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Abstract 
In ultra-high-dimensional data, it is common for the response variable to be 
multi-classified. Therefore, this paper proposes a model-free screening me-
thod for variables whose response variable is multi-classified from the point 
of view of introducing Jensen-Shannon divergence to measure the impor-
tance of covariates. The idea of the method is to calculate the Jensen-Shannon 
divergence between the conditional probability distribution of the covariates 
on a given response variable and the unconditional probability distribution of 
the covariates, and then use the probabilities of the response variables as 
weights to calculate the weighted Jensen-Shannon divergence, where a larger 
weighted Jensen-Shannon divergence means that the covariates are more 
important. Additionally, we also investigated an adapted version of the me-
thod, which is to measure the relationship between the covariates and the re-
sponse variable using the weighted Jensen-Shannon divergence adjusted by 
the logarithmic factor of the number of categories when the number of cate-
gories in each covariate varies. Then, through both theoretical and simulation 
experiments, it was demonstrated that the proposed methods have sure 
screening and ranking consistency properties. Finally, the results from simu-
lation and real-dataset experiments show that in feature screening, the pro-
posed methods investigated are robust in performance and faster in computa-
tional speed compared with an existing method. 
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1. Introduction 

In fields like tumor classification, genomics, and machine learning, the issue of 
processing ultra-high-dimensional data is frequently faced. According to [1] de-
finition of ultra-high-dimensional data, it is assumed that the sample size and 
the dimensionality of the covariates are n and p, respectively. There exists a con-
stant ( )1 20,α ∈  such that ( )ln p O nα= , and at this point, p exhibits an ex-
ponential order of increase with the sample size n. Furthermore, this data tends 
to be sparse; the number of variables tends to be very high, while the number of 
variables that have a significant impact is very small. Therefore, in the problem 
of ultra-high-dimensional data analysis, the development of fast and effective 
variable screening methods to rapidly reduce ultra-high-dimensional data to 
reasonable dimensions is very important research. 

To address this problem, Fan and Lv [2] first proposed the SIS method for 
variable screening of ultra-high-dimensional data. Afterwards, many scholars of 
statistics studied the problem and established a series of feature screening me-
thods. The ultra-high-dimensional feature screening methods that have been 
developed are: Fan and Song [3] proposed a method of variable screening 
(MMLE), whereby variable screening is performed by ranking the very large 
marginal likelihood estimates in a generalized linear model. Fan et al. [4] pro-
posed a nonparametric independent screening (NIS) method to investigate va-
riable screening methods in additivity models, using B-spline basis functions to 
fit the edge nonparametric components. Subsequently, besides the additive 
model, the variable coefficient model is another widely used nonparametric 
model. Liu et al. [5] further proposed a new variable screening method based 
on conditional correlation coefficients for variable coefficient models. For the 
semiparametric model, Li et al. [6] utilized a robust rank correlation screening 
(RRCS) method based on the Kendall τ  correlation coefficient. Most of these 
methods imply the assumption that the response variable is continuous, but ul-
tra-high-dimensional data with categorical response variables are increasingly 
appearing in various fields of scientific research, and if traditional categoriza-
tion methods such as logistic regression, decision trees, and support vector 
machines are used to solve this kind of problem, they will encounter problems 
such as long time-consuming, high computational costs, and reduced predic-
tion accuracy. Based on this, many researchers have proposed various screening 
methods for ultra-high-dimensional data where the response variable is cate-
gorical. Fan and Fan [7] suggested a feature screening technique based on mar-
ginal t-tests for normal distributions for response variables that are binary. 
However, the robustness of this method is low, so Mai and Zou [8] proposed a 
screening method for ultra-high-dimensional binary categorical variables based 
on the Kolmogorov-Smirnov statistic. In practice, the response variable is mul-
ti-categorical, which is also very common. For response variables that are mul-
ti-classified, Cui et al. [9] establish a robust screening method by constructing 
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the distance between the global distribution function and the conditional dis-
tribution function. Huang et al. [10] proposed an ultra-high-dimensional mul-
ti-classified variable screening method based on Pearson’s chi-square statistic 
(PC-SIS). 

The above methods of variable screening are based on the correlation be-
tween explanatory and response variables. With the development of informa-
tion theory and the disciplinary integration with statistics, the characteristics 
of information entropy and the entropy family are recognized and applied by 
researchers. Ni and Fang [11] proposed a method for ultra-high-dimensional 
variable screening based on information gain (IG-SIS) from the perspective of 
information quantity. Jensen-Shannon divergence is an information theory- 
based concept that plays an important role in calculating similarity and com-
paring differences in probability distributions and is characterized by non- 
negativity and symmetry. For ease of reading, Jensen-Shannon divergence is 
abbreviated to JS divergence in this paper. When the response variable is a bi-
nary categorical variable, there are two conditional probability distributions 
for jx  given Y. The degree of difference between these two conditional 
probability distributions can be measured using JS divergence, and the magni-
tude of JS divergence represents the degree of strength of the correlation be-
tween jx  and Y. 

Therefore, on the basis of the above research on ultra-high-dimensional fea-
ture screening for response variables that are categorical, in this paper, from a 
new perspective, we propose a model-free ultra-high-dimensional feature screen- 
ing method for multi-classified response data based on weighted JS divergence, 
defined as WJS-SIS. The idea of the method is to first calculate the JS divergence 
between the conditional probability distribution of jx  and the unconditional 
probability distribution of jx  given ( )1,2, ,Y r r R= =   between the condi-
tional probability distribution of jx  and the unconditional probability distri-
bution of jx  conditionally, and then use ( )Pr Y r=  as the weight to calculate 
the weighted JS divergence. And, when the number of categories in each cova-
riate is different, using the logarithmic factor of the number of categories in each 
covariate to adjust the weighted JS divergence is also proposed to measure the 
relationship between the covariates and the response variable, defined as AWJS- 
SIS. Theoretically, both WJS-SIS and AWJS-SIS have sure screening properties 
and ranking consistency, and from the results of Monte Carlo simulations and 
real data experiments, they have significant effects on screening ultra-high- 
dimensional multi-classified response variable data. At the same time, they are 
model-free screening methods that do not depend on any model assumptions. 

The rest of the paper is organized as follows: Section 2 describes the proposed 
WJS-SIS and AWJS-SIS methods in detail. Section 3 describes the screening and 
ranking consistency of the methods. Section 4 and Section 5 give the simulation 
study and an experiment with real data, respectively. Section 6 draws conclu-
sions. All theorem proofs are given in the appendix. 
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2. Method 
2.1. Basic Assumption 

Suppose ( )1 2, , ,i i ijX x x x=   is an N P× -dimensional covariate matrix, where 
X obeys the assumption of independent identical distribution, let  

{ }1 2, , , , 1,2, , ; 1,2, ,j j j ijx x x i N j P= = =  x . And ( )1 2, , , NY y y y=   is an 
1N × -dimensional categorical response variable. 

Define D as the set of important covariates, cD  as the set of unimportant 
covariates, and 0D d=  as the number of variables in the set of important co-
variates, which is expressed as: 

( ){ }: for some , | is related to ,jD j Y y F y Y= = x
 

{ }1,2, , \ .cD p D=   

2.2. Information Entropy 

Information entropy is a measure of the index of information proposed by [12]. 
When the covariate { }1,2, ,j L∈ x  and the response variable { }1,2, ,Y R∈  , 
the information entropy of the jx  and Y are: 

( ) , ,
1

log ,
L

j j l j l
l

H p p
=

= −∑x
 

( )
1

log ,
R

r r
r

H Y p p
=

= −∑  

where the logarithmic base is 2, and 0 log 0 0× = . And, where the expressions 
for rp  and ,j lp  are as follows: 

( )Pr , 1,2,rp Y r r= = =  

{ }1ˆ ,
N

r
i iI y r

p
N

=
=

= ∑  

( ), Pr ,j l jp l= =x
 

( ) { }
,

1ˆ Pr .
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p l
N

=
=

= = =
∑

x  

The conditional information entropy of jx  given Y is defined as: 
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1

| log ,
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1
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( ), Pr | ,lr j jp Y r l= = =x  
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lr j N
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But when the covariate jx  is a continuous variable, using standard normal 
distribution quantiles to cut jx  into categorical data: 

( ) ( )(( ), 1Pr , ,j l j j jp q q−
= ∈ x

 

( ) ( )({ }1 1

,

,
ˆ ,

N
ij j j

j l
i I x q q
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∈ =
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∑
∑

 

where ( )jq  be the j/J quantile, and 1,2, ,j J=  , ( )0q = −∞ , ( )Jq = +∞ . 

2.3. IG-SIS 

Ni and Fang [11] proposed the feature screening method of IG-SIS, which is 
based on the principle of using the difference between the information entropy 
of y and the conditional information entropy of Y given jx  to measure the 
importance of jx . 

