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Abstract 
The delayed S-shaped software reliability growth model (SRGM) is one of the 
non-homogeneous Poisson process (NHPP) models which have been pro-
posed for software reliability assessment. The model is distinctive because it 
has a mean value function that reflects the delay in failure reporting: there is a 
delay between failure detection and reporting time. The model captures error 
detection, isolation, and removal processes, thus is appropriate for software 
reliability analysis. Predictive analysis in software testing is useful in mod-
ifying, debugging, and determining when to terminate software develop-
ment testing processes. However, Bayesian predictive analyses on the de-
layed S-shaped model have not been extensively explored. This paper uses the 
delayed S-shaped SRGM to address four issues in one-sample prediction as-
sociated with the software development testing process. Bayesian approach 
based on non-informative priors was used to derive explicit solutions for the 
four issues, and the developed methodologies were illustrated using real data. 
 

Keywords 
Failure Intensity, Non-Informative Priors, Software Reliability Model,  
Bayesian Approach, Non-Homogeneous Poisson Process 

 

1. Introduction 

Software reliability assessment has become indispensable for all software devel-
opers as it involves reliability testing and debugging processes. The main objec-
tive of reliability testing is to identify potential defects that could lead to system 
failures, crashes, or malfunctions during real-world usage. Debugging is the process 
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of detecting and correcting errors in software [1]. Software end-users are often 
concerned with the reliability of software products they acquire from the market. 
A single software error can cause a failure, which can be avoided by producing 
reliable software [2]. Defective software may not only damage the reputation of 
the producer but also attract legal procedures in case of a lawsuit and may ex-
pose the developer to preventable costs. As such, software developers are con-
cerned with the reliability of their software products before releasing them into 
the market. Many researchers have developed methods to test software to detect, 
isolate, and remove faults during development. The reliability of software prod-
ucts is ensured by running tests that emulate the end-user environment.  

Although the approaches to testing software reliability have been proposed, a 
number of issues still arise with testing. Such may include determining the op-
timal release time of software, the optimal cost of producing software, and the 
reliability of the software. Moreover, it is difficult and time-consuming to emu-
late the end-user environment [2]. These issues are well addressed through soft-
ware reliability modeling by performing predictive analyses using historical data 
of software failures. The analyses often involve determining the optimal release 
time of software and expected costs at the time of release and constructing a 
prediction interval for a future observable failure.  

Over the past decades, several nonhomogeneous Poisson process (NHPP) 
software reliability growth models (SRGMs) have been developed and used in 
reliability assessment. Such models are classified as perfect or imperfect debug-
ging NHPP SRGMs [1]. Perfect debugging SRGMs assume that errors are im-
mediately removed with certainty when detected, without introducing new faults. 
On the other hand, imperfect debugging NHPP SRGMs assume that when faults 
are detected, they may not be removed with certainty, and new errors may also 
be introduced into the software during the correction process [1]. The delayed 
S-shaped software reliability model developed by [3] is one of the perfect NHPP 
SRGMs. The model is distinctive because of its mean value function, which is 
S-shaped, reflecting the delay in failure reporting [1]. The mean value function is 
given by; 

( ) ( )( )1 1 e tm t t βα β= − +                      (1) 

and the model has an intensity function given by; 

( ) 2 e tt t βλ αβ −=                          (2) 

The delayed S-shaped NHPP SRGM is based on the following assumptions 
[4]: 

1) Errors are removed immediately when detected, without introducing new 
errors into the software. 

2) The current number of faults in a software and the probability of failure 
detection are proportional. 

