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Abstract 
In regression, despite being both aimed at estimating the Mean Squared Pre-
diction Error (MSPE), Akaike’s Final Prediction Error (FPE) and the Genera-
lized Cross Validation (GCV) selection criteria are usually derived from two 
quite different perspectives. Here, settling on the most commonly accepted 
definition of the MSPE as the expectation of the squared prediction error loss, 
we provide theoretical expressions for it, valid for any linear model (LM) fit-
ter, be it under random or non random designs. Specializing these MSPE ex-
pressions for each of them, we are able to derive closed formulas of the MSPE 
for some of the most popular LM fitters: Ordinary Least Squares (OLS), with 
or without a full column rank design matrix; Ordinary and Generalized Ridge 
regression, the latter embedding smoothing splines fitting. For each of these 
LM fitters, we then deduce a computable estimate of the MSPE which turns 
out to coincide with Akaike’s FPE. Using a slight variation, we similarly get a 
class of MSPE estimates coinciding with the classical GCV formula for those 
same LM fitters. 
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1. Introduction 

In many branches of activity, the data analyst is confronted with the need to model 
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a continuous numeric variable Y (the response) in terms of one or more explana-
tory other variables (called covariates or predictors or regressors) 1, , pX X  in 
a population Ω through a model  

( ) ,Y X ε= Φ +                         (1) 

where1: ( )1, , pX X X
Τ

=  ; ( )Φ ⋅  is a function from p →  , generally un-
known, called the regression function; ε  is an unobserved error term, also called 
residual error in the model (1). 

In our developments in this paper, and contrary to popular tradition, we will 
not need that the variables X and ε  necessarily be stochastically independent. 
However, the usual minimal assumption for (1) is that the variables X and ε  
satisfy:  

( 0A ). ( )| 0Xε = . 

Though sometimes far more debatable, we will also admit that the postulated 
regression model (1) satisfies the homoscedasticity assumption for the residual 
error variance:  

( 1A ). ( ) 2ar | 0Xε σ= > . 

Now, as is well known, Assumption ( 0A ) implies that  

( ) ( ) ( ) ( )| , i.e. , | .pX Y X Y XΦ = ∀ ∈ Φ = =x x x          (2) 

However, that conditional expectation function can almost never be analyti-
cally computed in practical situations. The aim of the regression analysis of 

|Y X  (i.e. “Y given X”) is rather to estimate the unknown regression function 

( )Φ ⋅  in (1) based on some observed data  

( ) ( ) ( )1 1, , , , , i.i.d. , ,p
n ny y X Y∈ ×x x   D

             (3) 

collected on a sample of size n drawn from Ω. If achieved, this will result in a 
computable function ˆ : pΦ →   so that the final practical model used to ex-
press the response variable Y in terms of the vector of predictors X will be:  

( )ˆ ,Y X ε= Φ +                          (4) 

where ε  is the residual error in the modeling. But once we get such a fit for the 
regression model (1), an obvious question then arises: how can one measure the 
accuracy of that computed fit (its so called goodness-of-fit)? 

For some specific regression models (generally parametric ones and, most 
notably, the LM fitted by OLS with a full column rank design matrix), various 
measures of accuracy of their fit to given data, with closed form formulas, have 
been developed. But such specific and easily computable measures of accuracy 
are not universally applicable to all regression models. So they cannot be used to 
compare two arbitrarily fitted such models. Opposite to that, in the late 1960s, 
Akaike decisively introduced an approach (but in a much broader context in-

 

 

1By default, in this paper, vectors and random vectors are column vectors, unless specified otherwise; 
and AT denotes the transpose of the matrix (or vector) A. 
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cluding time series modeling) which has that desirable universal feature [1], and 
is thus now generally recommended to compare different regression fits for the 
same data, albeit, sometimes, at some computational cost. It is based on esti-
mating the prediction error of the fit. But various definitions and measures of 
that error have been used. By far, the most popular is the Mean Squared Predic-
tion Error (MSPE), but there appears to be a myriad ways of defining it and/or 
theoretical estimates of it. A detailed lexicon on the matter is given in [2] and the 
references therein. 

These various definitions and theoretical estimates of the MSPE are, undoub-
tedly, insightful in their respective motivations and aims, but they ultimately 
make the subject of prediction error assessment utterly complicated and confus-
ing for most non expert users. This is compounded by the fact that many of 
these definitions and discussions of prediction error liberally mix theoretical es-
timates (i.e. finite averages over sample items) with intrinsic numeric characte-
ristics of the whole population (expressed through expectations of some random 
variable). In that respect, while being both aimed at estimating the MSPE, the 
respective classical derivations of Akaike’s Final Prediction Error (FPE) and 
Craven and Wahba’s Generalized Cross Validation (GCV) stem from two quite 
different perspectives [1] [3]. This makes it not easy, for the non expert user, to 
grasp that these two selection criteria might even be related in the first place. 

The first purpose of this paper is to settle on the definition of the MSPE most 
commonly known by users to assess the prediction power of any fitted model, be 
it for regression or else. Then, in that framework, we shall provide a conceptually 
simpler derivation of the FPE as an estimate of that MSPE in a LM fitted by OLS 
when the design matrix is full column rank. Secondly, we build on that to derive 
generalizations of the FPE for the LM fitted by other well known methods under 
various scenarios, generalizations seldom accessible from the traditional deriva-
tion of the FPE. Finally, we show that, in that same unified framework, a minor 
variation in the derivation of the MSPE estimates yield the well known formula 
of the GCV for all these various LM fitters. For the latter selection criterion, pre-
vious attempts [4] [5] have been made to provide a derivation of it different 
from the classical one as an approximation of the leave-one-out cross validation 
(LOO-CV) estimate of the MSPE. We view our approach as a more straightfor-
ward and inclusive derivation of the GCV score. 