The strength of the correlation between Y and jx  can be represented by the 
information gain, and the expression is as follows: 

( ) ( ) ( )( )

, , , ,
1 1 1 1

1IG , |
log

1 log log log ,
log

k k

j j
k

J JR R

lr j lr j r r j l j l
r J r jk

Y H Y H Y
J

p p p p p p
J = = = =

= −

 
= − − 

 
∑∑ ∑ ∑

x x

 

and 

( ) , , , ,
1 1 1 1

1ˆ ˆ ˆ ˆ ˆ ˆ ˆIG , log log log .
log

k kJ JR R

j lr j lr j r r j l j l
r J r jk

Y p p p p p p
J = = = =

 
= − − 

 
∑∑ ∑ ∑x   (1) 

The higher the difference, the more important jx  is. 

2.4. WJS-SIS 

Finding an index to measure the relationship between response variables and 
covariates is the core of ultra-high-dimensional feature screening and the key to 
big data processing. From the perspective of the distribution of the data, for un-
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ivariate feature screening, the relationship between variables can be measured by 
comparing the distribution of the data. Moreover, the current screening me-
thods for categorical variables, in addition to the use of traditional statistical index-
es to measure the relationship between the variables, also combine methods from 
other disciplines. For example, some studies have quantified some measure of the 
amount of information as an index for feature screening. The Jensen-Shannon di-
vergence mentioned in this paper is based on an information-theoretic concept 
that is important in calculating similarity and comparing differences in proba-
bility distributions and has the properties of non-negativity and symmetry: as-
suming that there are two distributions A and B, then ( ) ( )JS A B JS B A=  . 
Thus, for ultra-high-dimensional feature screening for multi-classified response 
variable data, we can utilize the Jensen-Shannon divergence to measure the rela-
tionship between response variables and covariates. 

When the response variable is a binary categorical variable, there are two con-
ditional probability distributions for jx  given Y. The degree of difference be-
tween these two conditional probability distributions can be measured using JS 
divergence, and the magnitude of JS divergence represents the degree of strength of 
the correlation between jx  and Y. In practice, the response variable is more than 
just a binary categorization case and more often involves multicategorization. 

Therefore, in this paper, a model-free ultra-high-dimensional feature screen-
ing method for multicategorical response data with weighted JS divergence is 
investigated from the perspective of JS divergence for the case where the re-
sponse variable is multicategorical. 

First, separately calculate the JS divergence between conditional probability 
distributions for jx  given ( )1,2, ,Y r r R= =   and the probability distribu-
tion of jx , and then ( )Pr Y r=  is used as the weight to obtain the weighted JS 
divergence. 

Assume that ( )Pr |jU l Y r= = =x  and ( )Pr jV l= =x , and ( )1
2

M U V= +  

is the average probability distribution of U and V. If jx  is a continuous varia-

ble, U and V are defined as follows: ( ) ( )(( )1Pr , |j j jU q q Y r−
= ∈ =x ,  

( ) ( )(( )1Pr ,j j jV q q−
= ∈ x . 

Then, the weighted JS divergence of U and V is defined as: 

( ) ( )

( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )( ) ( ) ( )( )( )

1

1 1 1

1 1 1

1 1

1
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R P P
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and 

( )
( ) ( ) ( )( ) ( ) ( )( )( )

1

ˆ ˆˆ

1 ˆ ˆ ˆ ˆ ˆ ˆPr , , .
2

j

R

r

e JS U V

Y r H U M H U H V M H V
=

=

= = − + −∑



     (2) 

2.5. AWJS-SIS 

When the number of categories of covariates is large, the directly computed 
weighted JS divergence values may be large, which makes it possible that unim-
portant variables due to a large number of categories may be incorrectly selected. 
To address this problem, this paper refers to Ni and Fang [11] using ( ) 1log kJ −  
to construct the adjusted weighted JS divergence for variable selection. Where 

kJ  represents the number of categorical categories L of jx  or the number of 
categories in which jx  is sliced by a standard normally distributed quantile. 

The adjusted weighted JS divergence of U and V is defined as: 

( ) ( ) ( )( ) ( ) ( )( )( )1

log

1 Pr , ,
2 ,

log

j

R

k

r

j kw e J

Y r H U M H U H V M H V

J
=

=

= − + −
=

∑    (3) 

and 

( ) ( ) ( )( ) ( ) ( )( )( )1

ˆ ˆ log

1 ˆ ˆ ˆ ˆ ˆ ˆPr , ,
2 .

log

j j k

R

k

r

w e J

Y r H U M H U H V M H V

J
=

=

= − + −
=

∑    (4) 

3. Theoretical Properties 

In [2], it is shown that a good feature screening method should satisfy the prop-
erties of sure screening and ranking consistency. Sure screening is the basis of 
feature screening, which means being able to screen all important variables with 
a probability of 1 when the sample size is sufficient, which ensures that the truly 
important variables will theoretically be screened in their entirety. Ranking con-
sistency means that the indexes of all significant variables are ranked before the 
indexes of all insignificant variables, which ensures that when selecting the top 

nd  variables, important variables can be screened out reasonably and robustly. 
This subsection will illustrate the theoretical properties of the methods proposed 
in this paper under certain conditions, which are as follows: 

Condition 1 (C1). ( )( ) ( )exp , 0,1P o N= ∈δ δ , this indicates that the variable 
dimension P is an exponential multiple of the sample capacity n. 

Condition 2 (C2). There have 1 0c > , 2 0c > , such that 1 , 20 1j lrc p c< ≤ ≤ < , 
{ }, 0,1l r∀ ∈ , 1,2, ,k P∀ =  . 

Condition 3 (C3). There has a constant 0c >  and 0 1 2τ≤ < , such that 

min 2jj D
e cN −

∈
≥ τ . 

Condition 4 (C4). There has a constant 3c  for 1 r R∀ ≤ ≤  such that 
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( ) 30 |kf x Y r c< = < , and x is in the domain of definition of Xk, where under the 
condition Y r= , ( )|kf x Y r=  is the Lebesgue density function of Xk. 

Condition 5 (C5). There have a constant 4c  and 21 1ρ∀ ≤ ≤  such that 
( )4 5kc n f x cρ− ≤ < , and x is in the domain of definition of Xk for 1 k ρ∀ ≤ ≤ , 

where ( )kf x  is continuous in the domain of definition of Xk, and ( )kf x  is 
the Lebesgue density function of Xk. 

Condition 6 (C6). ( )
1
max kj P

J J O N
≤ ≤

= = κ , 0κ > , 21 1τ∀ ≤ ≤  and  
21 1ρ∀ ≤ ≤  with 2 2 1τ ρ+ < . 

The literature on ultra-high-dimensional feature screening approaches, such 
as [2] [13], and [14], typically includes the aforementioned six requirements. 
Condition (C1) demonstrates that it is a feature screening method applied to ul-
tra-high-dimensional problems. Condition (C2) demonstrates that the marginal 
probabilities of the response variable and the covariate are bounded by an upper 
and a lower limit, preventing the worst-case scenario of the screening method 
failing. This worst-case situation is due to a flaw in the Jensen-Shannon diver-
gence. When the two distributions do not overlap at all, even if the centers of the 
two distributions are as close as possible, their Jensen-Shannon divergence is 
constant, and at this point, the Jensen-Shannon divergence fails to measure the 
extent of the difference between the two distributions and thus the importance 
of the covariates. And Condition (C3) demonstrates that the values of the index-
es corresponding to the really important variables are bounded by a lower value. 
Condition (C4) eliminates an extreme scenario in which some Xk places a large 
mass in a small range, ensuring that the sample percentile is close to the genuine 
percentile. Condition (C5) shows the lower bound of the density must be of or-
der n ρ−  in order. The presence of Condition (C6) guarantees a certain rate of 
divergence in the number of covariate categories. When the response is mul-
ti-classified and all covariates are discrete, we provide the theoretical properties 
of the feature screening technique WJS-SIS under these six conditions. 

Because logj j kw e J= , ˆ ˆ logj j kw e J= , and log log 1 22kJ ≥ ≥ , it follows 
that ( ) ( )ˆ ˆPr Pr 2j j j jw w e eε ε− > = − > . So, this study provides a thorough 
theoretical proof for the index je  of weighted JS divergence-based sure screen-
ing and ranking consistency for feature screening. 

The Properties of Sure Screening and Ranking Consistency 

Categorical covariates are subscripted with the letter j, while continuous cova-
riates are subscripted with the letter k. If the covariate is categorical, L represents 
the number of categories, while kJ  represents the number of categories if the 
covariate is continuous. 

