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Abstract 
With the rapid development of DNA technologies, high throughput genomic 
data have become a powerful leverage to locate desirable genetic loci asso-
ciated with traits of importance in various crop species. However, current ge-
netic association mapping analyses are focused on identifying individual QTLs. 
This study aimed to identify a set of QTLs or genetic markers, which can 
capture genetic variability for marker-assisted selection. Selecting a set with k 
loci that can maximize genetic variation out of high throughput genomic data 
is a challenging issue. In this study, we proposed an adaptive sequential re-
placement (ASR) method, which is considered a variant of the sequential re-
placement (SR) method. Through Monte Carlo simulation and comparing with 
four other selection methods: exhaustive, SR method, forward, and backward 
methods we found that the ASR method sustains consistent and repeatable 
results comparable to the exhaustive method with much reduced computa-
tional intensity. 
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1. Introduction 

With the rapid development of DNA technologies, high throughput genomic 
data has been becoming a powerful leverage to locate desirable genetic loci asso-
ciated with traits of importance in various crop species. It is well known that 
many quantitative traits like crop yield, plant height, and seed quality are con-
trolled by many individual quantitative trait loci (QTLs) with minor effects and 
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possible interactions with environmental conditions. Current genetic association 
mapping is focused on identifying individual QTLs. Therefore, it is crucial to 
identify a set of QTLs, which can capture sufficient genetic variability for mark-
er-assisted selection. Selecting a set of loci that can maximize genetic variation 
out of high throughput genomic data is desired but still computationally chal-
lenging.  

Simple interval or composite interval mapping were commonly used to iden-
tify QTLs for controlled mapping populations (like F2, RI, or DH) when linkage 
maps are available [1]-[7]. These methods aim to identify each individual QTLs 
with integrations of linear regression and expected maximum (EM) algorithm 
when a linkage map is available [4] [7]. When a linkage map is constructed from 
high throughput genomic data, the distance of two flanking marker loci is often 
less than 2 centimorgan (cM), a window size commonly used by interval map-
ping may not be required. Genome-wide association studies (GWAS), on the 
other hand, have been focused on identifying individual genetic loci attributing 
phenotypic variation for an uncontrolled/random mapping population with and 
without population structure [8] [9].  

Due to the potential of linked or interactive QTLs, the total amount of herita-
bility of a set of QTLs is sometimes not the cumulation of the heritability of each 
identified individual QTLs. Therefore, it is important to select a set of loci that 
can catch the maximum genetic variation for a trait of interest. Such a process 
becomes the variable selection process in multiple linear regression, which aims 
to select the best subset of k variables out of the total p candidate independent 
variables. Given p genetic markers/loci, there are (2p − 1) all possible linear 
models to be examined. There is no doubt that the all-possible regression ap-
proach (sometimes called exhaustive method, which would be used throughout 
this study for consistency) is best because it examines every possible model [10]. 
However, a serious challenge associated with the exhaustive method is that the 
number of all-possible models could be very large even for a small number of 
independent variables [11]. Because of the high computational demand asso-
ciated with the exhaustive method, heuristic methods are more frequently used 
for variable selection in linear regression analysis. They include forward selec-
tion (FS), backward elimination (BE), and stepwise selection (SS) [12] [13], which 
are currently available in several popularly used computer tools in R like MASS, 
leaps, and olsrr [14] [15] [16]. Although these variable selection procedures are 
very popular in the literature, a considerable number of limitations have also 
been identified due to the collinearity and/or interactions among predictable va-
riables [17] [18] [19] [20]. For example, an excellent model could be overlooked 
by these selection methods because of the restriction of adding/deleting only one 
variable at each time and thus these procedures may not always yield the optimal 
regression model [18] [19]. Such findings were reported in Chapter 3 in the book 
of “Subset Selection in Regression Analysis, 2nd Edition” (Miller, 2002). 

The number of variables being significantly selected by many variable selec-
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tion methods could be large. Mathematically, it is desired to predict a response 
variable using more significant contributing variables. Sometimes, however, a 
plant breeder may be interested in identifying only four or five genetic markers 
rather than all contributing markers for a marker-assisted selection (MAS) prac-
tice. Therefore, selecting k variables (where k is given like 4 or 5), which aims to 
seek the smallest residual sum of squares (RSS) or the largest coefficient of de-
termination (R2), could be another desirable option for a breeding practice. This 
procedure will require a total of k

pC  equations to be examined to identify the 
best k-variable model if exhaustive method is applied. For example, a global 
search of the best subset of five (k = 5) variables out of 100 (p = 100) will need to 
examine over 75 million models.  

