selecting relevant significant predictors such as Baye-
sian shrinkage approach could be explored in this model over stepwise regres-
sion. Additionally, alternative measures of model selection such as BIC or Log- 
marginal likelihood could be considered for this model. 
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Appendix A. Trace Plots for Parameters in the Simulation 
Study 

The red horizontal line displayed in the plots is the true value of the parameter. 
The green horizontal line is the estimated posterior mean value while the black 
horizontal lines are the Bayesian credible interval values 

 

 

Figure A1. Trace plots for 2, ,θ εα φ τ , and 2
ξσ . 

 

 
Figure A2. Trace plots for the components of β. 
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Figure A3. Trace plots for matern parameter tθ . 
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Figure A4. Trace plots for a few locations and time ( ,i tη ). 
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Appendix B. Hypotheses Tests on the Sets of Regression  
Coefficients in the Real Case Study 

Case 1: Model 1: 1 2y avgrain gcpα β β= + +  
In case 1, we tested the significance of average rainfall and GCP jointly in the 

model. The hypothesis was given as: 

0 1 2:H β β=  vs. AH : at least one of ( )1,2i iβ =  is not equal to zero. 
It can be observed from Table 10 that the model is useful overall and average 

rainfall and GCP are jointly significant predictors in the model ( * 229.6140D = , 
p-value = 0.0000). 

Case 2: Model 2: 1y avgrainα β= +  
In case 2 the significance of the regression coefficient 2β  was tested using 

the following hypothesis 

0 2: 0H β =  vs. 2: 0AH β ≠ . 
It can be perceived on Table 10 that * 40.6339D =  and when compared to a 

( )
2
1χ  the p-value was.0000 which leads to rejection of 0H . This therefore sug-

gest that GCP is a significant predictor of meningitis occurrence given average 
rainfall is in the model and hence it cannot be removed from the model. 

Case 3: Model 3: 2y gcpα β= +  
In this case, we examine the significance of the regression coefficient 1β  in 

the model. The hypothesis was given as: 

0 1: 0H β =  vs. 1: 0AH β ≠ . 
From Table 10, * 72.2695D =  with a p-value of 0.0000. Consequently, there 

is enough evidence that average rainfall is a significant predictor of meningitis 
incidence given GCP is in the model. That means it cannot be dropped from the 
model. 
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