When the covariates are categorical variables, there are theorems 3.1 and 3.2. 
Theorem 3.13 In the (C1) - (C2) conditions, 0 1 2τ≤ < , there have 0c >  

and 0C >  with 

( ) { }1 2

1
ˆPr max 12 exp ,j jj P

e e cN PRL CN− −

≤ ≤
− > ≤ −τ τ  
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when 0 1 2a τ< < − , ( )1
ˆPr max 0,j jj P

e e cN N−

≤ ≤
− ≥ → →∞τ . And under the (C1) 

- (C3) conditions, when N →∞ , such that 

( ) { }1 2
0

ˆPr 1 12 exp 1.D D d RL CN −⊆ ≥ − − →τ  

Theorem 3.2. In the (C1) - (C3) conditions, assume that ˆ ˆmin max 0
cj jj D j D

e e
⊆ ⊆

− > , 
then there have 

ˆ ˆPr lim inf min max 0 1.
cj jN j D j D

e e
→∞ ⊆ ⊆

  − > =  
  

 

When the covariates are continuous, there are theorems 3.3 and 3.4. 
Theorem 3.3. Under the conditions (C1), (C2), (C4), (C5), and (C6), there 

have constants 11 0c > , 1 0C >  and there are 

( ) { }1 2 2
10 6 11

ˆPr max 6 exp .k k kj P
e e c N c PRJ C N− − −

≤ ≤
− > ≤ −τ ρ τ          (5) 

When N →∞ , there is 

( ) { }1 2 2
6 0 1

ˆPr 1 6 exp 1.kD D c d RJ C N − −⊆ ≥ − − →ρ τ  

Theorem 3.4. Assume that ˆ ˆmin max 0
ck kk D k D

e e
⊆ ⊆

− > , under the conditions (C1), 
(C3), (C4), (C5), and (C6), there have 

ˆ ˆPr lim inf min max 0 1.
ck kN k D k D

e e
→∞ ⊆ ⊆

  − > =  
  

 

When the covariates are continuous and categorical covariates coexist, there 
are theorems 3.5 and 3.6. 

Theorem 3.5. Under the conditions (C1), (C2), (C4), (C5), and (C6), there 
have constants 11 0c > , 2 0C >  and 3 0C >  and there are 

( )( )
{ } { }

111

1 2 1 2 2
1 2 6 2 3

ˆ ˆPr max

12 exp 6 exp ,

j j k kj P

k

e e e e c N

P RL C N c P RJ C N

τ

τ ρ τ

−

≤ ≤

− − −

− + − >

≤ − + −
         (6) 

where 1 2P P P+ = . When N →∞ , there is 

( ) { } { }1 2 1 2 2
1 2 6 2 3

ˆPr 1 12 exp 6 exp 1,kD D d RL C N c d RJ C N− − −⊆ ≥ − − − − →τ ρ τ  

where 1 2 0d d d+ = . 
Theorem 3.6. Assume that ˆ ˆmin max 0

cj jj D j D
e e

⊆ ⊆
− >  and ˆ ˆmin max 0

ck kk D k D
e e

⊆ ⊆
− > , 

under the conditions (C1), (C2), (C4), (C5), and (C6), there have 

ˆ ˆ ˆ ˆPr lim inf min max min max 0 1.
c cj j k kN j D k Dj D k D

e e e e
→∞ ⊆ ⊆⊆ ⊆

     − + − > =        
 

The appendix contains a thorough proof of the theoretical portion. 

4. Numerical Simulation 
4.1. Evaluation Indexes 

The first evaluation indexes are CP1 and CP2, which represent the proportion of 
true important covariates that are selected into the set of significant covariates 

https://doi.org/10.4236/ojs.2023.136042


Q. Q. Jiang, G. M. Deng 
 

 

DOI: 10.4236/ojs.2023.136042 831 Open Journal of Statistics 
 

when the top [ ]logN N  and top [ ]2 logN N  variables are selected as the set 
of significant covariates, respectively. The second evaluation indexes are CPa1 
and CPa2, which show whether the selected set of important covariates contains 
all the true important covariates when the number of the important covariates 
set is [ ]logN N  and [ ]2 logN N , respectively. The third evaluation index is 
the MMS, which represents the minimum model size that will be selected for all 
important variables. Each simulation was conducted 100 times. All calculations 
in this paper were performed in R software. 

4.2. Simulation Experiments and Results 
4.2.1. Simulation 1 
The response variable and all covariates are four-categorical variables. Where, 
for the response variable Y, both balanced and unbalanced distributions are con-
sidered: balanced, ( )Pr 1rp Y r R= = = , with 1, ,r R=  , and 2R = ; unba-
lanced, ( ) ( )2 1 1 3rp R r R R= + − −    with 

11
max 2 minr rr Rr R

p p
≤ ≤≤ ≤

= . Define  
{ }01, 2, ,D d=   as the true imporant variables set, where 0 10d D= = . X is 

generated by the conditional probability of X given by Y.  
( )( ) ( ) ( )( )Pr 1,2,3, 4 | 2, 1 2, 2, 1 2ij i rj rj rj rjx y r θ θ θ θ= = = − −  for 1 r R≤ ≤  

and 01 j d≤ ≤ , where rjθ  is given in Table 1. And, 0.5rjθ =  when 1 r R≤ ≤ , 

0d j P< ≤ . The dimensionality of the covariates was set to 2000P = , and the 
sample sizes were set to 300N = , 400N = , and 500N = . 

The simulation results are shown in Table 2, where the performance indexes 
of all the methods for all conditions are the same, with coverage CP and CPa 
both being 1 and the values of the MMS values being close to 0 10d = . 

4.2.2. Simulation 2 
The response variable and all covariates are categorical variables, where the re-
sponse variable is set up as in Simulation 1, and the categories of the covariates 
are set up as categories 2, 4, 6, 8, and 10, respectively. Similarly, define  

[ ]{ }10 , 1,2, ,10D j j P j′ ′= = =   as the set of important variables. The cova-
riate data were generated through the quantile of the standard normal distribu-
tion ( )jf ⋅ . Define ,i jx  by ( ), ,j i j i jf ε µ+ , where ( ), ~ 0,1i j Nε , 1 j P≤ ≤ . 
And when j D∈ , ( ), 1.5 0.9 r

i jµ = × − , otherwise , 0i jµ = . The following are 
the precise steps for creating covariates: 

 
Table 1. Parameter specification for the simulations. 

rjθ  

j 1 2 3 4 5 6 7 8 9 10 

1r =  0.2 0.8 0.7 0.2 0.2 0.9 0.1 0.1 0.7 0.7 

2r =  0.9 0.3 0.3 0.7 0.8 0.4 0.7 0.6 0.4 0.1 

3r =  0.1 0.9 0.6 0.1 0.3 0.1 0.4 0.3 0.6 0.4 

4r =  0.7 0.2 0.1 0.6 0.7 0.6 0.8 0.9 0.1 0.8 
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Table 2. Results for simulation 1. 

Method 
CP CPa MMS 

CP1 CP2 CPa1 CPa2 5% 25% 50% 75% 95% 

balanced Y, P = 2000, N = 300 

WJS-SIS 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 (0) 5.5 (0) 7.75 (0) 9.55 (0) 

AWJS-SIS 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 (0) 5.5 (0) 7.75 (0) 9.55 (0) 

IG-SIS 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 (0) 5.5 (0) 7.75 (0) 9.55 (0) 

balanced Y, P = 2000, N = 400 

WJS-SIS 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 (0) 5.5 (0) 7.75 (0) 9.55 (0) 

AWJS-SIS 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 (0) 5.5 (0) 7.75 (0) 9.55 (0) 

IG-SIS 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 (0) 5.5 (0) 7.75 (0) 9.55 (0) 

balanced Y, P = 2000, N = 500 

WJS-SIS 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 (0) 5.5 (0) 7.75 (0) 9.55 (0) 

AWJS-SIS 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 (0) 5.5 (0) 7.75 (0) 9.55 (0) 

IG-SIS 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 (0) 5.5 (0) 7.75 (0) 9.55 (0) 

unbalanced Y, P = 2000, N = 300 

WJS-SIS 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 (0) 5.5 (0) 7.75 (0) 9.55 (0) 

AWJS-SIS 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 (0) 5.5 (0) 7.75 (0) 9.55 (0) 

IG-SIS 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 (0) 5.5 (0) 7.75 (0) 9.55 (0) 

unbalanced Y, P = 2000, N = 400 

WJS-SIS 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 (0) 5.5 (0) 7.75 (0) 9.55 (0) 

AWJS-SIS 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 (0) 5.5 (0) 7.75 (0) 9.55 (0) 

IG-SIS 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 (0) 5.5 (0) 7.75 (0) 9.55 (0) 

unbalanced Y, P = 2000, N = 500 

WJS-SIS 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 (0) 5.5 (0) 7.75 (0) 9.55 (0) 

AWJS-SIS 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 (0) 5.5 (0) 7.75 (0) 9.55 (0) 

IG-SIS 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 (0) 5.5 (0) 7.75 (0) 9.55 (0) 

The numbers in parentheses are the corresponding standard deviations. 
 