3) All the faults in a software are mutually independent from the failure detec-
tion point of view.  

https://doi.org/10.4236/ojs.2023.135034


O. Collins et al. 
 

 

DOI: 10.4236/ojs.2023.135034 719 Open Journal of Statistics 
 

4) Errors in a software leads to failures at random times. 
5) The time between ( )th1j −  and thj  failures depend on the time to the 

( )th1j −  failure. 
6) The initial error content of the software is a random variable. 
Many researchers have considered the use of the delayed S-shaped software re-

liability model in software reliability testing. [5] performed Bayesian predictive 
analysis on the model using gamma-distributed informative prior, determining 
the optimal release time, expected costs, and the estimated reliability of the soft-
ware at the time of release. [6] performed Bayesian interval estimation and com-
pared Bayesian credible intervals with Wald confidence intervals and found that 
Bayesian approach yielded shorter intervals with higher coverage probability. The 
results imply that Bayesian method yields better parameter estimates, which can 
then be used to enhance accuracy in prediction. Although the estimation of the 
parameters of the model is essential in software reliability assessment, the main 
goal is to obtain accurate predictions to provide adequate information to help 
software developers in planning tests and inform them about when to terminate 
the testing process. [7] performed interval estimation on the delayed S-shaped 
model and obtained 90% prediction intervals for the reliability prediction at any  

future time, t. However, none of these studies used the 1
αβ

 non-informative  

prior, and predictive issues addressed in this paper have not been explored using 
the delayed S-shaped model.  

This paper focuses on single-sample predictive analyses on the delayed S-shaped 
software reliability model using Bayesian approach. We first outline four issues 
in software reliability testing. The issues have been addressed by [8] and [9] us-
ing the Power law Process (PLP), [2] using the Goel-Okumoto (1979) software 
reliability model, and [10] using Musa-Okumoto SRGM. The study used Baye-
sian approach with non-informative priors and the Yamada delayed S-shaped 
SRGM to develop and derive predictive distributions presented in section 2.2, 
and applied the developed methodologies to secondary software data to address 
the four issues, as discussed in section 4.  

2. Predictive Issues and Bayesian Method 

In this analysis, we assume that a reliability growth testing is performed on a 
software and the cumulative number of failures, denoted by ( )N t , is observed 
in the time interval ( ]0,t . Another assumption is that the cumulative number of 
failures and failure times ( 1 20 t t< < < ) follow the NHPP with the intensity 
function given in Equation (2). When testing stops after a predetermined num-
ber of failures, n, the failure data is said to be failure-truncated, and the n failure 
times are denoted by [ ] 1

nf
obs i i

Y t
=

= . However, if testing stops at a predetermined 
time, t, the failure data is said to be time-truncated, and the corresponding ob-
served failure data is denoted by [ ]1, , , ;t

obs nY n t t t=  .  
Let t  be the vector of observed failure times and ( )π θ  be the prior density 
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of ( ),θ α β= . Then according to Bayes’ rule, the posterior density ( )/ tπ θ  is 
obtained using the formula: 

( ) ( )
( )

( ) ( )
( )

, |
|

g t f t
t

f t f t
θ θ π θ

π θ = =                 (3) 

where ( ),g tθ  is the joint density of θ  and T , and ( )f t  is the marginal 
density of T . The posterior predictive distribution of t+ is given as; 

( ) ( )
( ) ( )

( ) ( )

| , | d

| , | d

| | d

f t t f t t

f t t t

f t t

θ θ

θ π θ θ

θ π θ θ

+ +

+

+

=

=

=

∫
∫
∫

                (4) 

2.1. Issues in Single-Sample Software Reliability Prediction 

The study addressed the following four issues in single-sample software reliabil-
ity testing: 

1) Suppose that the predetermined target value, tvλ , for the software failure 
rate is not achieved at time T, what is the probability that the target value will be 
achieved at time τ , Tτ > ?  

2) Suppose that the target value, tvλ , for the software failure rate is not 
achieved at time T, how long will it take so that the software failure rate will be 
attained at tvλ ? 

3) What is the probability that at most k software failures will occur in the 
failure time period ( ],T τ , Tτ > ? 

4) What is the upper prediction limit (UPL) of ( ) 2 e tt t βλ αβ −=  with level λ , 
τ  being a predetermined value greater than T? 