In order to avoid the high computational demand associated with the exhaus-
tive method, many scientists developed other alternative variable selection me-
thods to improve the possibility to search the best subset for a given size of k va-
riables [21] [22] [23] [24] [25]. Among these, a sequential replacement (SR) al-
gorithm was proposed to improve variable selection with much reduced compu-
tational intensity [11] [18] [26] [27] [28] and the SR method is available in a 
popularly used R package (leaps) [14]; however, we discovered that the SR me-
thod could sometimes yield some inconsistent or undesired results, as demon-
strated in this study. Therefore, it is important to improve the SR method so that 
both the power and speed can be sustained to achieve an optimal k-variable 
model selection. 

In this study, our first objective was to propose an adaptive sequential re-
placement (ASR) method to improve the likelihood to achieve the best-fitting 
model with much reduced computational intensity. As detailed in Methodolo-
gies, we integrated stochasticity and adaptivity with the sequential replacement 
(SR) method to avoid local optimal solutions and unnecessary computational 
time when it is evident that a best-fitting model is achieved. The power for this 
ASR method was evaluated by simulated data. Our second objective was to 
compare the results between our ASR method and four other methods (SR, ex-
haustive, forward, and backward) with two actual genetic marker data sets. The 
purpose of this study is to provide a method to improve power to capture desir-
able genetic variation from high throughput genomic data for marker assisted 
selection with reduced computational intensity. 

2. Methodologies 
2.1. The ASR Algorithm 

The SR procedure was detailed by Miller and usually converges rapidly. Unfor-
tunately, this type of replacement algorithm does not guarantee convergence 
upon the best-fitting k-variable model [18]. In this study, we proposed the ASR 
algorithm to avoid local optimal solutions with a criterion to determine when 
the optimal solution is achieved, and the criterion used throughout this study is 
adjusted coefficient of determination, 2

AR  (or r-square for simplification). The 
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ASR procedure is detailed as follows: 
Step 1: Stochasticity process. Randomly select a subset of k (k ≥ 2) variables 

out of p candidate variables and set the variable index vector as id0. Run this 
k-variable linear regression analysis and calculate the r-square value as 2

0AR . 
This step focuses on stochasticity to avoid local optimal solution. 

Step 2: Sequential replacement process. Replace the first variable in id0 with 
the remaining variables and run the k-variable linear regression analysis again 
and calculate the r-square value as 2

1AR  one by one with new variable index id1. 
If 2 2

1 0A AR R> , set 2 2
0 1A AR R=  and id0 = id1.  

Step 3: Repeat step 2 for the second variable and the remaining variables in 
id0 if k ≥ 2. Save 2

0AR  and id0. 
Step 4: Adaptivity process. Repeat steps 1 to 3 until (1) the three largest 

r-square 2
AR  are identical, (2) the difference between the first and third largest 

adjusted 2
AR  is less than a given delta Δ (e.g. 0.001), or (3) it reaches a given 

maximum iteration time (e.g. 100) if condition (1) or (2) is not met. Save the 
largest r-square 2

AR  with the corresponding variables. 
Step 5: Repeat steps 1 to 4 for N (i.e. 5 or 10) times. Record the largest r-square 
2
AR  with the corresponding variable index vector.  
Stochasticity is used in step 1 to avoid local optimal solutions. If condition (1) in 

step 4 is met, it is very likely that the optimal solution has been achieved. Step 5 will 
help increase the probability to reach the optimal if condition (1) is not met. If k is 
small less than 4 or the several candidate variables have a strong linear relationship 
with the response variable y, then the condition (1) in step 4 will be achieved ra-
pidly. Given p = 100 and k = 5 the all-possible subset regression method, the  

number of linear regressions to be assessed is 
( )

! 75287520
! !

k
p

pC
k p k

= =
−

.  

While with our method, there are only ( ) 1 476k p k∗ − + =  multiple regression 
models to be assessed from steps 1 to 3. If step 4 is repeated for 50 times and 
step 5 is repeated for 5 times, the total number will be up to 119,000, which 
could be much less (0.16%) of computational time compared to the exhaustive 
method. In addition, either step 4 or 5 can be integrated with parallel compu-
ting to increase the computational speed proportionally to achieve the optimal 
solution.  