( ) ( ), , , 1, 1,2, , 1 .j i j i j i j j
L

f I z z j l′′ 
 
 

 
′′ + = > + = −

 
 

ε µ  

The values of L are 2, 4, 6, 8, and 10, which correspond to 1 400j≤ ≤ ,
400 800j< ≤ , 800 1200j< ≤ , 1200 1600j< ≤ , 1600 2000j< ≤ . We set 

2000P =  and 160,240,320N = . 
The simulation results are displayed in Table 3, and all techniques’ perfor-

mance indexes for every situation are same, with coverage CP and CPa both be-
ing 1, and MMS values that are nearly equal to 0 10d = . 

https://doi.org/10.4236/ojs.2023.136042


Q. Q. Jiang, G. M. Deng 
 

 

DOI: 10.4236/ojs.2023.136042 833 Open Journal of Statistics 
 

Table 3. Results for simulation 2. 

Method 
CP CPa MMS 

CP1 CP2 CPa1 CPa2 5% 25% 50% 75% 95% 

balanced Y, P = 2000, N = 300 

WJS-SIS 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 (0) 5.5 (0) 7.75 (0) 9.55 (0) 

AWJS-SIS 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 (0) 5.5 (0) 7.75 (0) 9.55 (0) 

IG-SIS 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 (0) 5.5 (0) 7.75 (0) 9.55 (0) 

balanced Y, P = 2000, N = 400 

WJS-SIS 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 (0) 5.5 (0) 7.75 (0) 9.55 (0) 

AWJS-SIS 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 (0) 5.5 (0) 7.75 (0) 9.55 (0) 

IG-SIS 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 (0) 5.5 (0) 7.75 (0) 9.55 (0) 

balanced Y, P = 2000, N = 500 

WJS-SIS 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 (0) 5.5 (0) 7.75 (0) 9.55 (0) 

AWJS-SIS 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 (0) 5.5 (0) 7.75 (0) 9.55 (0) 

IG-SIS 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 (0) 5.5 (0) 7.75 (0) 9.55 (0) 

unbalanced Y, P = 2000, N = 300 

WJS-SIS 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 (0) 5.5 (0) 7.75 (0) 9.55 (0) 

AWJS-SIS 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 (0) 5.5 (0) 7.75 (0) 9.55 (0) 

IG-SIS 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 (0) 5.5 (0) 7.75 (0) 9.55 (0) 

unbalanced Y, P = 2000, N = 400 

WJS-SIS 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 (0) 5.5 (0) 7.75 (0) 9.55 (0) 

AWJS-SIS 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 (0) 5.5 (0) 7.75 (0) 9.55 (0) 

IG-SIS 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 (0) 5.5 (0) 7.75 (0) 9.55 (0) 

unbalanced Y, P = 2000, N = 500 

WJS-SIS 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 (0) 5.5 (0) 7.75 (0) 9.55 (0) 

AWJS-SIS 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 (0) 5.5 (0) 7.75 (0) 9.55 (0) 

IG-SIS 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 (0) 5.5 (0) 7.75 (0) 9.55 (0) 

The numbers in parentheses are the corresponding standard deviations. 

4.2.3. Simulation 3 
The covariates are continuous variables, and the response variables are set up as 
in Simulation 1. We use the standard normal distribution of quantile function to 
slice the covariates into categorical data, where 4,8,10KJ = , and define the me-
thods as WJS-SIS-4, AWJS-SIS-4, IG-SIS-4; WJS-SIS-8, AWJS-SIS-8, IG-SIS-8; and 
WJS-SIS-10, AWJS-SIS-10, IG-SIS-10, respectively. The essential variables are 
set up in the same way as in Simulation 1. Generate X using the standard normal 
distribution ( ),1ijN µ  with { }1 2, , ,i i i iP= µ µ µ µ  and assume  

{ }1 2, , , P
i i i iPx x x= ∈ x , and ( ), 1,2, ,ijx j P=  . Where j D∈ ,  
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( )1 r
ij rjµ θ= − , otherwise, 0ijµ = . We set 5000P =  and 400,600,800N = . 
Because this slice is used to divide all covariates after a particular number of 

slices are chosen each time, the performance indexes of WJS-SIS and AWJS-SIS 
are the same. 

Table 4 displays the simulation results for a balanced distribution of Y. Since  
 
Table 4. Results for simulation 3: balanced Y. 

Method 
CP CPa MMS 

CP1 CP2 CPa1 CPa2 5% 25% 50% 75% 95% 

balanced Y, P = 5000, N = 400 

WJS-SIS-4 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 5.5 7.75 9.605 

AWJS-SIS-4 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 5.5 7.75 9.605 

IG-SIS-4 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 5.5 7.75 9.577 

WJS-SIS-8 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 5.5 7.75 9.759 

AWJS-SIS-8 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 5.5 7.75 9.759 

IG-SIS-8 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 5.5 7.75 9.764 

WJS-SIS-10 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 5.5 7.75 9.914 

AWJS-SIS-10 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 5.5 7.75 9.914 

IG-SIS-10 1 (0) 1 (0) 1 (0) 1 (0) 1.45 (0) 3.25 5.5 7.75 9.813 

balanced Y, P = 5000, N = 600 

WJS-SIS-4 1 (0) 1 (0) 1 (0) 1 (0) 1.45 3.25 5.5 7.75 9.55 

AWJS-SIS-4 1 (0) 1 (0) 1 (0) 1 (0) 1.45 3.25 5.5 7.75 9.55 

IG-SIS-4 1 (0) 1 (0) 1 (0) 1 (0) 1.45 3.25 5.5 7.75 9.55 

WJS-SIS-8 1 (0) 1 (0) 1 (0) 1 (0) 1.45 3.25 5.5 7.75 9.55 

AWJS-SIS-8 1 (0) 1 (0) 1 (0) 1 (0) 1.45 3.25 5.5 7.75 9.55 

IG-SIS-8 1 (0) 1 (0) 1 (0) 1 (0) 1.45 3.25 5.5 7.75 9.55 

WJS-SIS-10 1 (0) 1 (0) 1 (0) 1 (0) 1.45 3.25 5.5 7.75 9.55 

AWJS-SIS-10 1 (0) 1 (0) 1 (0) 1 (0) 1.45 3.25 5.5 7.75 9.55 

IG-SIS-10 1 (0) 1 (0) 1 (0) 1 (0) 1.45 3.25 5.5 7.75 9.55 

balanced Y, P = 5000, N = 800 

WJS-SIS-4 1 (0) 1 (0) 1 (0) 1 (0) 1.45 3.25 5.5 7.75 9.55 

AWJS-SIS-4 1 (0) 1 (0) 1 (0) 1 (0) 1.45 3.25 5.5 7.75 9.55 

IG-SIS-4 1 (0) 1 (0) 1 (0) 1 (0) 1.45 3.25 5.5 7.75 9.55 

WJS-SIS-8 1 (0) 1 (0) 1 (0) 1 (0) 1.45 3.25 5.5 7.75 9.55 

AWJS-SIS-8 1 (0) 1 (0) 1 (0) 1 (0) 1.45 3.25 5.5 7.75 9.55 

IG-SIS-8 1 (0) 1 (0) 1 (0) 1 (0) 1.45 3.25 5.5 7.75 9.55 

WJS-SIS-10 1 (0) 1 (0) 1 (0) 1 (0) 1.45 3.25 5.5 7.75 9.55 

AWJS-SIS-10 1 (0) 1 (0) 1 (0) 1 (0) 1.45 3.25 5.5 7.75 9.55 

IG-SIS-10 1 (0) 1 (0) 1 (0) 1 (0) 1.45 3.25 5.5 7.75 9.55 

The numbers in parentheses are the corresponding standard deviations. 
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all covariates are divided using the slices each time a certain number of slices is 
chosen, the performance indexes of WJS-SIS and AWJS-SIS are identical. The 
coverage index values CP and CPa for the three methods are 1 in all cases. Re-
garding the MMS values, the 95% quantile values of MMS are slightly different 
only at 400N = , where IG-SIS is smaller than those of WJS-SIS and AWJS-SIS 
at 4kJ =  and 10, and WJS-SIS and AWJS-SIS are smaller than those of IG-SIS 
at 8kJ = ; and the 95% quantile values of MMS of all the three methods are in-
creasing with Jk increases. Table 5 shows the simulation results when Y is an 
unbalanced distribution: with respect to the CP and CPa values, IG-SIS is 
slightly higher than WJS-SIS and AWJS-SIS at 400N = , and 1 for all methods 
in all other cases. With regard to the MMS values, IG-SIS has a smaller MMS 
than WJS-SIS and AWJS-SIS at 400,600N =  for the 95% percentile of the 
MMS values are smaller, and at 800N = , the MMS values are the same for all 
methods. All methods perform better when the number of slices is small. 