2.2. Prior, Posterior, and Predictive Distributions 

Let obsY  represent t
obsY  or f

obsY . The joint density of obsY  is obtained as: 

( ) ( ) ( )
1

1 1 e2
1, e e|

n T
ii

Tn tn n
obs iif Y t

βα ββα β α β
−

=
 − − +−  

=
∑= ∏           (5) 

and the log-likelihood function is given by: 

( ) ( )
( ) ( )( )

1, | log 2 log log

1 1 exp

n
ii

i

l t n n t

t T T

α β α β

β α β β

=
= + +

− − − + −

∏
∑

            (6) 

Case 1: When the shape parameter, β, is known, we adopt the following 
non-informative prior distribution for α; 

( ) 1 , 0π α α
α

∝ >                         (7) 

The posterior distribution of α can be obtained from Equation (3) as: 

( ) ( ) ( )
( ) ( )

0 0

, ,
|

, , d d
obs

obs

obs

f Y
Y

f Y

α β π α β
π α

α β π α β α β
∞ ∞=
∫ ∫
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( ) ( ) ( ) ( )1 1 e1 1| e 1 1 e
T nTn T

obsY n T
βα β βπ α α β

− − − +− − −    = Γ − +           (8) 

Let t+ be the random variable being predicted. The posterior predictive density 
of t+ is obtained using Equation (4) as:  

( ) ( ) ( )
0

| | , | dobs obs obsf t Y f t Y Yα π α α+ +∞
= ∫             (9) 

The Bayesian UPL for t+ with level γ  satisfies: 

( )
( )

| dUy
obsp t Y t

β

γ + +

−∞
= ∫                    (10) 

Case 2: When the shape parameter, β, is unknown, we consider the following 
non-informative density of α and β, assuming they are mutually independent. 

( ) 1, , , 0π α β α β
αβ

∝ >                    (11) 

The corresponding posterior joint density is obtained using Equation (3) as: 

( ) ( ) ( )
1

1 1 e1 1 2 1, | e ei
n T
i

Ttn n
obsY k n

βα ββπ α β α β
−

=
 − − +− −− −  ∑ = Γ         (12) 

where;  

( )( )
12 1

0

e d
1 1 e

ii
n tn

nT
k

T

β

β

β β
β

=−−

−

∞
∑

=
− +

∫                  (13) 

Similar to Equation (9) and Equation (10), if t+ is the random variable being 
predicted, the posterior predictive distribution becomes: 

( ) ( ) ( )
0 0

| | , , , | d dobs obs obsf t Y f t Y Yα β π α β α β
∞ ∞+ += ∫ ∫         (14) 

and the Bayesian UPL is: 

( )| d
yU

obsp t Y tγ + +

−∞
= ∫                     (15) 

3. Main Results for Prediction 

In this section, we present the main results of the four issues stated in section 2.1 
as propositions, and their proofs are given in the Appendix.  

Proposition 1:  
The probability that the target value tvλ  will be achieved at time τ  ( Tτ > ) 

is: 

( )
( )

( )
( )

( )

2

12

1 1 e21
e

0

1 1 e2 2 11
e

0 0

1 1 e
e

1 e , if is known
!

1 1 e
e1 e1 e d , if  is unknown

! 1 1 e

n

T

tv

T
iitv

hT

Ttvn

h
hT

Ttv tnn

nTh

T

h

T

k h T

β

βτ

β

βτ

β

ββτ λ
β τ

β

ββτ βλ
β τ

β

β
λ

β τ
β

γ
β

λ
β τ β β β

β

−

−

−

=−

−

− +− −−

=

−

− +− −∞ −−−

−=

∑

  − +     −


= 
 − +    
  −

 − + 

∑

∑∫

 

Proposition II: 
Let τ ∗  denote the time required to attain tvλ . For a specified level γ ; 
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( )
( )2

2 1 1 e1 if is known
2 ;

if is unknown

T
tv

n

T
W T

n

T

βλ β
β

τ β βχ γ

τ β

−

∗

   − − +   − −  =     
−

 

Remark 1: 

( )
( )

( )

12
1 1 e2 2 1

1 e
0 0

1 1 e
e1 e1 e d

! 1 1 e

nT
iitv

hT

Ttv tn
n

nh T

T

k h T

β

βτ

β

ββτ βλ
β τ

β

β
λ

β τ βγ β
β

−

=−∞

−

− +− −−−
−

= −

∑

 − +
  
 = −

 − + 
∫∑  (16) 

Proposition III: 
The probability that at most k failures will occur in the time interval ( ],T τ , 

Tτ >  is given by: 

( )