2.2. Data Analysis 

The authors of this study intended to compare the results between this ASR me-
thod and other commonly used methods. Such an intention is prohibited due to 
a few significant factors. For example, both forward selection and backward se-
lection methods are available in several R packages but these two methods focus 
on selecting all significant rather than on k-variable model only. The exhaustive 
method is computationally prohibited for a large number of candidate variables. 
On the other hand, power and Type I error can be self-determined for a target 
method via simulation technique. Therefore, without losing focus, the authors of 
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this study emphasized on applying the ASR method to process the simulated da-
ta. While in applications, we aimed to compare the results among several me-
thods: forward, backward, exhaustive, SR, and ASR methods. All four methods 
are available in the R package: leaps [14] [15] while the ASR method was devel-
oped by the first author of this paper and will be available upon request. In this 
study, all data simulations and actual data processing were conducted under 
RStudio platform [29] [30]. 

3. Results 
3.1. Simulation Results 

In our simulation study, a total of 100 independent variables (p = 100) were used 
while five (k = 5) were related to the response variable with equal contribution. 
The regression model used for simulation is as follows, 

0 1 1 2 2 3 3 4 4 5 5i i i i i i iy b b X b X b X b X b X e= + + + + + +  

where, yi is response variable for observation i; b0 is intercept, b1 - b5 are slopes 
for variables X1 to X5, respectively. For simplicity, the intercept and all slopes 
were preset to 1. Five sets of coefficients of correlation (r = 0.00, 0.20, 0.40, 0.60, 
and 0.80) among the first 10 variables are provided in Table 1, namely S1 (r = 
0.00), S2 (r = 0.20), S3 (r = 0.40), S4 (r = 0.60), and S5 (r = 0.80). Four coeffi-
cients of determinations: R2 = 0.20, 0.40, 0.60, and 0.80, equivalent to total heri-
tability, from five variables/loci, were used. The above-mentioned parameters 
were used to generate simulated data. The mean power of five variables for each 
setting, mean adjusted coefficients of determination for selected 2

ASR  and true 
models 2

ATR  were calculated over 200 simulations. 
 
Table 1. Coefficients of correlation between five true variables (X1 - X5) and other five 
noise variables (X6 - X10). 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

X1 1.00 0.00 0.00 0.00 0.00 r 0.00 0.00 0.00 0.00 

X2 0.00 1.00 0.00 0.00 0.00 0.00 r 0.00 0.00 0.00 

X3 0.00 0.00 1.00 0.00 0.00 0.00 0.00 r 0.00 0.00 

X4 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 r 0.00 

X5 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 r 

X6 r† 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 

X7 0.00 r 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 

X8 0.00 0.00 r 0.00 0.00 0.00 0.00 1.00 0.00 0.00 

X9 0.00 0.00 0.00 r 0.00 0.00 0.00 0.00 1.00 0.00 

X10 0.00 0.00 0.00 0.00 r 0.00 0.00 0.00 0.00 1.00 

†: r = 0.00, 0.20, 0.40, 0.60, and 0.80 and S1 - S5 were named accordingly. 
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The results are summarized in Table 2 and Table 3. The mean powers for the 
target variables being selected by our ASR method were 98.2%, 98.5%, 98.2%, 
98.1%, and 96.5% for five settings S1, S2, S3, S4, and S5 when coefficient of de-
termination was low as 0.20. When the coefficient of determination was 0.40 and 
higher, mean powers for target variables being selected was 100.0%. Therefore, 
the simulation results clearly suggest that this ASR method can be used to iden-
tify the best k-variable model, which can capture the maximum of variation in a 
linear regression analysis.  

Comparing the coefficients of determination between the selected and the true 
models ( 2

ASR  vs 2
ATR ) helps us determine the efficiency of finding an optimal 

subset or better subset in linear regression analysis. The mean coefficients of de-
termination for the models selected and the true models are summarized in Ta-
ble 3. The results in Table 3 showed that mean R2 for selected models was  

 
Table 2. Mean powers of five quantitative variables being selected for five settings of cor-
relation coefficients (0.00, 0.20, 0.40, 0.60, 0.80, S1, S2, S3, S4, and S5) among the first 10 
variables and four coefficients of determination (R2 = 0.20, 0.40, 0.60, and 0.80) each 
based on 200 simulated data sets.  