4.2.4. Simulation 4 
The covariates are categorical and continuous, with continuous covariates 
treated the same as in Simulation 3 regarding handling. The response variables 
are set up as in Simulation 1. Set the essential variables set is  

[ ]{ }20 , 1,2, ,20D j j P j′ ′= = =  . Generating the latent variables  
( ),1 ,, ,i i i Pz z z=   in the same way of Simulation 3 generating covariates and 

then generating categorical and continuous covariates: 1) For 1250P ≤ , then 

ijx j′′= , if ( )( 41 4 ,ij jjz z z ′′′′−
∈  , 1,2,3,4j′′ = ; 2) For 1250 2500P< ≤ , then 

ijx j′′′= , if ( )( 101 10 ,ij jjz z z ′′′′′′−
∈  , 1, ,10j′′′ =  ; 3) For 2500 5000P< ≤ , then 

ij ijx z= . We set 5000P =  and 400,600,800N = . 

Table 6 displays the simulation results for a balanced distribution of Y. The 
CP and CPa values for AWJS-SIS and IG-SIS are the same and larger than those 
for WJS-SIS. Regarding the MMS values, the 75% and 95% quantile values of 
AWJS-SIS and IG-SIS are smaller than those of IG-SIS at N = 400 and 600; whe-
reas AWJS-SIS is smaller than IG-SIS at 400N =  and 8kJ = , and larger than 
IG-SIS at 400N =  and 4kJ =  and 10, and at 600N = , the MMS values of 
AWJS-SIS and IG-SIS have the same MMS value; at 800N = , all methods have 
the same MMS value. Table 7 shows the simulation results when Y is an unba-
lanced distribution: At 800N = , all methods have the same performance index 
value. At 400N = , AWJS-SIS and IG-SIS are both larger than WJS-SIS, with 
AWJS-SIS being somewhat smaller than IG-SIS. At 600N = , all methods are 
equal in terms of the CP and CPa values. All methods perform better when the 
number of slices is large. 

4.3. Computational Time Cost 

We obtained the median running time of each algorithm through a simulation 
experiment, where the covariates X and the set of significant variables were set  
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Table 5. Results for simulation 3: unbalanced Y. 

Method 
CP CPa MMS 

CP1 CP2 CPa1 CPa2 5% 25% 50% 75% 95% 

unbalanced Y, P = 5000, N = 400 

WJS-SIS-4 0.999 (0.001) 1 (0) 0.99 (0.01) 1 (0) 1.45 3.25 5.5 7.75 9.988 

AWJS-SIS-4 0.999 (0.001) 1 (0) 0.99 (0.01) 1 (0) 1.45 3.25 5.5 7.75 9.988 

IG-SIS-4 1 (0) 1 (0) 1 (0.01) 1 (0) 1.45 3.25 5.5 7.75 9.621 

WJS-SIS-8 0.998 (0.001) 0.999 (0.001) 0.98 (0.014) 0.99 (0.01) 1.45 3.25 5.5 7.768 12.719 

AWJS-SIS-8 0.998 (0.001) 0.999 (0.001) 0.98 (0.014) 0.99 (0.01) 1.45 3.25 5.5 7.768 12.719 

IG-SIS-8 0.999 (0.001) 0.999 (0.001) 0.99 (0.01) 0.99 (0.01) 1.45 3.25 5.5 7.758 10.83 

WJS-SIS-10 0.997 (0.002) 0.999 (0.001) 0.97 (0.017) 0.99 (0.01) 1.45 3.25 5.5 7.765 20.692 

AWJS-SIS-10 0.997 (0.002) 0.999 (0.001) 0.97 (0.017) 0.99 (0.01) 1.45 3.25 5.5 7.765 20.692 

IG-SIS-10 0.999 (0.001) 0.999 (0.001) 0.99 (0.01) 0.99 (0.01) 1.45 3.25 5.5 7.75 14.867 

unbalanced Y, P = 5000, N = 600 

WJS-SIS-4 1 (0) 1 (0) 1 (0) 1 (0) 1.45 3.25 5.5 7.75 9.55 

AWJS-SIS-4 1 (0) 1 (0) 1 (0) 1 (0) 1.45 3.25 5.5 7.75 9.55 

IG-SIS-4 1 (0) 1 (0) 1 (0) 1 (0) 1.45 3.25 5.5 7.75 9.55 

WJS-SIS-8 1 (0) 1 (0) 1 (0) 1 (0) 1.45 3.25 5.5 7.75 9.561 

AWJS-SIS-8 1 (0) 1 (0) 1 (0) 1 (0) 1.45 3.25 5.5 7.75 9.561 

IG-SIS-8 1 (0) 1 (0) 1 (0) 1 (0) 1.45 3.25 5.5 7.75 9.55 

WJS-SIS-10 1 (0) 1 (0) 1 (0) 1 (0) 1.45 3.25 5.5 7.75 9.572 

AWJS-SIS-10 1 (0) 1 (0) 1 (0) 1 (0) 1.45 3.25 5.5 7.75 9.572 

IG-SIS-10 1 (0) 1 (0) 1 (0) 1 (0) 1.45 3.25 5.5 7.75 9.55 

unbalanced Y, P = 5000,N = 800 

WJS-SIS-4 1 (0) 1 (0) 1 (0) 1 (0) 1.45 3.25 5.5 7.75 9.55 

AWJS-SIS-4 1 (0) 1 (0) 1 (0) 1 (0) 1.45 3.25 5.5 7.75 9.55 

IG-SIS-4 1 (0) 1 (0) 1 (0) 1 (0) 1.45 3.25 5.5 7.75 9.55 

WJS-SIS-8 1 (0) 1 (0) 1 (0) 1 (0) 1.45 3.25 5.5 7.75 9.55 

AWJS-SIS-8 1 (0) 1 (0) 1 (0) 1 (0) 1.45 3.25 5.5 7.75 9.55 

IG-SIS-8 1 (0) 1 (0) 1 (0) 1 (0) 1.45 3.25 5.5 7.75 9.55 

WJS-SIS-10 1 (0) 1 (0) 1 (0) 1 (0) 1.45 3.25 5.5 7.75 9.55 

AWJS-SIS-10 1 (0) 1 (0) 1 (0) 1 (0) 1.45 3.25 5.5 7.75 9.55 

IG-SIS-10 1 (0) 1 (0) 1 (0) 1 (0) 1.45 3.25 5.5 7.75 9.55 

The numbers in parentheses are the corresponding standard deviations. 
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Table 6. Results for simulation 4: balanced Y. 