( ) ( )
( ) ( )

( )

( )
( ) ( )

( ) ( )
( )

12 1
0

e e e e1 1 e
if is known

1 1 1 ee e e e

e e e e
e d

! 1 1 e

n
ii

jn T TT
n k

n jj nT T

k j nT T
n k tn

jj n

TT j n
nT

Tj
c j n n

β β βτ βτβ

βτβ β βτ βτ

β β βτ βτ
β

βτ

β βτβ
β

βτβ βτ
γ

β βτ
β β

βτ
=

− − − −−
+

= −− − − −

−
− − − −

+ −−
= −

∞ ∑

 + − + − + −    
 −    − ++ − +   =

 + − +Γ  
− Γ  − + 

∑

∑ ∫ if is unknownβ











 

Proposition IV:  
The Bayesian UPL of ( ) 2 e tt t βλ αβ −=  with level γ  is obtained as: 

( )
( ) ( )

( )

2 2e 2 ;
if is known

2 1 1 e

if is unknown

t

T
U

tv

t n

T

β

β β

β χ γ
β

λ β

λ β

−

−


=  − +  


 

Remark 2: 

( )
( )

( )

12
1 1 e2 2 1

e
0

1
0

1 1 e
e1 e1 e d

! 1 1 e

T
iitvt

n

hT

Ttvt tn
t

nh T

n

T
t

k h T

β

β

β

ββ βλ
β

β

β
λ

β βγ β
β

−

=−

−

∞−
− +− −−−

= −

∑

 − +
  
 = −

 − + 
∫∑  (17) 

4. Real Data Application 

In this section, real data in Table 1 was used for single-sample Bayesian predic-
tion, and the results are presented and discussed. The study used failure times 
(cumulative time between failures) 1 2 220 t t t< < < < , where n = 22. The data is 
given by [11], while [12] argued that it has been widely used in assessing software 
reliability models. For the case where β is assumed known, the study performed 
maximum likelihood estimation (MLE), fixing initial guess of the parameters ar-
bitrarily at 18α =  and 0.00342β = , where the values were chosen such that, 
they were closer to the ML estimates [11] obtained using their S-shaped model. 
However, parameter estimation methods can be used to get the initial set of these 
parameters. The initial parameter values were used with the log-likelihood func-
tion of the delayed S-shaped model given by Equation (6) to obtain ML estimates 
of α and β. The MLE for β was obtained as 0.007609807β = . The study used 
this value for the cases where β is assumed known. 
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Table 1. Time between failures data. 

Index Inter-failure time Failure Time Index Inter-failure time Failure Time 

1 5.5 5.5 12 14.6 166.99 

2 1.83 7.33 13 11.41 178.41 

3 2.75 10.08 14 18.94 197.35 

4 70.89 80.97 15 65.3 262.65 

5 3.94 84.91 16 0.04 262.69 

6 14.98 99.89 17 125.67 388.36 

7 3.47 103.36 18 82.69 471.05 

8 9.96 113.32 19 0.46 471.5 

9 11.39 124.71 20 31.61 503.11 

10 19.88 144.59 21 129.31 632.42 

11 7.81 152.4 22 47.6 680.02 

 
Proposition I: Suppose the target value is given by 0.02tvλ = . At time 

100T = , the MLE of the achieved software rate for this software is  
100e 0.0640βλ αβ −= = , which is greater than 0.02. In this regard, the target value 

cannot be achieved at the initial time, 100T = . Assuming a time greater than 
100, 500τ = , and we want to determine the probability of achieving tvλ  at this 
time: 1) when β is known ( 0.007609807β = ), from the first formula in Proposi-
tion I, we obtain 99.0 10γ −= × . Therefore, it is almost unlikely that the target 
value will be achieved. 2) When β is unknown, from the second formula in 
Proposition I, we obtain 73.0 10γ −= × . Thus, it is less likely that the target soft-
ware failure intensity of 0.02 will be achieved at time 500 hτ = .  