To achieve that, we start, in Section 2, by reviewing the prediction error view-
point in assessing how a fitted regression model performs and to settle on the 
definition of the MSPE most commonly known by users to measure that per-
formance (while briefly recalling the alternative one most given in regression 
textbooks). Then, in Section 3, focusing specifically on the LM, we provide theo-
retical expressions of that MSPE measure valid for any arbitrary LM fitting me-
thod, be it under random or non random designs. In the next sections, these ex-
pressions are successively specialized to some of the best known LM fitters to 
deduce, for each, computable estimates of the MSPE, a class of which yielding 
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the FPE and a slight variation the GCV. Those LM fitters include: OLS, with or 
without a full column rank design matrix (Section 4), Ridge Regression, both 
Ordinary and Generalized (Section 5), the latter embedding smoothing splines 
fitting. Finally, Section 6 draws a conclusion and suggests some needed future 
work. 

As customary, we summarize the data (3) through the design matrix and the 
response vector:  

( ) ( ) ( )1 , 1, , and , , .n
n n p ny yΤ Τ= ∈ = ∈X x x y  M         (5) 

It is important to emphasize that technically, each observed response iy  is a 
realization of a random variable. Consequently, the same will be true of the vec-
tor y . On the other hand, the matrix X  is considered as fixed or random, 
depending on whether the covariates 1, , pX X  are viewed as fixed or random 
variables. According to which one holds, one talks of fixed design or random de-
sign. Our presentation will encompass both scenarios. For convenience, we will 
use the same symbol to denote a random variable and its realization. Nonethe-
less, the distinction between the latter two will be apparent from context. 

2. Prediction Error of a Fitted Regression Model  
2.1. The Prediction Error Viewpoint for Assessing a Fitted  

Regression Model  

Using the data (3), assume we got an estimate ( )Φ̂ ⋅  of the unknown regression 
function ( )Φ ⋅  in the regression model (1). Thus, we fitted the model (1) to ex-
press the response Y in terms of the vector of covariates ( )1, , pX X X=   in 
the population under study Ω. From a predictive perspective, assessing the 
goodness-of-fit of that fitted model amounts to answering the question: How 
well the fitted model is likely to predict the response variable Y on a future indi-
vidual based on its covariates values ( )1, , pX X X=  ? 

To try to formalize an answer, consider a new member of Ω, drawn indepen-
dently from the sample of Ω which produced the data (3), and assume we have 
observed its covariates vector 0

pX X= ∈ , but not its response value 0Y Y= ∈ . 
Nonetheless,served value of the latter. This is the prediction problem of |Y X  
(“Y given X”) on that individual. With model (4) fitted to the response variable 
Y, it seems natural to predict the unknown value of 0Y Y=  on that individual, 
given  from the former, we want to get an idea of the unob 0X X= , by:  

( )0 0
ˆ ˆ .Y X= Φ                          (6) 

But there is, obviously, an error attached to such a prediction of 0Y Y=  value 
by 0̂Y , called the prediction error or predictive risk of 0̂Y  w.r.t. 0Y . 

2.2. The Mean Squared Prediction Error  

The prediction error of 0̂Y  w.r.t. 0Y  needs to be assessed beforehand to get an 
idea of the quality of the fit provided by the estimated regression model (4) for 
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|Y X  in the population under study. To that aim, the global measure mostly 
used is the Mean Squared Prediction Error (MSPE), but one meets a bewildering 
number of ways of defining it in the literature [2], creating a bit of confusion in 
the mindset of the daily user of Statistics. Yet, most users would accept as defini-
tion of the MSPE:  

( ) ( )2

0 0 0 0
ˆ ˆMSPE , ,Y Y Y Y= −                     (7) 

an intrinsic characteristic of the population which we need to estimate from the 
available data (3). 

In this paper, an unconditional expectation like the r.h.s. of (7) is meant to in-
tegrate over all the random variables involved in the integrand. A conditional 
expectation, on the other hand, acts the same, except for the conditioning ran-
dom variable(s). As such, en route to getting ( )0 0

ˆMSPE ,Y Y , we will pass suc-
cessively through:  

( ) ( )2

0 0 0 0 0 0
ˆ ˆMSPE , | , , | , , ,Y Y X Y Y X = −  

X y X y          (8a) 

( ) ( )2

0 0 0 0
ˆ ˆMSPE , | , | , ,Y Y Y Y = −  

X y X y             (8b) 

( ) ( )2

0 0 0 0
ˆ ˆMSPE , | | ,Y Y Y Y = −  

X X               (8c) 

representing, each, the MSPE conditioned on some information, which might be 
relevant in its own right. In particular, ( )0 0

ˆMSPE , |Y Y X  is the relevant defini-
tion of the MSPE in the case of a fixed design. But, as a consequence of moving 
successively through (8a)-(8c) to get (7), handling the fixed design case will not 
need a special treatment because computing (8c) will be a necessary intermediate 
step. 

Obviously, for most fitted regression models, trying to compute ( )0 0
ˆMSPE ,Y Y  

or ( )0 0
ˆMSPE , |Y Y X  is a hopeless task. However, it is known that K-fold cross 

validation (CV) can be used to estimate these quantities in a nearly universal 
manner, imposing no distributional assumption and using a quasi automatic al-
gorithm [6]. Nonetheless, cross validation has its own defects such as a high ex-
tra computational cost2, the impact of the choice of K and, generally, upwards 
bias. As for the latter defect, Borra and Di Ciaccio [2] showed in an extensive 
simulation study that Repeated Corrected CV, a little popularized correction to 
K-fold cross validation developed by Burman [7], performed pretty well and 
outperformed, on some well known nonlinear regression fitters and under a va-
riety of scenarios, all the other theoretically more technically involved suggested 
measures of the MSPE alluded to above. 