Method 
CP CPa MMS 

CP1 CP2 CPa1 CPa2 5% 25% 50% 75% 95% 

balanced Y, P = 5000, N = 400 

WJS-SIS-4 0.998 (0.001) 1 (0.001) 0.95 (0.022) 0.99 (0.01) 1.95 5.75 10.5 15.265 20.807 

AWJS-SIS-4 1 (0.001) 1 (0) 0.99 (0.01) 1 1.95 (0) 5.75 10.5 15.25 19.134 

IG-SIS-4 1 (0.001) 1 (0) 0.99 (0.01) 1 1.95 (0) 5.75 10.5 15.25 19.141 

WJS-SIS-8 0.998 (0.001) 0.999 (0.001) 0.95 (0.002) 0.98 (0.014) 1.95 5.75 10.5 15.252 19.952 

AWJS-SIS-8 1 (0.001) 1 (0) 0.99 (0.01) 1 (0) 1.95 5.75 10.5 15.25 19.214 

IG-SIS-8 1 (0.001) 1 (0) 0.99 (0.01) 1 (0) 1.95 5.75 10.5 15.25 19.218 

WJS-SIS-10 0.994 (0.002) 0.998 (0.001) 0.88 (0.033) 0.95 (0.022) 1.95 5.75 10.5 15.252 21.329 

AWJS-SIS-10 0.999 (0.001) 1 (0.001) 0.98 (0.014) 0.99 (0.01) 1.95 5.75 10.5 15.25 19.299 

IG-SIS-10 0.999 (0.001) 1 (0.001) 0.98 (0.014) 0.99 (0.01) 1.95 5.75 10.5 15.25 19.298 

balanced Y, P = 5000, N = 600 

WJS-SIS-4 1 (0) 1 (0) 1 (0) 1 (0) 1.95 5.75 10.5 15.25 19.087 

AWJS-SIS-4 1 (0) 1 (0) 1 (0) 1 (0) 1.95 5.75 10.5 15.25 19.05 

IG-SIS-4 1 (0) 1 (0) 1 (0) 1 (0) 1.95 5.75 10.5 15.25 19.05 

WJS-SIS-8 1 (0.001) 1 (0) 0.99 (0.01) 1 (0) 1.95 5.75 10.5 15.25 19.097 

AWJS-SIS-8 1 (0) 1 (0) 1 (0) 1 (0) 1.95 5.75 10.5 15.25 19.05 

IG-SIS-8 1 (0) 1 (0) 1 (0) 1 (0) 1.95 5.75 10.5 15.25 19.05 

WJS-SIS-10 1 (0.001) 1 (0.001) 0.99 (0.01) 0.99 (0.01) 1.95 5.75 10.5 15.25 19.146 

AWJS-SIS-10 1 (0) 1 (0) 1 (0) 1 (0) 1.95 5.75 10.5 15.25 19.05 

IG-SIS-10 1 (0) 1 (0) 1 (0) 1 (0) 1.95 5.75 10.5 15.25 19.05 

balanced Y, P = 5000, N = 800 

WJS-SIS-4 1 (0) 1 (0) 1 (0) 1 (0) 1.95 5.75 10.5 15.25 19.05 

AWJS-SIS-4 1 (0) 1 (0) 1 (0) 1 (0) 1.95 5.75 10.5 15.25 19.05 

IG-SIS-4 1 (0) 1 (0) 1 (0) 1 (0) 1.95 5.75 10.5 15.25 19.05 

WJS-SIS-8 1 (0) 1 (0) 1 (0) 1 (0) 1.95 5.75 10.5 15.25 19.05 

AWJS-SIS-8 1 (0) 1 (0) 1 (0) 1 (0) 1.95 5.75 10.5 15.25 19.05 

IG-SIS-8 1 (0) 1 (0) 1 (0) 1 (0) 1.95 5.75 10.5 15.25 19.05 

WJS-SIS-10 1 (0) 1 (0) 1 (0) 1 (0) 1.95 5.75 10.5 15.25 19.05 

AWJS-SIS-10 1 (0) 1 (0) 1 (0) 1 (0) 1.95 5.75 10.5 15.25 19.05 

IG-SIS-10 1 (0) 1 (0) 1 (0) 1 (0) 1.95 5.75 10.5 15.25 19.05 

The numbers in parentheses are the corresponding standard deviations. 
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Table 7. Results for simulation 4: unbalanced Y. 

Method 
CP CPa MMS 

CP1 CP2 CPa1 CPa2 5% 25% 50% 75% 95% 

unbalanced Y, P = 5000, N = 400 

WJS-SIS-4 0.991 (0.002) 0.997 (0.001) 0.83 (0.038) 0.94 (0.024) 1.95 5.75 10.5 15.345 25.135 

AWJS-SIS-4 1 (0) 1 (0) 1 (0) 1 (0) 1.95 5.75 10.5 15.25 19.302 

IG-SIS-4 1 (0) 1 (0) 1 (0) 1 (0) 1.95 5.75 10.5 15.25 19.096 

WJS-SIS-8 0.996 (0.001) 0.998 (0.001) 0.91 (0.029) 0.97 (0.017) 1.95 5.75 10.5 15.255 21.4 

AWJS-SIS-8 1 (0.001) 1 (0) 0.99 (0.01) 1 (0) 1.95 5.75 10.5 15.25 19.529 

IG-SIS-8 1 (0) 1 (0) 1 (0) 1 (0) 1.95 5.75 10.5 15.25 19.129 

WJS-SIS-10 0.989 (0.002) 0.995 (0.002) 0.79 (0.041) 0.9 (0.03) 1.95 5.75 10.5 15.275 24.033 

AWJS-SIS-10 0.998 (0.001) 1 (0) 0.97 (0.017) 1 (0) 1.95 5.75 10.5 15.25 19.767 

IG-SIS-10 1 (0) 1 (0) 1 (0) 1 (0) 1.95 5.75 10.5 15.25 19.15 

unbalanced Y, P = 5000, N = 600 

WJS-SIS-4 1 (0) 1 (0) 1 (0) 1 (0) 1.95 5.75 10.5 15.25 19.084 

AWJS-SIS-4 1 (0) 1 (0) 1 (0) 1 (0) 1.95 5.75 10.5 15.25 19.055 

IG-SIS-4 1 (0) 1 (0) 1 (0) 1 (0) 1.95 5.75 10.5 15.25 19.05 

WJS-SIS-8 1 (0) 1 (0) 1 (0) 1 (0) 1.95 5.75 10.5 15.25 19.074 

AWJS-SIS-8 1 (0) 1 (0) 1 (0) 1 (0) 1.95 5.75 10.5 15.25 19.056 

IG-SIS-8 1 (0) 1 (0) 1 (0) 1 (0) 1.95 5.75 10.5 15.25 19.051 

WJS-SIS-10 1 (0) 1 (0) 1 (0) 1 (0) 1.95 5.75 10.5 15.25 19.121 

AWJS-SIS-10 1 (0) 1 (0) 1 (0) 1 (0) 1.95 5.75 10.5 15.25 19.056 

IG-SIS-10 1 (0) 1 (0) 1 (0) 1 (0) 1.95 5.75 10.5 15.25 19.051 

unbalanced Y, P = 5000, N = 800 

WJS-SIS-4 1 (0) 1 (0) 1 (0) 1 (0) 1.95 5.75 10.5 15.25 19.05 

AWJS-SIS-4 1 (0) 1 (0) 1 (0) 1 (0) 1.95 5.75 10.5 15.25 19.05 

IG-SIS-4 1 (0) 1 (0) 1 (0) 1 (0) 1.95 5.75 10.5 15.25 19.05 

WJS-SIS-8 1 (0) 1 (0) 1 (0) 1 (0) 1.95 5.75 10.5 15.25 19.05 

AWJS-SIS-8 1 (0) 1 (0) 1 (0) 1 (0) 1.95 5.75 10.5 15.25 19.05 

IG-SIS-8 1 (0) 1 (0) 1 (0) 1 (0) 1.95 5.75 10.5 15.25 19.05 

WJS-SIS-10 1 (0) 1 (0) 1 (0) 1 (0) 1.95 5.75 10.5 15.25 19.05 

AWJS-SIS-10 1 (0) 1 (0) 1 (0) 1 (0) 1.95 5.75 10.5 15.25 19.05 

IG-SIS-10 1 (0) 1 (0) 1 (0) 1 (0) 1.95 5.75 10.5 15.25 19.05 

The numbers in parentheses are the corresponding standard deviations. 

https://doi.org/10.4236/ojs.2023.136042


Q. Q. Jiang, G. M. Deng 
 

 

DOI: 10.4236/ojs.2023.136042 839 Open Journal of Statistics 
 

Table 8. The results of computational time cost. 

P 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000 

WJS-SIS 
1.408 

(0.003) 
2.809 

(0.007) 
4.212 

(0.005) 
5.632 

(0.015) 
6.915 

(0.010) 
8.287 

(0.006) 
9.686 

(0.007) 
11.095 
(0.008) 

12.544 
(0.009) 

13.929 
(0.008) 

AWJS-SIS 
1.464 

(0.004) 
2.925 

(0.004) 
4.380 

(0.005) 
5.861 

(0.014) 
7.196 

(0.010) 
8.618 

(0.006) 
10.083 
(0.006) 

11.559 
(0.008) 

13.021 
(0.006) 

14.490 
(0.007) 

IG-SIS 
1.692 

(0.010) 
3.382 
(0.005 

5.069 
(0.005) 

6.774 
(0.014) 

8.298 
(0.011) 

9.945 
(0.006) 

11.633 
(0.007) 

13.323 
(0.009) 

15.047 
(0.007) 

16.705 
(0.007) 

The numbers in parentheses are the corresponding standard deviations. 
 

up as in simulation experiment 2, and Y was set up as a balanced distribution. 
The experiment was set up with 400N = , 1000,2000, ,10000P =  , and re-
peat the experiment 100 times. An Intel Core i7-8700 machine running Win-
dows 10 at 3.20 GHz was used for all calculations. Table 8 shows the median 
runtime for the three methods, which increases as P increases and is consistently 
faster to compute for WJS-SIS and AWJS-SIS than for IG-SIS. 

4.4. Comprehensive Analysis of Simulation Results 

The main argument is that, in terms of performance, the approaches of WJS-SIS 
and AWJS-SIS in this study are extremely comparable to IG-SIS. There is a dif-
ference in performance between the approaches when the sample size is small, 
and the performance of WJS-SIS is more affected by the slices than that of 
AWJ-SIS and IG-SIS, which are more robust and whose performance is more 
adaptive to the number of slices. But all methods perform as well as they do as 
the number of variables screened increases or as the sample size increases, and 
all are able to screen out all the important variables, and the true model size is 
close to the number of important variables. In terms of computing time, IG-SIS 
is longer than WJS-SIS and AWJS-SIS. 