Since the target value was not achieved at 500τ = , we want to assess the rela-
tionship between the probability and time by varying τ, while holding 0.02tvλ =  
constant. This was illustrated in the case when β is unknown. Table 2 shows the 
probabilities and time, indicating that it is almost unlikely to achieve the target 
value at any time between 130 h and 630 h. However, it is almost certain that at 
830 h and above, the target software failure intensity will be achieved. It is cru-
cial to note that these values do not indicate the exact time at which the failure 
intensity is achieved but the time at which it shall have been achieved with some 
probability. Figure 1 displays the relationship, indicating that the probability of 
achieving a software failure intensity of 0.02 increases with time. It can be ob-
served in the figure that the probability increases rapidly between 630 h and 780 
h, suggesting that between these time periods and/or above, the target software 
failure intensity is achievable.  

Since the software failure intensity of 0.02 ( 0.02tvλ = ) was not achieved at 
500 hτ = , we want to determine the failure intensity that is most likely at this 

time period. An illustration was performed for the case when β is unknown to 
assess the relationship between failure intensity and probability while holding 
the time, τ, at 500 h. Suppose the interest is to determine the failure intensity 
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that is most achievable at 500 hτ = . The results displayed in Figure 2 were ob-
tained. It can be observed that it is unlikely that the software will have a failure 
intensity of less than 0.05 at a time period of 500 h. It can also be observed that 
the most probable failure intensity is between 0.06 and 0.13. Since the delayed 
S-Shaped model assumes that errors are immediately removed after they are de-
tected, and no further errors are introduced into the software [4], a failure inten-
sity that corresponds to a probability that tends to one (1) was selected as the 
highest, while the failure intensities at which the probability is exactly one were 
ignored.  

 
Table 2. The probability that the software failure intensity of 0.02 is achieved at different 
time periods, τ. 

Time period, τ ( )0.02tvP λ =  

130 0 

180 0 

230 1 × 10−16 

280 2 × 10−16 

330 1.72 × 10−14 

380 2.09 × 10−12 

430 2.9 × 10−9 

480 3.96 × 10−8 

530 4.36 × 10−6 

580 3.15 × 10−4 

630 0.01165 

680 0.1634 

730 0.6803 

780 0.9824 

830 0.99996 

880 1.0 

930 1.0 

980 1.0 
 

 
Figure 1. The probability of achieving 0.02tvλ =  at different time periods. 
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Figure 2. The probability of achieving tvλ λ=  at 500 hτ = . 

 
Proposition II: The next step involved determining how long it will require to 

achieve the target value tvλ  since it was not attained at time 100T = . 1) When 
β is known ( 0.0076098073β = ), and γ is 0.90, we obtain 583.365 hτ ∗ =  using 
the first formula in Proposition II. The result implies that it will take another 
583.365h to achieve the desired failure rate of 0.02 (i.e., the target failure inten-
sity will be achieved at 683.365 hτ = ). 2) When β is unknown, we obtain 

657 hτ ∗ =  using the second formula in Proposition II and Remark 1, where τ ∗  
is the value that satisfies Equation (16). Thus, it will require 657 additional hours 
to achieve the target failure rate of 0.02. The value implies that the target soft-
ware failure intensity will be achieved at 757 hτ = . 

Proposition III: Since the study has established that the probable software 
failure intensity at a future time interval ( ]100, 500τ = , is high, we want to ob-
tain the probability that at most k failures will occur at a future time interval 

( ,T τ ∗  , where T τ τ∗< < . Suppose the interest is to determine the probability 𝛾𝛾𝑘𝑘  
that at most k failures will occur in the future time interval ( ( ], 100,130T τ ∗  = , 
the following results were obtained for 25k = : 

1). When β is known ( 0.007609807β = ), from the first formula in Proposi-
tion III, we obtain 0 0.000213γ = , 1 0.00171γ = , 2 0.00720γ = , 3 0.02122γ = , 

4 0.04916γ = , 5 0.09552γ = , 6 0.1621γ = , 7 0.2470γ = , 8 0.3452γ = , 

9 0.4497γ = , 10 0.5529γ = , 11 0.6488γ = , 12 0.7329γ = , 13 0.8031γ = , 

14 0.8590γ = , 15 0.9019γ = , 16 0.9335γ = , 17 0.9560γ = , 18 0.9716γ = , 

19 0.9821γ = , 20 0.9889γ = , 21 0.9933γ = , 22 0.9960γ = , 23 0.9977γ = , 

24 0.9987γ = , and 25 0.9992γ = .  
2). When β is unknown, using the second formula in Proposition III, we get 