Fortunately, after fitting a Linear Model to given data by a chosen method, 

 

 

2However, that defect is more and more mitigated these days, thanks to the availability of increa-
singly user-friendly parallel programming environments in popular statistical software systems, pro-
vided one has a computer allowing to exploit such possibilities, e.g. a laptop with several core pro-
cessors. 
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there is, at least for the most common methods, no need to shoulder the com-
putational cost attached to CV to estimate the MSPE of the fitted model. It is the 
purpose of this article to show that for the most well known LM fitters, one can 
transform (7)-(8c) in a form allowing to deduce, in a straightforward manner, 
two estimates of the MSPE computable from the data, which turn out to coin-
cide, respectively, with the FPE and the GCV. This, therefore, will yield a new 
way to get these two selection criteria in linear regression completely different 
from how they are usually respectively motivated and derived. 

2.3. Prediction Error and Sources of Randomness in the  
Regression Process  

The rationale behind settling on (7) or (8c) as definition of the MSPE lies in the 
fact that, from our standpoint, any global measure of the prediction error in the 
population computed from a sample collected in it must account both for the 
randomness in drawing that sample and in that of drawing a future individual. 
Consequently, each of the expectations in (7)-(8c) should be understood as inte-
grating over all the possible sources of randomness entering in the process of 
computing the prediction 0̂Y  of 0Y , safe the conditioning variables, if any:  

1) the realized, but unobserved random n-vector ( )1, , nε ε ε Τ=   of sample 
residual errors in the model (1) for the data (3). This vector results from the fact 
that for the observed sample of n individuals, the model (1) implies that  

( ) 1, 1, , , with , , i.i.d. ;i i i ny i nε ε ε ε= Φ + =x  

D
           (9) 

2) 0
pX ∈ , the vector of covariates for the potential newly independently 

drawn individual for which the unknown value 0Y ∈  of the response Y is to 
be predicted;  

3) 0ε , the error of the model (1) for that new individual, ( )0 0 0Y X ε= Φ + , 

0ε εD
 .  
4) and, in case of a random design, the entries in the design matrix X .  
The key assumption to assess the prediction error of a regression model is 

then:  
( 2A ). The random couple ( ) ( )0 0, ,X Xε εD

  and is independent from ( ),ε X .  

2.4. Measuring the Prediction Error in Regression: Sample Based  
Definition  

While the GCV score is classically derived, indeed, as an estimate of the MSPE as 
given by (7), through a two-stage process where the intermediate step is the well 
known LOO-CV estimate of that MSPE, the traditional derivation of the FPE cri-
terion stems from a completely different angle. Actually, the latter angle is the one 
presented in most textbooks on regression [8] [9]. In it, with the regression func-
tion Φ  in (1) estimated through Φ̂ , a function computed from the data (3), 
the prediction error of that fit is rather measured by how well the vector of pre-
dicted responses on sample items, ( )1ˆ ˆ ˆ, , ny y Τ=y  , with ( )ˆˆi iy = Φ x , 1, ,i n=  , 
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estimates the vector of exact responses on those items, ( )1, , n
Τ= Φ Φ , with 

( )i iΦ =Φ x , 1, ,i n=  . In that respect, one considers the mean average squared 
error, also called risk,  

( ) ( )
1

21ˆ ˆMASE | | ,
n

i i
i

y
n =

 = −Φ ∑y X X               (10) 

with bias-variance decomposition  

( ) ( ) 2

1 1

1 1ˆ ˆMASE | ar | .
n n

i i
i i

y b
n n= =

= +∑ ∑y X X              (11) 

where ( )ˆ |i i ib y= −ΦX  is the conditional bias, given X , in estimating iΦ  
by ˆiy . 

But the relation to the more obvious definition (8c) of the conditional MSPE 
is better seen when one considers, instead, the average predicted squared error 
([8] Chapter 3, page 42] or prediction risk ([9] Chapter 2, page 29):  

( ) ( )2

1

1ˆ ˆPSE | | ,
n

i i
i

y y
n

∗

=

 = −  ∑y X X               (12) 

where 1 , , ny y∗ ∗


 are putative responses assumed generated at the respective 
predictor values 1, , nx x  through model (1), but with respective errors  

1 , , nε ε∗ ∗


 independent from the initial ones 1, , nε ε . Nonetheless, there is a 
simple relation between (10) and (12):  

( ) ( )2ˆ ˆPSE | MASE | .σ= +y X y X                 (13) 

hence minimizing ( )ˆPSE |y X  w.r.t. Φ̂  is the same as doing so for  
( )ˆMASE |y X . 

In its classical derivation for linear regression (see, e.g., [10], pages 19-20), the 
FPE selection criterion is an estimate of ( )ˆPSE |y X . Now, with the terminolo-
gy elaborated in [5], measuring the prediction error by the latter amounts to us-
ing a Fixed-X viewpoint as opposed to the Random-X one when measuring it 
instead through ( )0 0

ˆMSPE ,Y Y . But an even more common terminology to dis-
tinguish these two approaches to estimating the predictive performance of a re-
gression method qualifies the first as in-sample prediction and the second one as 
out-of-sample prediction. It should be said that while in the past, the prediction 
error was mostly evaluated using the in-sample paradigm, facing the complexity 
of data met in modern statistics, noticeably high dimensional data, many re-
searchers in regression have advocated or used the out-of-sample viewpoint, 
though this might be through either (7), (8b), or (8c), depending on the au-
thor(s). In that respect, in addition to the aforementioned paper of Trosset and 
Tibshirani, we may cite, e.g., Breiman and Spector [11], Leeb [12], Dicker [13], 
Dobriban and Wager [14]. 

Note, however, that the prediction error viewpoint in assessing the quality of a 
regression fit is not without its own demerits. Indeed, in [15] and [16], it is hig-
hlighted that in the specific case of smoothing splines regression, one can find a 
fit which is optimal from the prediction error viewpoint, but which clearly un-
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dersmoothes the data, resulting in a wiggly curve. But the argument appears to 
be more a matter of visual esthetics because the analysis in those papers targets 
the regression function Φ, which is, indeed, probably the main objective of many 
users of univariate nonparametric regression. Nonetheless, when measuring the 
prediction error through ( )0 0

ˆMSPE ,Y Y , the target is rather the response Y, i.e. 
Φ + error, in which the wiggliness is inherently embedded. Do not forget that 
when formulating his Final Prediction Error, Akaike was working on real world 
engineering problems [17]. Hence his interest in targeting the actual output in 
his predictions. 