Setting 
Coefficient of determination 

0.20 0.40 0.60 0.80 

S1 0.982 1.000 1.000 1.000 

S2 0.985 1.000 1.000 1.000 

S3 0.982 1.000 1.000 1.000 

S4 0.981 1.000 1.000 1.000 

S5 0.965 1.000 1.000 1.000 

 
Table 3. Mean adjusted coefficients of determination between selected models ( 2

ASR ) and 

true models ( 2
ATR ) over 200 simulations for five correlation settings (S1 - S5) with four 

different coefficients of determination (0.20, 0.40, 0.60, and 0.80). 

  R2 

  0.20 0.40 0.60 0.80 

S1 
2
ASR  0.1995 0.3995 0.6000 0.7979 
2
ATR  0.1992 0.3995 0.6000 0.7979 

S2 
2
ASR  0.2069 0.3978 0.5990 0.8014 
2
ATR  0.2065 0.3978 0.5990 0.8014 

S3 
2
ASR  0.2004 0.3976 0.5977 0.7974 
2
ATR  0.2000 0.3976 0.5977 0.7974 

S4 
2
ASR  0.2024 0.3969 0.5969 0.7991 
2
ATR  0.2022 0.3969 0.5969 0.7991 

S5 
2
ASR  0.2028 0.3955 0.5998 0.7989 
2
ATR  0.2020 0.3955 0.5998 0.7989 
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slightly higher than that for the original models when pre-set R2 was 0.20. Check-
ing individual R2, we observed that each R2 from each selected model was either 
equal to or higher than that for the true model (detailed results not provided). 
When R2 was 0.40 or higher, R2 for each selected model and that for the original 
model were identical for each simulated data set. The results in Table 3 were 
highly consist with the those in Table 2. On one hand, when R2 is small, occa-
sionally, some true variables may be replaced by noise variables, which cause a 
slightly higher R2 for that simulated data set due to Type I error. On the other 
hand, these results implied that this ASR method was able to identify a subset of 
variable with the highest R2, which is desired mathematically.  

3.2. Applications 

In our first application, we applied the ASR method to a fruit fly wing data, 
which were used for QTL analysis [31]. The total number of polymorphic DNA 
markers on chromosome 2 is 37 (p = 37) after 11 co-existing markers were de-
leted. In this application, we were able to include SR, exhaustive, forward, and 
backward selection methods into our comparisons for k = 1 to 14. The SR, ex-
haustive, forward, and backward methods are available in leaps package [14]. 
The results in Table 4 showed that R2 for both exhaustive and ASR methods 
were identical, indicating that our ASR method has improved probability to de-
termine the best k-variable/marker model. For most cases, the SR method had 
the same R2 values compared to the ASR and exhaustive methods (i.e. k = 1 - 6, 
8, 10, and 11) while the SR method had slightly lower R2 values than the ASR 
and exhaustive methods for k = 9, 12, and 13 but not for k = 7 or 14. Both back-
ward and forward selection methods had consistently and slightly lower R2 value 
compared to the ASR and exhaustive selection methods except k = 1 for the for-
ward selection method (Table 4). These two selection methods also yielded con-
stantly lower R2 values than the SR method for k ≥ 2 except k = 7 and 14. The 
backward method had consistently higher R2 values than the forward methods 
for all cases except for k = 1. It was surprising to notice that the R2 values for k = 
7 and k = 14 for SR method was far lower than those for the other four methods. 
We also noticed that the SR method yielded inconsistent and lower R2 values for 
k = 7 and 14 when the order of 37 markers were randomized for several times 
(results not showed here). Without investigating the R scripts in the leaps pack-
age, it is hard to conclude if such outcomes were caused by the algorithm itself 
or bugs in leaps package. 

In application 2, a barley data set, which was analyzed in our previous publi-
cation [32], was used to compare the SR, ASR, forward, and backward selection 
methods. The data set includes 391 single nucleotide polymorphisms (SNPs) and 
762 heading data points. Due to high computational intensity, the analysis was 
prohibited by the exhaustive in leaps package; however, we were able to compare 
the results among four methods (SR, ASR, forward, and backward). The results 
showed that both SR and ASR methods performed equally well when k = 1 to 4, 
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6, and 7 while the ASR performed better for the remaining cases (Table 5). The 
forward method had higher R2 values than the backward method except k = 8 
and 9. Both SR and ASR methods had higher R2 values than both forward and 
backward methods except k = 1 to 3 for the forward method, which had the 
same R2 values compared to the SR and ASR methods. 