0 0.000024γ = , 1 0.000230γ = , 2 0.00113γ = , 3 0.00391γ = , 4 0.01054γ = , 

5 0.02375γ = , 6 0.04651γ = , 7 0.08137γ = , 8 0.1298γ = , 9 0.1916γ = , 

10 0.2649γ = , 11 0.3466γ = , 12 0.4327γ = , 13 0.5189γ = , 14 0.6014γ = , 

15 0.6772γ = , 16 0.7444γ = , 17 0.8018γ = , 18 0.8495γ = , 19 0.8880γ = , 

20 0.9182γ = , 21 0.9413γ = , 22 0.9586γ = , 23 0.9713γ = , 24 0.9804γ = , and 

25 0.9868γ = .  
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Figure 3. The graph of the probabilities kγ  that at most k failures (k = 25) 

will occur in the time interval ( ]100,130  for the cases of known and un-

known β. 
 

Proposition IV: The Bayesian Upper Prediction Limit (UPL) of ( ) 2 e tt t βλ αβ −=  
given 700 hτ =  and the level, 0.90γ = : 1) when β is known  
( 0.0076098073β = ), the Bayesian UPL was obtained using the first formula in 
(Proposition IV) as ( ) ( ) 0.01805U

βλ τ = ; 2) when β is unknown, using the second 
part of the formula in Proposition IV and Remark 2, the Bayesian UPL of  
( ) 2 e tt t βλ αβ −=  with level 0.90γ =  was obtained as ( ) ( ) 0.02883U

βλ τ =  (Figure 
3). 

5. Conclusion 

Software reliability remains a priority for software developers. Defective software 
may damage the reputation of the developers, expose them to preventable costs, 
and cause significant damage to end-users. To address these issues, software re-
liability modeling comes in handy. Predictive analyses have been performed in 
software testing to provide information for making decisions regarding the op-
timal software production costs, release time, and whether and when the desired 
reliability would be achieved. This study used non-informative priors to derive 
explicit solutions for four predictive issues in software testing using the Yamada 
delayed S-shaped model, and applied the derived methodologies with secondary 
software failure data. Bayesian approach was used because it incorporates prior 
information about the parameters of the model and is appropriate even when 
historical data is insufficient. The obtained solutions can be adequately applied 
in software quality assessment.  
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Appendices: Proof of Propositions I-IV 

We begin by stating the following identity without proof: 

( ) ( )( ) ( ) ( )1; ,
d d !

m
mD m a b

F t F t F b F a m = − ∫              (A1) 

where m is any positive integer, a and b are two real numbers such that a < b, 
( )F t  is an increasing and differentiable function, and  
( ) ( )1 1; , , , :m mD m a b t t a t t b = < < < <   . 
Proof of Proposition I: 
The probability is given by: 
Let ( )|obsY τπ λ  denote the posterior density of ( ) 2 e tt t βλ αβ −= . Thus, the 

probability that tvλ  will be achieved at time τ  ( Tτ > ) is given by: 

( ) ( )
0

Pr | d| tv
tv obs obsY p Y

λ
τ τ τγ λ λ λ λ= ≤ = ∫            (A2) 

When β is known, we have 
( )

2 e t

t
t β

λ
α

β −= , obtained from the intensity function, 

and 2
d 1
d e tt β

τ

α
λ β −= . 