3. MSPE of a Linear Model Fitter  

From now on, we focus attention on the generic LM, with ( )1, , pβ β β
Τ

=  :  

1 1 ,p pY X X Xβ β ε β εΤ= + + + = +                (14) 

to be fitted to the data (3). Because of its ease of tractability and manipulation, 
the LM is the most popular approach to estimating the regression function 
( )Φ ⋅  in (1). It is mostly implemented by estimating β  through the Ordinary 

Least Squares criterion. However, several other approaches have been designed 
to estimate β  based on various grounds, such as Weighted Least Squares, To-
tal Least Squares, Least Absolute Deviations, LASSO [18] and Ridge Regression 
[19]. Furthermore, some generally more adaptive nonparametric regression 
methods proceed by first nonlinearly transforming the data to a scale where they 
can be fitted by a LM. Due to its more than ever quite central role in statistical 
modeling and practice, several books have been and continue to be fully devoted 
to the presentation of the LM and its many facets such as: [20] [21] [22] and 
[23]. 

3.1. Some Preliminaries  

For the sample of n individuals with recorded data (3), the general regression 
Equation (9) becomes, in the case of the LM (14):  

, 1, , ,i i iy i nβ εΤ= + =x 
                   (15) 

or, better globally summarized in matrix form,  

( )1, with , , .nβ ε ε ε ε Τ= + =y X                 (16) 

Then Assumptions ( 0A ) and ( 1A ) respectively imply here:  

( ) ( ) 2| and cov | ,nε ε σ= =X X I 0              (17) 

with nI  the n-by-n identity matrix. Consequently,  

( ) ( ) 2| and cov | .nβ σ= =y X X y X I              (18) 

Fitting the LM (14) boils down to estimating the p-vector of parameters β . 
We call Linear Model fitter, or LM fitter, any method allowing to achieve that. 
First, we consider an arbitrarily chosen such method. It uses the data (3) to 
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compute ˆ pβ ∈ , an estimate of β . The precision of that estimate3 can be as-
sessed through its Mean Squared Error matrix:  

( ) ( )( )ˆ ˆ ˆse .β β β β β
Τ = − −  

                 (19a) 

But to reach ( )ˆse β  generally requires passing through the conditional 
Mean Squared Error matrix of β̂  given the design matrix X :  

( ) ( )( )ˆ ˆ ˆMse | | .β β β β β
Τ = − −  

X X             (19b) 

The relationship between the two is:  

( ) ( )ˆ ˆMse se | .β β =  X X                   (19c) 

Those two matrices will play a key role in our MSPE derivations to come. 
The precision of an estimate of a vector parameter like β  is easier to assess 

when its Mean Squared Error matrix coincides with its covariance matrix. Hence, 
our interest in:  

Definition 1 In the LM (14), β̂  is an unbiased estimate of β , conditionally 
on X , if ( )ˆ |β β=X . 

Then one has: ( ) ( )ˆ ˆse | cov |β β=X X  , the conditional covariance matrix 
of β̂  given X .  

Since ( ) ( )ˆ ˆ |β β =  X X   , it is immediate that if β̂  is an unbiased esti-
mate of β , conditionally on X , then ( )β̂ β= , i.e. β̂  is an unbiased esti-
mate of β  (unconditionally). So the former property is stronger than the latter, 
but is more useful in this context. Note also that it implies: ( ) ( )ˆ ˆse covβ β=  , 
the covariance matrix of β̂ . On the other hand, when β̂  is a biased estimate 
of β , the bias-variance decomposition of ( )ˆse β  might be of interest:  

( ) ( ) ( ) ( )ˆ ˆ ˆ ˆse ias ias cov ,β β β β
Τ

= +                  (20) 

where ( ) ( )ˆ ˆias β β β= −  . 

3.2. MSPE of a Linear Model Fitter: Base Results  

In the prediction setting of Section 2.1 applied to the LM (14), one has, for the 
new individual:  

0 0 0 ,Y X β εΤ= +                        (21) 

with 0ε εD
 , but unknown. It would then be natural to predict the response val-

ue 0Y  by  

( )0 0 0 ,Y X XβΤ= = Φ                      (22) 

were the exact value of the parameter vector β  available. Since that is not typ-

 

 

3Keeping in line with our stated convention of denoting a random variable and its realization by the 
same symbol, whereas, technically, an estimate of a parameter is a realization of a random variable 
called estimator of that parameter, we use the term estimate here for both. So when an estimate ap-
pears inside an expectation or a covariance notation, it is definitely the estimator which is meant. 
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ically the case, one rather predicts 0Y  by the computable quantity  

( )0 0 0
ˆˆ ˆ .Y X XβΤ= = Φ                      (23) 

The goal here is to find expressions, in this context, for the MSPE of 0̂Y  w.r.t. 

0Y  as given by (7)-(8c), manageable enough to allow the derivation of computa-
ble estimates of that MSPE for the most common LM fitters. The starting point 
to get such MSPE expressions is the base result: 

Theorem 1 For any β̂  estimating β  in the LM (14), one has, under ( 0A ), 
( 1A ), ( 2A ):  

( ) ( )( )2
0 0 0 0 0

ˆ ˆˆMSPE , | , , tr ,Y Y X X Xσ β β β β
Τ

Τ = + − − ⋅  
X y      (24a) 

( ) ( )( ) ( )2
0 0 0 0

ˆ ˆˆMSPE , | , tr ,Y Y X Xσ β β β β
Τ

Τ = + − − ⋅  
X y       (24b) 

( ) ( ) ( )2
0 0 0 0

ˆˆMSPE , | tr se | ,Y Y X Xσ β Τ = + ⋅ X X          (24c) 

( ) ( ) ( )2
0 0 0 0

ˆˆMSPE , tr se .Y Y X Xσ β Τ = + ⋅              (24d) 