 
Table 4. Adjusted coefficients of determination of k-marker subset (k = 1 to 14) for five 
selection methods for the data with fruit fly wing shape and 37 RFLP markers [31]. 

k SR† Exhaustive ASR‡ Forward Backward 

1 0.514068 0.514068 0.514068 0.514068 0.445102 

2 0.688750 0.688750 0.688750 0.642101 0.675081 

3 0.843880 0.843880 0.843880 0.813288 0.836392 

4 0.877729 0.877729 0.877729 0.867078 0.868122 

5 0.903693 0.903693 0.903693 0.894649 0.897927 

6 0.920823 0.920823 0.920823 0.911156 0.917549 

7 0.230306 0.925672 0.925672 0.921786 0.922730 

8 0.930037 0.930037 0.930037 0.926434 0.927707 

9 0.931577 0.931974 0.931974 0.930089 0.930469 

10 0.933271 0.933271 0.933271 0.931636 0.933069 

11 0.934016 0.934016 0.934016 0.932646 0.933897 

12 0.934320 0.934341 0.934341 0.933326 0.934223 

13 0.934592 0.934617 0.934617 0.934060 0.934529 

14 0.652253 0.934866 0.934866 0.934638 0.934806 

†: sequential replacement and ‡: adaptive sequential replacement. 
 

Table 5. Adjusted coefficients of determination of k-marker subset (k = 1 to 10) for four 
selection methods for the data with barley heading date and 391 SNPs [33]. 

k SR† ASR‡ Forward Backward 

1 0.318846 0.318846 0.318846 0.268571 

2 0.371503 0.371503 0.371503 0.363640 

3 0.407045 0.407045 0.407045 0.402651 

4 0.434137 0.434137 0.432367 0.423071 

5 0.450320 0.450409 0.450128 0.440955 

6 0.467692 0.467692 0.462793 0.460830 

7 0.483355 0.483355 0.475074 0.474516 

8 0.492946 0.494132 0.486796 0.490362 

9 0.501345 0.504865 0.498145 0.503484 

10 0.513704 0.514244 0.508404 0.504725 

†: sequential replacement and ‡: adaptive sequential replacement. 
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3.3. Repeatability, Consistence, and Speed 

Repeatability and consistence for a method are important when stochasticity is 
applied to this method. The same data analyses in Applications 1 and 2 of this 
study with the ASR method were repeated independently for 20 times. The re-
sults including mean, minimum, and maximum of adjusted coefficients of de-
termination for different k-marker models are summarized in Table 6 and Ta-
ble 7, respectively. The results showed that the probability of the best model be-
ing determined for each k-marker set was at least 65% for the first application 
(Table 6) while the probability of the best model being determined varied widely 
among different k-marker sets for the second application (Table 7). The differ-
ence among mean, minimum, and maximum of adjusted coefficients of deter-
mination for each k-marker set was very small for both cases (Table 6 and Table 
7). For example, the difference between minimum and maximum of adjusted  

 
Table 6. Minimum, maximum, and mean values over 20 replications for 2

AR  for differ-
ent k-marker models for the data with fruit fly wing shape and 37 RFLP markers [31]. 

 k = 1 k = 2 k = 3 k = 4 k = 5 

Mean 0.514068 0.688750 0.843880 0.877727 0.903693 

Min 0.514068 0.688750 0.843880 0.877675 0.903693 

Max 0.514068(20†) 0.688750(20) 0.843880(20) 0.877729(19) 0.903693(20) 

 k = 6 k = 7 k = 8 k = 9 k = 10 

Mean 0.920797 0.925672 0.930037 0.931974 0.933193 

Min 0.920560 0.925672 0.930037 0.931974 0.932899 

Max 0.920823(18) 0.925672(20) 0.930037(20) 0.931974(20) 0.933271(15) 

 k = 11 k = 12 k = 13 k = 14  

Mean 0.934005 0.934332 0.934608 0.934864  

Min 0.933901 0.934286 0.934498 0.934856  

Max 0.934016(18) 0.934341(13) 0.934616(17) 0.934866(16)  

†: The number of the maximum 2
AR  was reached over 20 independent trials. 