The posterior distribution of τλ  is ( ) ( ) d| |
dobs obsY Yτ

τ

απ λ π α
λ

= . Thus, the 

posterior density becomes: 

( ) ( )
( ) ( ) ( )

( )
2

1 1 1 e
e

2 2
1 1| e 1 1 e

e e

Ttn T nT
obs

t
Y T

n

β
βτ

λ
β

β τ β
τ βτ βτ

λ
π λ β

β τ β τ

−
−

 −   − − +   − 
− −

 
 = − +   Γ  

  

Which reduces to: 

( )

( )

( )

( )
2

1 1 e2
e1

1 1 e
e

| e

T

nT

T

n
obs

T

Y
n

β

τ βτ

β

ββτ λ
β τ

τ τ

β
β τ

π λ λ

−

−

−

 − +−  −
 −  

 − +
 
  =

Γ
         (A3) 

From Equation (A3), τλ  follows a gamma distribution with parameters n and 

( )
2

1 1 e
e

TT β

βτ

β
β τ

−

−

− +
. However, there is a relationship between gamma and Poisson 

distribution defined by: 

( )
( )11

00
e d 1 e

!

h
x

hx x
h

α λ αα β βλβλβ
α

−− − −
=

= −
Γ ∫ ∑              (A4) 

From Equation (A2), ( ( )
0

d|tv
obsp Y

λ
τ τγ λ λ= ∫ ), and Equation (A4), it follows 

that:  

( )
( )

2
1 1 e2

1 e
0

1 1 e
e

1 e
!

T

tv

hT

Ttv
n
h

T

h

β

βτ

β

ββτ λ
β τ

β
λ

β τ
γ

−

−

−

− +− −
−

=

 − +
  
 = −∑          (A5) 

Equation (A5) shows the first formula in proposition I. 

When β is unknown: from the intensity function, 
( )

2 e t

t
t β

λ
α

β −=  and let β β= . 
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The Jacobian is 
( )
( ) 2

, 1
, e t

d
d t β

τ

α β
λ β β −= . The joint posterior density of ( ),τλ β  is 

given by: 

( ) ( ) ( )
( )

,
, | , |

,obs obs

d
Y Y

dτ
τ

α β
π λ β π α β

λ β
=  

From Equation (12): 

( ) ( ) ( )

( )
( )

( )

( )

1

2
1

1

1 1 e1 1 2 1
2

1 1 1 e1 e2 1
2 2

1 1 e1 2 1
1

2

1, | e e
e

1e e
e e

1 e e
e

T
ii

n

n

n

T

ii

ii

Ttn n
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n T
tn

Tn n
t n

Y k n

k n

k n

β

βτ
βτ

τ

α ββ
τ βτ

λ
β

β β ττ
βτ βτ

β
λ

β
τβτ

π λ β α β
β τ

λ
β

β τ β τ

β λ
β τ

−
=

−
−

=

=

 − − +− −− −  
−

 −   − − +  − −−  
− −

− +− −−
− −

−

∑

∑

∑

 = Γ 

 
 = Γ   

 

 
=   Γ 
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2
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1

e
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1 1 e
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1
e
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 − +
 −−
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22 1
1

1 1 e
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=

=

( )
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1 1 e
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β

β τ

−
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(A6) 

Using Equations (A2), (A4), and (A6), we have; 

( )

( )
( )

( )

( )
( )

1 2

1

1 1 e22 1
1 e
0

0

2 1

0

1 1 e2

1 1 e
e1 e 1 e d

!1 1 e

1 e d
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e1 e
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β
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12 1
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e d
1 1 e

ii
n tn

nT
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β

β

β β
β

=−−

−

∞
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( )
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12
1 1 e2 2 1

1 e
0 0

1 1 e
e1 e1 e d
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∑ ∫  (A7) 
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Equation (A7) is the formula in the second part of proposition I.  
Proof of Proposition II: 
For given level γ, the time required to attain the target value tvλ  is given by 

Tτ τ∗ = − , where τ satisfies Equation (A2). When β is known, from Equation 

(A2), it can be noted that ( )
2

1 1 e
2

e

T

tv

T β

βτ

β
λ

β τ

−

−

 − +
 
  

 follows a Chi-square distribu-

tion with 2n degrees of freedom. Therefore, we have: 

( ) ( )2
2

1 1 e
2 2 ;

e

T

tv

T
n

β

βτ

β
λ χ γ

β τ

−

−

 − +
= 

  
               (A8) 

( ) ( )2
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1 1 e 2 ;
2e

T
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T nβ

βτ

β χ γ
λβ τ

−

−

− +
=                   (A9) 
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2 1 1 e
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T
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β
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λ β
β τ

χ γ
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T
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β
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β χ γ
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 − + =  
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2 2
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2 1 1 e1
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2 1 1 e1 , for Ζ
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T
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T
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T
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β

βλ β
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         (A10) 

where Ζn∈  denotes the nth root of the equation 
( )
( )2

2 1 1 e
e

2 ;

T
tv T

n

β
τ

λ β
τ

βχ γ

− − − + =  

and W is the Lambert W function., satisfying ( )eW ττ τ= . 