Proof. From ( )0 0 0 0
ˆŶ Y X β β εΤ− = − − , we first get:  

( ) ( ) ( ) 22 2
0 0 0 0 0 0

ˆ ˆˆ 2 .Y Y X Xε ε β β β βΤ Τ − = − − + − 
           (25) 

Now, from (8a) and using Assumption ( 2A ),  

( )
( ) ( ) ( ) ( )
( ) ( ) ( )

0 0 0

2
2
0 0 0 0 0 0

2 2
2

0 0 0 0

ˆMSPE , | , ,

ˆ ˆ| 2 |

ˆ ˆar | ,

Y Y X

X X X X

X X X

ε ε β β β β

ε β β σ β β

Τ Τ

Τ Τ

 = − − + − 

   = + − = + −   

X y

 



        (26) 

the latter because ( ) ( )0 0| | 0X Xε ε= =  , and so  

( ) ( ) ( )2 2
0 0 0 0| ar | ar |X X Xε ε ε σ= = =   . On the other hand,  

( ) ( )2 2

0 0
ˆ ˆtrX Xβ β β βΤ Τ   − = −   

 because ( ) 2

0
ˆX β βΤ − 

 is a scalar. Thus  

( ) ( )( ) ( )( )2

0 0 0 0 0
ˆ ˆ ˆ ˆ ˆtr tr ,X X X X Xβ β β β β β β β β β

Τ Τ
Τ Τ Τ    − = − − = − −        

 

which, inserted in (26), yields (24a). 
Thanks to (24a) and identity (8b), we have  

( ) ( )

( ){ } ( )

( )( ){ }
( ) ( )( ){ }

0

0

0 0

2

0 0 0 0

2

0 0 0 0

2
0 0

2
0 0

ˆ ˆMSPE , | , | ,

ˆ | , , , since ,

ˆ ˆtr

ˆ ˆtr

X

X

X X

Y Y Y Y

Y Y X X

X X

X X

σ β β β β

σ β β β β

Τ
Τ

Τ
Τ

 = −  

 = − ⊥⊥  

 = + − − ⋅  

 = + − − ⋅  

X y X y

X y X y
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( )( ){ }
( )( ) ( )

( )( ) ( )

0

0

2
0 0

2
0 0

2
0 0

ˆ ˆtr

ˆ ˆtr

ˆ ˆtr .

X

X

X X

X X

X X

σ β β β β

σ β β β β

σ β β β β

Τ
Τ

Τ
Τ

Τ
Τ

 = + − − ⋅  

 = + − − ⋅  
 = + − − ⋅  







 

Likewise, (24b) and (8c) give:  

( ) ( ) ( )

( )( ) ( ){ }
( ) ( )( ) ( ){ }

( )( ) ( ){ }

2 2

0 0 0 0 | 0 0

2
| 0 0

2
| | 0 0

2
| 0 0

ˆ ˆ ˆMSPE , | | | ,

ˆ ˆtr

ˆ ˆtr

ˆ ˆtr

Y Y Y Y Y Y

X X

X X

X X

σ β β β β

σ β β β β

σ β β β β

Τ
Τ

Τ
Τ

Τ
Τ

   = − = −      

 = + − − ⋅  

 = + − − ⋅  

 = + − − ⋅  

y X

y X

y X y X

y X

X X X y  

 

  

 

 

( )( ) ( ){ }
( )( ) ( ){ }
( ) ( )

2
| 0 0

2
| 0 0

2
0 0

ˆ ˆtr

ˆ ˆtr

ˆtr se | .

X X

X X

X X

σ β β β β

σ β β β β

σ β

Τ
Τ

Τ
Τ

Τ

 = + − − ⋅  

 = + − − ⋅  

 = + ⋅ 

y X

y X

X

 

 

 

 

From relations (24c) and (7), one gets:  

( ) ( ) ( )
( ) ( ){ }

( ) ( ) ( ){ }
( ) ( ){ }
( ) ( ){ }

( ) ( )

2 2

0 0 0 0 0 0

2
0 0

2
0 0

2
0 0

2
0 0

2
0 0

ˆ ˆ ˆMSPE , |

ˆtr se |

ˆtr se |

ˆtr se |

ˆtr se |

ˆtr se .

Y Y Y Y Y Y

X X

X X

X X

X X

X X

σ β

σ β

σ β

σ β

σ β

Τ

Τ

Τ

Τ

Τ

 = − = −  

 = + ⋅ 

 = + ⋅ 

 = + ⋅ 

 = + ⋅ 

 = + ⋅ 

X

X

X X

X

X

X

X

X

X

X

  

  

   

  

  

 

 

  
The above result is interesting in that it imposes no assumption on β̂ , hence 

it is valid for any LM fitter. But an immediate important subcase is provided in:  
Corollary 2 If, conditional on X , β̂  estimates β  unbiasedly in the LM 

(14), then, under Assumptions ( 0A ), ( 1A ) and ( 2A ):  

( ) ( ) ( )2
0 0 0 0

ˆˆMSPE , | tr cov | ,Y Y X Xσ β Τ = + ⋅ X X        (27a) 

( ) ( ) ( )2
0 0 0 0

ˆˆMSPE , tr cov .Y Y X Xσ β Τ = + ⋅            (27b) 

4. MSPE When Fitting the LM by Ordinary Least Squares  

By far, the most popular approach to estimating the parameter vector β  in the 
LM (14) is through minimizing the Ordinary Least Squares (OLS) criterion us-
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ing the observed data (3):  

( )2

OLS
1

ˆ ˆ argmin .
p

n

i i
i

y
β

β β βΤ
=∈

= = −∑ x


              (28) 

The properties of OLSβ̂  as an estimate of β  depend on whether the design 
matrix X  has full column rank or not. This remains true when studying the 
corresponding MSPE as well. 