 
Table 7. Minimum, maximum, and mean values over 20 replications for 2

AR  for differ-
ent k-marker models for the data with barley heading date and 391 SNPs [33]. 

 k = 1 k = 2 k = 3 k = 4 k = 5 

Mean 0.318846 0.371503 0.407045 0.433075 0.450381 

Min 0.318846 0.371503 0.407045 0.432367 0.450128 

Max 0.318846(20†) 0.371503(20) 0.407045(20) 0.434137(8) 0.450409(18) 

 k = 6 k = 7 k = 8 k = 9 k = 10 

Mean 0.466777 0.481149 0.493443 0.504992 0.514079 

Min 0.466675 0.477830 0.489611 0.502217 0.513864 

Max 0.467692(2) 0.483355(10) 0.494132(14) 0.505904(5) 0.514667(5) 

†:The number of the maximum 2
AR  was reached over 20 independent trials. 
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coefficients of determination was less than 0.0004 (equivalent to less than 
0.040% lower than the exhaustive search) among 14 cases in application 1 (Table 
6) and less than 0.006 (equivalent to less than 1.143% lower compared to the best 
model) in application 2. These results in Table 6 and Table 7 showed that the 
ASR method is repeatable and consistent in search of the best k-variable model. 
However, repeating the process from steps 1 to 4 for several times is recom-
mended to reach better solutions for a large number of genetic markers which 
are closely linked as well. 

The time used for selecting the best k-variable set will give us some insight in 
using the ASR method. The computer that we used for data processing was a 
Dell laptop with Intel® Xeon ® W-11855M CPU @ 3.20 GHz and 64.0 GB Ram. 
With the SR method, the time used in application 2 was less than 1 second for k 
= 1 to 10. With the ASR method, it averaged 28 minutes in total (k = 1 to 10) 
over 20 replications. Compared to the SR method, the ASR method is slow; 
however, this amount of time is very appealing because it can offer the improved 
power compared to the exhaustive method. With the ASR method, the given 
analysis for k = 1 to 10 in application 2 was completed within a lunchbreak pe-
riod, which is very acceptable. 

4. Discussion 

Selecting a set of markers that captures the maximum genetic variation out of 
high throughput data is highly desired. The exhaustive search method is guar-
anteed to achieve the best solutions, but it can be prohibited due to high com-
putational burden. On the other hand, many stepwise variable selection methods 
in linear regression analysis are heuristic and approximate, not guaranteeing the 
optimal solution, as showed in our two applications (Table 4 and Table 5), 
though they offer desirable computational speed. The SR method starts a model 
selected from forward or stepwise selection method and then it allows to se-
quentially replace each variable in the model with the remaining variables [18] 
[34]. Mathematically, the SR method should be better than forward and back-
ward selection methods. Therefore, the SR method has advantage of speed but it 
could result in a non-global optimal model due to lack of stochasticity. In this 
study, we were motivated to develop the ASR method with a high likelihood to 
identify a k-marker set for capturing the maximum genetic variation with much 
reduced computational intensity compared to the exhaustive method.  

The first key feature applied to this ASR method is stochasticity to avoid local 
optimal solutions. Our ASR selection method starts a completely random k-va- 
riable subset every time as described in step 1. Thus, increasing the number of 
random starts should increase the possibility to avoid local optimal solutions and 
thus improve the possibility to reach global optimal solutions. However, such 
practice may add significant computational burden compared to the SR method. 
The other key feature added to the ASR method is adaptivity so that the search 
process can be terminated once the optimal solution is achieved as stated in con-
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dition (1) at step 4. Our logic is that there could be several local optimal solu-
tions for a k-variable model, but the global optimal solution is unique. If the best 
solution has appeared for at least three times during the search process, it is evi-
dent that the global solution has been achieved, and no additional search should 
be needed. For example, we preset 50 times of random start at step 4 but it can 
reach the global solution with only a minimum of five to 19 iterations for k = 2 
to 14 in application 1, which greatly reduced computational intensity. However, 
users may need to increase the iteration number in condition (3) at step 4 or N 
at step 5 to increase the likelihood to achieve the best solution if condition (1) in 
step (4) is not met. In addition, this study showed that the ASR method is robust 
regarding obtaining highly repeatable and/or consistent best k-variable/marker 
models as showed in Table 6 and Table 7. 