5. Experimental Study with Real Data 

In real life, ultra-high-dimensional data with multi-class response variables is 
common, and feature screening of such data can achieve the effects of data di-
mensionality reduction, feature mining, and variable selection. The methods 
proposed in this paper can be applied in different fields and can improve the ef-
ficiency and accuracy of data analysis, reveal the information behind the data, 
and help in the construction of decision-making and prediction models. For 
example, in the medical field, it can be applied to analyze gene expression data 
and help identify genes associated with diseases. In the financial field, it can help 
identify key factors that affect stock or commodity prices. In image processing, it 
can be used for tasks such as feature extraction and target recognition. In prac-
tical implementation, based on Fan and Lv [2], the number of important va-
riables is generally selected as the first [ ]lognd N N= γ . In this paper, we ana-
lyze the case when 1,2γ = . 
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We analyzed the TOX-171 micro-integrated columns biological dataset from 
the Arizona State University feature selection database  
(http://featureselection.asu.edu/) with 171 samples and 5748 features, with four 
classes of response variables and roughly unbalanced distributions, with cova-
riates of continuous type. We randomly divide the dataset in a 7:3 ratio, where 
70% of the data is used as the training dataset and the remaining 30% as the test 
dataset. As randomly dividing datasets may bring the potential problem of mod-
el prediction accuracy degradation, to address this problem, we used ten-fold 
cross-validation to train the model and repeated the experiment 100 times to 
take the average of the evaluation indexes and calculate the standard deviation of 
the evaluation indexes. The smaller the standard deviation, the more stable it is, 
which means that the average of the evaluation indexes is desirable. On the 
training and test sets, respectively, variables screened using the three methods 
were tested for categorization using a support vector machine, and the values of 
the geometric mean (G-mean) for categorization accuracy (CA), specificity 
(SPE), and sensitivity (SEN) were calculated. 

Table 9 and Table 10 show the corresponding index values when the number 
of selected variables is [ ]logN N  and [ ]2 logN N , respectively. Combining 
Table 9 and Table 10, it can be seen that in both the training and test sets, all 
methods perform better when Jk is relatively large, and the CA and G-mean val-
ues of AWJS-SIS are always higher than those of WJS-SIS, and the CA and 
G-mean values of AWJS-SIS are higher than those of IG-SIS at Jk = 8. As well, 
the classification of the method is better as the screening variables increase. 

6. Conclusion 

In this paper, from the perspective of introducing JS (Jensen-Shannon) diver-
gence to measure the importance of covariates, for the case where Y is mul-
ti-classified, this paper constructs model-free ultra-high-dimensional feature  

 
Table 9. The result when screening the first [ ]logN N  variables. 

Method test data_CA test data_Gmean train data_CA train data_Gmean 

WJS-SIS-4 0.761 (0.009) 0.682 (0.014) 0.994 (0.001) 0.995 (0.001) 

AWJS-SIS-4 0.769 (0.008) 0.72 (0.011) 0.994 (0.001) 0.995 (0.001) 

IG-SIS-4 0.772 (0.008) 0.716 (0.014) 0.999 (0.001) 0.999 (0) 

WJS-SIS-8 0.809 (0.008) 0.721 (0.016) 1 (0) 1 (0) 

AWJS-SIS-8 0.821 (0.008) 0.738 (0.013) 1 (0) 1 (0) 

IG-SIS-8 0.805 (0.007) 0.684 (0.015) 1 (0) 1 (0) 

WJS-SIS-10 0.854 (0.007) 0.726 (0.019) 1 (0) 1 (0) 

AWJS-SIS-10 0.872 (0.006) 0.782 (0.015) 1 (0) 1 (0) 

IG-SIS-10 0.877 (0.006) 0.809 (0.015) 1 (0) 1 (0) 

The numbers in parentheses are the corresponding standard deviations. 
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Table 10. The result when screening the first [ ]2 logN N  variables. 

Method test data_CA test data_Gmean train data_CA train data_Gmean 

WJS-SIS-4 0.857 (0.008) 0.832 (0.009) 1 (0) 1 (0) 

AWJS-SIS-4 0.857 (0.008) 0.832 (0.009) 1 (0) 1 (0) 

IG-SIS-4 0.849 (0.007) 0.823 (0.009) 1 (0) 1 (0) 

WJS-SIS-8 0.84 (0.007) 0.782 (0.011) 1 (0) 1 (0) 

AWJS-SIS-8 0.84 (0.007) 0.782 (0.011) 1 (0) 1 (0) 

IG-SIS-8 0.823 (0.006) 0.739 (0.012) 1 (0) 1 (0) 

WJS-SIS-10 0.909 (0.006) 0.839 (0.012) 1 (0) 1 (0) 

AWJS-SIS-10 0.914 (0.006) 0.844 (0.012) 1 (0) 1 (0) 

IG-SIS-10 0.929 (0.005) 0.872 (0.01) 1 (0) 1 (0) 

The numbers in parentheses are the corresponding standard deviations. 
 

screening methods for multi-classified response data based on weighted JS di-
vergence under different scenarios, using the WJS-SIS method when the number 
of categories in each covariate is the same and the AWJS-SIS method with ad-
justed weighted JS divergence when the number of categories in each covariate is 
different. Theoretically, both WJS-SIS and AWJS-SIS have sure screening prop-
erties and ranking consistency. Then, from the Monte Carlo simulation results 
and experiments with real data, WJS-SIS and AWJS-SIS have a significant effect 
on feature screening, and the performance is very similar to that of IG-SIS, but 
WJS-SIS is a little bit weaker in terms of robustness, whereas AWJ-SIS and 
IG-SIS are robust a little stronger, and both WJS-SIS and AWJS-SIS are faster 
than IG-SIS in terms of computation time. Finally, the approaches proposed in 
this paper utilize the Jensen-Shannon divergence to measure the importance of 
covariates from the perspective of information quantity, which is different from 
the traditional statistical indicators, which may provide a reference for metho-
dological research in the field of multi-class variable screening for ultra-high- 
dimensional data. And the methods proposed in this work only take into con-
sideration the correlation between the response variable and the covariates; they 
do not account for the presence of a high covariate correlation. Therefore, in fu-
ture studies for ultra-high-dimensional variable screening, the element of cova-
riate correlation will be incorporated. 
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Appendix 

The following four lemmas are initially introduced in order to demonstrate 
Theorem 3.1. 

Lemma 1. Suppose there are mutually independent random variables 

1 2, , , Nx x x  with sample size N and [ ]( )Pr , 1,1i i ix a b i N∈ = ≤ ≤ , where ,i ia b  
are constants. If we assume that 11 N

iix N x
=

= ∑ , then there has a constant t for 
which the inequality holds: 

( )( ) ( )22

1
Pr 2exp 2 .

N

i i
i

x E x t Nt b a
=

 − ≥ ≤ − − 
 

∑  

In [15], Lemma 1’s proof is presented. 
Lemma 2. Suppose there are two bounded random variables a and b, and 

there have two positive constants 1 2,M M  such that 1 2,a M b M≤ ≤ . The es-
timates corresponding to ,a b  can be computed as ˆ ˆ,A B , given a sample size of 
n. Suppose that for ( )0,1ε∀ ∈ , there have constants 1 20, 0c c> >  and 0s >  
such that: 

( ) 1
1

ˆPr 1
N

sA a c
c

 
− ≥ ≤ − 

 

εε  

( ) 2
2

ˆPr 1
N

sB b c
c

 
− ≥ ≤ − 

 

εε  

then, there exist 

( ) 1
1

ˆ ˆPr 1
N

sAB ab C
C

 
− ≥ ≤ − 

 

εε  

( )2 2
2

2

ˆPr 1
N

sA a C
C

 
− ≥ ≤ − 

 

εε  

( ) ( )( ) 3
3

ˆ ˆPr 1
N

sA a B b C
C

 
− − − ≥ ≤ − 

 

εε  

Where, { }1 1 2 1 2 2 1 2 2max 2 , 2 2 ,2C c c c c c M c M= + + + ,  
{ }2 1 1 1 2 2max 3 2 ,2C c c M c M= + , { }3 1 2 1 2max 2 ,2 ,C c c c c= + . 