4.1. MSPE in the LM Fitted by OLS with X of Full Column Rank 
4.1.1. LM Fitted by OLS with X Full Column Rank  
Here, we consider the LM (14) fitted under: 

( 3A ). ( )rank p=X , i.e. X  is a full column rank matrix.  
That assumption is known to be equivalent to saying that the square matrix 
ΤX X  is nonsingular, thus implying that  

( ) 1

OLS
ˆ .β

−Τ Τ= X X X y                     (29) 

Furthermore, given Assumptions ( 0A )-( 1A ), (18) holds, so  

( ) ( ) ( ) 12
OLS OLS

ˆ ˆ| and cov | .β β β σ
−Τ= =X X X X         (30) 

We also recall that under these assumptions, with OLS
ˆˆ β= −e y X  the residual 

response vector and ⋅  the Euclidean norm, a computable unbiased estimate 
of the residual variance 2σ  is:  

( )222
OLS

1

SSR ˆˆˆ , with SSR ,
n

i i
i

y
n p

σ βΤ
=

= = = −
− ∑e x          (31) 

the latter being the sum of squared residuals in the OLS fit to the data. 
Now, from the first identity in (30), we deduce that when X  is full column 

rank, OLSβ̂  is an unbiased estimate of β , conditionally on X . Hence, com-
bining the second identity in (30) with Corollary 2 yields: 

Theorem 3 In the LM (14) fitted by OLS with Assumptions ( 0A ), ( 1A ), 
( 2A ) and ( 3A ),  

( ) ( ) ( )12
0 0 0 0
ˆMSPE , | 1 tr ,Y Y X Xσ

−Τ Τ  = + ⋅    
X X X        (32a) 

( ) ( ) ( ){ }12
0 0 0 0
ˆMSPE , 1 tr .Y Y X Xσ

−Τ Τ  = + ⋅    
X X        (32b) 

Proof. From (24c),  

( ) ( ) ( )
( ) ( )

( ) ( )

( ) ( )

( ) ( )

2
0 0 OLS 0 0

2
OLS 0 0

12 2
0 0

12 2
0 0

12
0 0

ˆˆMSPE , | tr se |

ˆtr cov |

tr

tr

1 tr .

Y Y X X

X X

X X

X X

X X

σ β

σ β

σ σ

σ σ

σ

Τ

Τ

−Τ Τ

−Τ Τ

−Τ Τ

 = + ⋅ 
 = + ⋅ 
 = + ⋅  
 = + ⋅  

  = + ⋅    

X X

X

X X

X X

X X
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Now, using (32a), one gets:  

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

2

0 0 0 0

12
0 0

12
0 0

12
0 0

12
0 0

12

ˆ ˆMSPE , |

1 tr

1 tr

1 tr

1 tr

1 tr

Y Y Y Y

X X

X X

X X

X X

σ

σ

σ

σ

σ

−Τ Τ

−Τ Τ

−Τ Τ

−Τ Τ

−Τ

 = −  
   = + ⋅      
   = + ⋅      
   = + ⋅      
   = + ⋅      

= +


X

X

X

X

X

X

X X

X X

X X

X X

X X

 

 

 

 

 

 ( ){ }0 0 ,X X Τ  ⋅   


 

from which the result is got.   

4.1.2. The FPE and the GCV in the LM Fitted by OLS with X of Full Column  
Rank 

From (32b) in Theorem 3, we deduce a closed form computable estimate of 

( )0 0
ˆMSPE ,Y Y , using data (3), by estimating, respectively:  

• the residual variance 2σ  by 2σ̂  given by (31);  

• the p p×  expectation matrix ( ) 1−Τ 
  

X X  by the observed ( ) 1−ΤX X ;  

• the p p×  expectation matrix ( )0 0X X Τ  by (given that 1, , nx x  are i.i.d. 

0XD
 ):  

1

1 1 .
n

i i
in n

Τ Τ

=

=∑ x x X X                      (33) 

Therefore, one estimates ( )0 0
ˆMSPE ,Y Y  by  

 ( ) ( ) ( ) ( )12 2
0 0

2 2

1 1ˆ ˆ ˆMSPE , 1 tr 1 tr

SSR ˆˆ 1 FPE,

pY Y
n n
p n p n pS
n n p n n p

σ σ

σ

−Τ Τ    = + ⋅ = +        
+ + = + = ⋅ = ⋅ =  − − 

X X X X I
  (34) 

with  
222

OLS
ˆ ˆˆSSR ,S n n nβ= = = −e y X              (35) 

the usual Maximum Likelihood Estimator of the residual variance 2σ  in the 
LM (14) when the residual error ε  is assumed to follow a ( )20,σN  Gaus-
sian distribution. 

We see that the final estimate  ( )0 0
ˆMSPE ,Y Y  obtained for ( )0 0

ˆMSPE ,Y Y  
coincides with Akaike’s Final Prediction Error (FPE) goodness-of-fit criterion 
for the LM (14) fitted by OLS [1]. The main difference between the derivation 
above and the traditonal one is that the latter uses the sample viewpoint of the 
prediction error reviewed in Section 2.4. The latter excludes the possibility that 
covariates values on a future individual might be completely unrelated to the 
observed ix ’s in the sample (3). In particular, it does not account for any po-
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tential random origin for the design matrix X , a situation often encountered in 
certain areas of application of the LM such as in econometrics. 

On the other hand, estimating, instead, ( )0 0X X Τ  by ( )n pΤ −X X  yields 
as estimate of ( )0 0

ˆMSPE ,Y Y :  

( ) ( )

2
2

2 2

ˆSSRˆ 1 GCV,
1

p n S
n p n p p n

σ
  ⋅
+ = = = − − − 

           (36) 

the traditional GCV estimate of ( )0 0
ˆMSPE ,Y Y  in the LM fitted by OLS with 

X  full column rank. 
Remark 1 Note that the very way the two estimates (34) and (36) of 

 ( )0 0
ˆMSPE ,Y Y  were derived above implies that they can also validly serve, each, 

as an estimate of the conditional ( )0 0
ˆMSPE , |Y Y X  given by (32a). This will 

remain true for all the estimates derived for the MSPE under the other scenarios 
examined in this paper.  