The power of this ASR method was numerically evaluated by simulated data 
through presetting five contributing variables at different levels of coefficients of 
determination, where each coefficient of determination is equivalent to herita-
bility in genetics. Our simulation results showed that the ASR method was able 
to identify all optimal subset of true variables when the coefficient of determina-
tion was at least 0.40. Such a conclusion was evidenced by the coefficients of de-
termination between the models selected and the true models and mean power 
over five preset variables being selected over 200 simulations (Table 3 and Table 
4). Even when the preset coefficient of determination is low as 0.20 and target 
variables are highly correlated with noise variables (0.80), the ASR method sus-
tained a high power as demonstrated in Table 2. In addition, we noticed that 
each individual R2 values obtained by the ASR method was equal to or slightly 
greater than that for the true model for each simulated data set due to Type I er-
ror (Table 4, the individual results not provided here), indicating that it is more 
likely that the ASR method has the capability of selecting a better model. How-
ever, as expected, Type I error should be expected when a coefficient of deter-
mination or heritability is low. 

Due to a small number of variables in our application 1, we compared five 
methods: forward, backward, SR, global, and our ASR methods. Both the ASR 
and exhaustive methods achieved the identical k-variable models (k = 1 - 14) 
(Table 4). The SR method could determine the same subset of variables for most 
cases when compared to the exhaustive method, indicating that the SR method 
has the ability to achieve the best model. However, occasionally, some models 
identified by the SR method had slightly lower coefficients of determination 
compared to those determined by the exhaustive and ASR methods. In two cas-
es, the subsets determined by SR methods showed far lower coefficients of de-
termination compared to the other four methods (k = 7 and 14 in the first ap-
plication). The results showed that the SR method sometimes may lack consis-
tence to generate the optimal solutions. In application 2, the ASR method had 
equal or higher adjusted coefficient of determination compared to the SR me-
thod for k = 1 to 10 (Table 5), suggesting that the ASR method sustains an im-
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proved power and is preferred to identify the better models than the SR method. 
Several key factors may influence the possibility to find the optimal model. 

The first factor is the degree of the subset linearly associated with the re-
sponse/dependent variable. This is equivalent to heritability in a genetic associa-
tion mapping study. Higher heritability is associated with higher power to catch 
the best model. The second factor is the degree of collinearity among variables 
associated with the dependent variable. Strong linear associations between pre-
dictive variables and the response variable and weak collinearity among predic-
tive variables will achieve the optimal k-variable model much more rapidly than 
weak association and/or strong collinearity among the predictable variables. 
However, even though, increasing the number of random starts (iteration num-
ber) will help achieve the optimal solution and this is one desirable feature asso-
ciated with this ASR algorithm, when the number of variables or genetic markers 
is high, more iterations are required. For example, over 100 iterations are more 
likely required to meet condition (1) or (2) in step 4 for k ≥ 6 in the second ap-
plication of this study.  

Many association and QTL mapping studies showed that even though a single 
marker/locus was significantly associated with a quantitative trait of interest, 
using the single marker as MAS was still far from the efficiency needed for 
breeding selection. Thus, selecting k markers as a subset, which can catch desir-
able genetic variation, is desired for MAS application. However, it doesn’t mean 
the more the better. In breeding practice, increasing one DNA marker for mark-
er-assisted selection would double field/lab work with one additional bi-allelic 
DNA marker. On the other hand, our previous study on barley association map-
ping analysis showed that many selected SNP markers were significant yet the 
total coefficient of determination was stabilized with the increase of SNP mark-
ers at some points during our forwarded selection process [35]. The results from 
this study as presented in Table 3 and Table 4 also showed a similar pattern. 
Therefore, selecting a particular number of markers/variables should be deter-
mined depending on several key factors such as the degree of associations be-
tween selected genetic markers and the trait of interest and affordabili-
ty/availability of labor and land. The ASR method in this study can help breeders 
capture the maximum genetic variation associated with a particular k-marker 
set. 

The ASR selection method can potentially identify the best k-variable subset. 
However, it is possible that this method is extendable to forward and backward 
variable selections with slight modifications. For example, if all k variables in the 
model are significant, then steps 1 to 5 can be proceeded with k + 1 variables. 
This process can be repeated until no more new variables can be added. Such a 
process is related to the ASR based forward selection. On the other hand, if one 
or more variables are not significant in the k-variable solution, then steps 1 to 5 
can be proceeded with k − 1 variables. This process continues until no more va-
riables can be eliminated which is related to ASR backward selection. Additional 
comparisons between ASR based forward/backward selection methods and com-
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monly used forward/backward selection are ongoing.  
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