From Equation (A10), we can obtain the time required to attain tvλ , τ ∗ , as 
follows: 

( )
( )2

2 1 1 e1
2 ;

T
tv

n

T
W T

n

βλ β
τ

β βχ γ

−
∗

   − − +   = − −
    

          (A11) 

Equation (A11) is the first formula of Proposition II. 
When β is unknown, the time required to attain the target value, tvλ , is τ, 

which is the solution to: 

( )
( )

( )

12
1 1 e2 2 1

1 e
0 0

1 1 e
e1 e1 e d

! 1 1 e

nT
iitv

hT

Ttv tn
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βτ
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−

=−∞
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= −

∑

 − +
  
 = −

 − + 
∑ ∫  (A12) 

Proof of Proposition III: 
The probability is given by  

( )Pr |k obsN n k Yγ τ = ≤ +   

When β is known: 
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( ) ( )
0

Pr | | dk obs obsN n k Y Yγ τ π α α
∞

 = ≤ + ∫            (A13) 

But ( )| obsYπ α  is given by Equation (8) and  

( ) ( )( ) ( )Pr | , ||n k
obs obs obsj nN n k Y f Y N j f Yτ τ α α+

=
 ≤ + = =  ∑    (A14) 

From Equation (5), ( ) ( ) ( )
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1 e e|

n T
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∏

∏
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 (A15) 

We solve the integral part as follows: 

( )20

1e d 1 1 et tt
t t tβ ββ

β
− − = − + ∫  

Substituting the limits T and τ, we get;  

( ) ( )2 2
1 11 1 e 1 1 e TTβτ ββτ β
β β

− −   − + − − +    , which reduces to  

( ) ( )2
1 e e e eT TT β β βτ βτβ βτ
β

− − − − + − +  . Therefore, the integral part of equation 

(A15) is obtained as; 
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Substituting Equation (A16) into Equation (A15) we obtain; 
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From Equation (A14); 
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which reduces to; 
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Thus, Equation (A14) becomes; 
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And hence, Equation (A13) becomes; 
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 (A18) 

The integral part of Equation (A18) is a gamma distribution with parameters j 
and ( )1 1 e βτβτ − − +  , and thus integrates to 1. Hence, Equation (A18) reduces 
to; 
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Equation (A19) is rearranged to obtain; 

( )

( ) ( )
( ) ( )

( )

e e e e1 1 e 1
1 1 1 ee e e e

jn T TT
n k

k n jj nT T

TT j
nT

β β βτ βτβ

βτβ β βτ βτ

β βτβ
γ

βτβ βτ

− − − −−
+

= −− − − −

 + − + − + −    =  −    − ++ − +   
∑  (A20) 

Equation (A20) is the first formula of proposition III. 
When β is unknown, we obtain: 
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where ( )Pr | obsN n k Yτ ≤ +   and ( ), | obsYπ α β  are given by Equations (A17) 
and (12), respectively. 
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where c = k as used in Equation (12). Letter c has been substituted for k because 
the summation in Equation (A21) is from n to (n + k), and the k’s are not the 
same. Equation (A21) implies the second formula in Proposition III.  

Proof of Proposition IV: 
When β is known, given a predetermined τ  ( Tτ > ), the Bayesian UPL for 
( )tλ  with level γ, denoted by ( )

U
βλ  satisfies ( ) ( )( )Pr |t U obsYβγ λ λ τ= ≤ . From 

Equations (A2) and (A8); 
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From Equation (A14); 
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Making ( ) ( )U
βλ τ  in Equation (A23) the subject, we get; 
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Equation (A24) implies the first part of proposition IV.  
When β is unknown, the Bayesian UPL for ( ) 2 e tt t βλ αβ −=  with level γ is 

tvλ , which is the solution to; 
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