4.2. MSPE in the LM Fitted by OLS with X Not of Full Column Rank  
4.2.1. LM Fitted by OLS with X Column Rank Deficient  
Although Assumption ( 3A ) is routinely admitted by most people when han-
dling the LM, one actually meets many concrete instances of data sets where it 
does not hold. Fortunately, with the formalization by Moore [24], Penrose [25] 
and, especially, Rao [26] of the notion of generalized inverse (short: g-inverse) of 
an arbitrary matrix, it became possible to handle least squares estimation in the 
LM without having to assume the design matrix X  necessarily of full column 
rank. 

To begin with, it is shown in most textbooks on the LM that whatever the 
rank of the design matrix X , a vector ˆ pβ ∈  is a solution to the OLS mini-
mization problem (28) if, and only if, β̂  is a solution to the so called normal 
equations:  

ˆ .βΤ Τ=X X X y                         (37) 

When Assumption ( 3A ) holds, the unique solution to the normal equations 
is clearly OLS

ˆ ˆβ β=  given by (29). When that’s not the case, the square matrix 
ΤX X  is singular, hence does not have a regular inverse ( ) 1−ΤX X . Neverthe-

less, even then it can be shown that the normal Equation (37) are always consis-
tent. But the apparent negative thing is that they then have infinitely many solu-
tion vectors β̂ , actually all vectors ˆ pβ ∈  of the form:  

( )OLS
ˆ ˆ ,β β

−− Τ Τ= = X X X y                   (38) 

where ( )−ΤX X  is any g-inverse of ΤX X  in the sense of Rao. Given that mul-
titude of possible OLS estimates of β  in this case, one may worry that this may 
hinder any attempt to get a meaningful estimate of the MSPE in the fitted LM. 
But we are going to show that such a worry is not warranted. 

When Assumption ( 3A ) does not hold, in spite of there being as many solu-
tions OLSβ̂ −  to the normal Equation (37) as there are g-inverse s ( )−ΤX X  of 
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ΤX X , i.e. infinitely many, it is a remarkable well known fact that the fitted re-
sponse vector  

( )OLS
ˆˆ , with ,H Hβ

−− Τ Τ= = ⋅ =X Xy X y X X X X          (39) 

is the same, whichever g-inverse ( )−ΤX X  of ΤX X  is used to compute OLSβ̂ −  
through (38). This stems from the hat matrix H X  being equal to the matrix of 
the orthogonal projection of n  into the range space of X  ([22] Appendix 
A). Therefore, the residual response vector  

( )OLS
ˆˆ ˆ ,n Hβ −= − = − = − Xe y y y X I y               (40) 

does not vary with the g-inverse ( )−ΤX X  either. Then we will need the result:  
Lemma 4 With ( )rankr =X X , one has: ( )tr H r=X X  and  

( ) ( )2 2ˆ | n r σ= − ⋅Xe X .  
Proof. On the one hand, one has:  

( ) ( ) ( )tr tr tr .H
− −Τ Τ Τ Τ   = =      X X X X X X X X X         (41) 

Now, ( )−ΤX X  being a g-inverse of ΤX X , it comes that ( )−Τ ΤX X X X  is 
an idempotent matrix ([22] Appendix A, page 509]. Hence  

( ) ( ) ( ) ( )tr rank rank rank .r
− −Τ Τ Τ Τ Τ   = = = =       XX X X X X X X X X X X (42) 

Relations (41) and (42) give ( )tr H r=X X . On the other hand,  

( ) ( )( ) ( ) ( )ˆ .n n n nH H H Hβ ε β ε= − = − + = − + −X X X Xe I y I X I X I   (43) 

Now, H X  being the matrix of the orthogonal projection of n  into the 
range space of X , then H =X X X . Hence,  

( ) 0.n H H− = − =X XI X X X                    (44) 

From (43) and (44), we get ( )ˆ n H ε= − Xe I . Therefore:  

( ) ( ) ( ) ( )22ˆ .n n n nH H H Hε ε ε ε ε εΤΤ Τ Τ= − − = − = −X X X Xe I I I I  

Under Assumptions ( 0A ),( 1A ), and thanks to the known identity which 
gives the expectation of a quadratic form ([27] Appendix B, page 170], one has:  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

2 2 2

ˆ | | | tr cov |

tr tr tr

n n

n n n

H H

H H n r

ε ε ε

σ σ σ

Τ    = − + −    
   = − = − = −  

X X

X X X

e X X I X I X

I I I

   
 

  

An unbiased estimate of the LM residual variance 2σ  in this case is thus 
known to be:  

( )2222
OLS OLS

1

SSR ˆ ˆˆˆ , with SSR .
n

i i
i

y
n r

σ β β− Τ −

=

= = = − = −
− ∑X

X

e y X x   (45) 

We will also need the mean vector and covariance matrix of OLSβ̂ − . First,  

( ) ( )OLS
ˆ | ,β β

−− Τ Τ=X X X X X                  (46a) 

which shows that OLSβ̂ −  is a biased estimator of β  when Assumption ( 3A ) 
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does not hold. But in spite of that, note that from (39),  

( ) ( ) ( ) ( )OLS OLS
ˆ ˆˆ | | | | .Hβ β β β− −= = = = =Xy X X X X X X X y X     (46b) 

On the other hand,  

( ) ( ) ( ) ( ) ( )2
OLS

ˆcov | , with ,
S S

β σ
Τ− − − −− Τ Τ Τ Τ Τ = =   

X X X X X X X X X X X (47a) 

the symmetric and positive semi-definite matrix ( )
S

−ΤX X  also being a g-in- 
verse of ΤX X . Then  

( ) ( ) ( )
( )

OLS OLS

2 2

ˆ ˆˆcov | cov | cov |

,
S

H

β β

σ σ

− − Τ

−Τ Τ

= =

= = X

y X X X X X X

X X X X

  
      (47b) 

again independent of the g-inverse ( )−ΤX X  of ΤX X  used to compute OLSβ̂ − .  