Besides, assuming that b is bounded and non-zero, and that there has 

3 0M >  such that 3b M≥ , then there exist 

4
4

ˆ ˆ
Pr 1 ,ˆ ˆ

N
A a sC

CB b

   
− ≥ ≤ −       

εε  

where, ( ){ }4 1 2 5 2 4 2 1 2 4max , , 2C c c c c M c M M M= + + , 5 0c >  and 4 0M > . 
In [10], Lemma 2’s proof is presented. 
Lemma 3. If the covariates are categorical, we can get that 0je ≥ . And  

0je =  only when ( ) ( )Pr | Prj jl Y r l= = = =x x , Y and jx  are independent. 
In [16], Lemma 3’s proof is presented. 
Lemma 4. If the covariates are continuous, there is 0je ≥ , when Y and jx  
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are independent, 0je = . 
Lemma 4’s proof is omitted here because it is similar to Proposition 2.2’s 

proof in [11]. 
Theorem 3.1 proof: 

Let ( )Pr |jU l Y r= = =x , ( )Pr jV l= =x , ( )1
2

M U V= +  then 

( ) ( )

( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )( ) ( ) ( )( )( )

1

1 1 1

1 1 1

1 1

1

Pr

1 1Pr log log
2 2

1 Pr log log
2

log log

1 Pr , ,
2

R

j
r

R P P

r j j

R P P

r j j

P P

j j

R

r

e Y r JS U V

U VY r U V
M M

Y r U U U M

V V V M

Y r H U M H U H V M H V

=

= = =

= = =

= =

=

= =

    = = +    
    


= = −




+ − 


= = − + −

∑

∑ ∑ ∑

∑ ∑ ∑

∑ ∑

∑



 
The definitions of je  and ˆ je  state that there are 

( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( )
1

1

1ˆ Pr , ,
2

ˆ ˆ ˆ ˆ ˆPr , ,

R

j j
r

R

r

e e Y r H U M H U H V M H V

Y r H U M H U H V M H V

=

=

 − = = − + − 
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and 
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To prove that 1jE  Part at first: 
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By estimating the probability with the sample frequency, we have 

( ) ( ) ( ) ( )
1 1
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N N

j ij i i
i i

p l Y r I x l I y r I y r
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= = = = = =∑ ∑x  
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=
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∑
x  

( ) { }( )j ijp l p I x l= = =x
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N
=

=
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Thus, there is 
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: Pr ;
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∑
∑

ε

ε

ε
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furthermore, it follows from Lemma 1 and Lemma 2 that since nS , nT  are es-
timates of ns , nt : 

( ) { }2
2 2Pr 2exp 2 ,n nS s N− > ≥ −ε ε  

( ) { }2
2 2Pr 2exp 2 .n nT t N− > ≥ −ε ε  

So, ( ) ( )ˆ | |
P

j jp l Y r p l Y r= = → = =x x : 

( ) ( )( ) { }2
1 1ˆPr | | 2exp 2 .j jp l Y r p l Y r N= = − = = > ≤ −ε εx x  

Additionally, may be proved that  

( )( ) ( )( )ˆlog | 1 log | 1
P

j jp l Y p l Y= = → = =x x . Assume ( )*ˆ ˆ | 1jp p l Y= = =x , 

( )* | 1jp p l Y= = =x : 
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Then, ( )( ) ( )( )ˆlog | 1 log | 1
P

j jp l Y p l Y= = → = =x x . 

We can obtain that  
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( ) ( ) ( ) ( )ˆ ˆ| |
log log

2 2

Pj j j jp l Y r p l p l Y r p l   = = + = = = + =
   →
   
   

x x x x
 in a  

proof similar to this one. 
So, we can get { }2 2 2

1 2 exp 2 9jE RL N R L≤ − ε . Similarly, it can be shown that 

2jE , 3jE , and 4jE  are all { }2 2 22 exp 2 9RL N R L≤ − ε . 
For the 5jE  part: 
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R

r
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=

 = − = > ≤ − 
 
∑ ε ε  

Prove the 5jE  Part: 
According to Lemma 1 and Lemma 2, it can also be shown that ( )p̂ Y r=  

converges to ( )p Y r=  with probability, then 
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∑

∑
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For 40 1ε< < , thus, there is 

( ) { } { }2 2 2 2 2
4 4 4ˆPr 8 exp 2 9 4 exp 2 9 .j je e RL N R L R N R− > ≤ − + −ε ε ε    (8) 

In the (C1) - (C3) condition, there exists 0c >  and 0C >  with 
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then, 

( )
( )

{ }

1 1

1 2

ˆ ˆPr max Pr

ˆPr

12 exp .

P

j j j jj P j

j j

e e cN e e cN

P e e cN

PRL CN

τ τ

τ

τ

− −

≤ ≤ =

−

−

 
− > ≤ − > 

 

≤ − >

≤ −



          (10) 

when N →∞  and 0 1 2a τ< < − , there has 

( )1
ˆPr max 0.j jj P

e e cN τ−
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https://doi.org/10.4236/ojs.2023.136042


Q. Q. Jiang, G. M. Deng 
 

 

DOI: 10.4236/ojs.2023.136042 848 Open Journal of Statistics 
 

so, ( )ˆPr 1D D⊆ → , with N →∞ . 
Therefore, in the conditions (C1) - (C3), Theorem 0.1 sure screening property 

holds. 
Theorem 0.2 proof: 
Because of min max 0

cj jj D j D
e e

∈ ∈
− > , there has 0δ >  such that  

min max
cj jj D j D

e e δ
∈ ∈

− = , and after that, there have 

ˆ ˆ ˆ ˆPr min max Pr min max max max

ˆ ˆPr min min max max

ˆ ˆPr min min max max
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δ
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From Fatou’s Lemma we can get 

ˆ ˆPr lim inf min max 0

ˆ ˆlim Pr min max 0

0.

c

c

j jn j D j D

j jn j D j D

e e

e e

→∞ ∈ ∈
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  − ≤  
  

  ≤ − ≤  
  

=  
Thus, 

ˆ ˆPr lim inf min max 0 1.
cj jN j D j D

e e
→∞ ∈ ∈

  − ≤ =  
  

              (12) 

Therefore, Theorem 3.2 holds. 
Theorem 3.3 proof: 
Assume that ( )ˆ |kF x y  is ( ),kX Y ’s empirical cumulative distribution func-

tion and that ( )|kF x y  is the cumulative distribution function of ( ),kX Y . 
And let ( )kF x  be the cumulative distribution function of kx , and  

( ) ( )k kF x x f x∂ ∂ = . Then, using LEMMA.A.2 in [11] as evidence, we can simi-
larly demonstrate that, for 5 6, 0,1 ,1 kr R j Jε ε∀ > ≤ ≤ ≤ ≤ , given the conditions 
(C4) and (C5), there are 

( )( ) ( )( )( ) { }1 2 2
5 6 7 5, ,

ˆ ˆPr | | exp ,k kk j k jF q r F q r c c N −− > ≤ − ρε ε  

( )( ) ( )( )( ) { }1 2 2
6 6 9 6, ,

ˆ ˆPr expk kk j k jF q F q c c N −− > ≤ − ρε ε  

where 6 83c c=  and { }2 2
7 4 3min ,1 22c c c= , { }2 2

9 4 5min ,1 22c c c=  are posi-
tive constants. 

So, ( )( ) ( )( ), ,
ˆ ˆ | |

P

k kk j k jF q r F q r→  and ( )( ) ( )( ), ,
ˆ ˆ

P

k kk j k jF q F q→ , respectively. 
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Then, for 70 1ε< < , there has 
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1 2 2 1 2 2

7 7 9 7
7 6 62 2 2 2
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9 9k k k k

k k

c N c Ne e c RJ c RJ
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− > ≤ +   

   

ρ ρε ε
ε  (13) 

Equation (13) will not be proven here because it is similar to the proof of Eq-
uation (8). 

There are constants 10c  and 1C  under condition (C6) such that 
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ρ τ
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ρ τ

        (14) 

then, 
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6 exp ,

P

k k k kj P j
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k
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P e e c N
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τ τ

τ

ρ τ

        (15) 

with N →∞ , there are 

( )101
ˆPr max 0k kk P

e e c N −

≤ ≤
− > →τ  

( ) ( )
( )

( )
{ }

10

10

0 10

1 2 2
6 0 1

ˆ ˆPr Pr ,

ˆPr max

ˆ1 Pr

1 6 exp .

k k

k kk D

k k

k

D D e e c N k D
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−

−

∈

−

− −

⊆ ≥ − > ∀ ∈
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≥ − −

τ

τ

τ

ρ τ

            (16) 

So, ( )ˆPr 1D D⊆ → , N →∞ , Theorem 0.3 holds. 
Therefore, a proof similar to that of Equation (12), we have: 

( ){ }ˆ ˆPr lim inf min max 0 1.
ck kN k D k D

e e
→∞ ∈ ∈

− ≤ =                (17) 

So, Theorem 3.4 holds. 
Thus, based on Equations ((10), (11), (15), (16)), and the proof of Theorem 

3.5 and Theorem 3.6 are similar to that of Theorem 3.1 and Theorem 3.2, so they 
will not be proved in detail. 
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