4.2.2. Preliminary for the MSPE in the LM Fitted by OLS without  
Assumption ( 3A )  

Our first aim here is to examine the MSPE in the LM when fitted by OLS under 
the assumption that the design matrix X  might not have full column rank. So 
β  has been estimated through OLSβ̂ −  given by (38) and we are interested in 

( ) ( )2

0 0 0 0
ˆ ˆMSPE ,Y Y Y Y= − , where 0 0 OLS

ˆŶ X βΤ −=  is taken as prediction of Y on 
an independently sampled new individual for whom 0

pX X= ∈  would have 
been observed, but not 0Y Y= ∈ . We are going to use the results of Section 3.2. 
First note that since, from the above, OLSβ̂ −  is a biased estimator of β , Corol-
lary 2 does not apply here. Nonetheless, from Theorem 1, we get:  

( ) ( ) ( )2
0 0 OLS 0 0

ˆˆMSPE , | tr se | ,Y Y X Xσ β − Τ = + ⋅ X X         (48a) 

( ) ( ) ( )2
0 0 OLS 0 0

ˆˆMSPE , tr se .Y Y X Xσ β − Τ = + ⋅             (48b) 

Our estimation of ( )0 0
ˆMSPE ,Y Y  in this case will be based on those two iden-

tities and: 
Lemma 5 In the LM (14) with Assumptions ( 0A )-( 1A ),  

( ) ( )2
OLS

ˆtr se | , with rank .r rβ σ− Τ ⋅ = ⋅ =  X XX X X X        (49) 

Proof. For  

( ) ( ) ( )( ){ }OLS OLS OLS
ˆ ˆ ˆtr se | tr |A β β β β β

Τ
− Τ − − Τ  = ⋅ = − − ⋅    

X X X X X X X  ,  

( ) ( )( ){ }OLS OLS
ˆ ˆtr |A β β β β

Τ
− − Τ = ⋅ − − ⋅  

X X X X  

( )( ){ }OLS OLS
ˆ ˆtr |β β β β

Τ
− − Τ = − −  

X X X  

( )( ){ }ˆ ˆtr |β β Τ = − − y X y X X  

( )ˆtr cov | =  y X , thanks to (46b) 
( )2tr Hσ= X , by (47b). 

Hence (49), thanks to Lemma 4.   
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4.2.3. The FPE and the GCV in the LM Fitted by OLS with X Column Rank  
Deficient  

Given (48a), we first estimate ( )0 0X X Τ  by nΤX X  as in (33), which entails 
the following preliminary estimate of ( )0 0

ˆMSPE , |Y Y X  in the present case, 
using the last lemma:  

 ( ) ( )2 2
0 0 OLS

1 ˆˆMSPE , | tr se | 1 .rY Y
n n

σ β σ− Τ   = + ⋅ = +    
XX X X X    (50) 

But since ( ) ( )0 0 0 0
ˆ ˆMSPE , MSPE , |Y Y Y Y= X X , then (51) also gives a prelim-

inary estimate of ( )0 0
ˆMSPE ,Y Y . Then, estimating 2σ  by 2σ̂ X  given by (45), 

our final estimate of ( )0 0
ˆMSPE ,Y Y  in this case, computable from data, is:  

2 2ˆˆFPE 1 ,r n rS
n n r

σ
+ = + = ⋅  − 

X X
X

X

                (51) 

which is also an estimate of ( )0 0
ˆMSPE , |Y Y X . It is denoted FPE because it ge-

neralizes (34) in assessing the goodness-of-fit of OLS in the LM when the design 
matrix X  is column rank deficient. The remarkable feature is that this esti-
mate is the same, whichever g-inverse ( )−ΤX X  of ΤX X  was used to get the 
estimate OLSβ̂ −  of β  in (38). 

Estimating, instead, ( )0 0X X Τ  by ( )n rΤ − XX X  yields as estimate of 
 ( )0 0

ˆMSPE ,Y Y :  

( ) ( )

2
2

2 2

ˆSSRˆ 1 GCV,
1

r n S
n r n r r n

σ
  ⋅
+ = = = − − − 

X
X

X X X

         (52) 

the GCV estimate of ( )0 0
ˆMSPE ,Y Y  in the LM fitted by OLS when X  is not 

full column rank. 

5. MSPE when Fitting the LM by Ridge Regression  

The design matrix X  being column rank deficient means that its p columns 
are linearly dependent, or almost so. This happens when there is multicollinear-
ity among the p regressors 1, , pX X , and thus some of them are redundant 
with some others. However, when this occurs, computing an OLS estimate OLSβ̂ −  
of β , given by (38), in a numerically stable manner is not easy and requires 
using carefully designed Numerical Linear Algebra programming routines. The 
difficulty stems from the fact that this requires, at least implicitly, to find, along 
the way, the exact rank of X , which is difficult to achieve, precisely because of 
the multicollinearity among its columns. It can then be of much interest to have 
a method which can fit the LM without having to bother about the exact rank of 
X . This is precisely what Ridge regression (RR) tries to achieve. 

Hoerl and Kennard presented two variants of Ridge Regression [19]. In the 
initial one (the default), which some have termed Ordinary Ridge Regression 
(ORR), to fit the LM (14), one estimates β  through regularizing the OLS crite-
rion (28) by a ridge constraint, yielding:  

( )2 2

1

ˆ ˆ argmin ,
p

n

i i
i

yλ
β

β β β λ βΤ

=∈

 = = − +  
∑ x


             (53) 
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for some 0λ > , a penalty parameter to choose appropriately. The unique solu-
tion to (54) is known to be (whatever the rank of X ):  

1ˆ , with .pG Gλ λ λβ λ− Τ Τ= = +X y X X I               (54) 

Hoerl and Kennard presented ORR in [19] assuming that the design matrix 
X  was full column rank (i.e. our Assumption ( 3A )), which also requires that 
n p≥ . But because the symmetric matrix ΤX X  is always at least semi-positive 
definite, imposing 0λ >  entails that the p p×  matrix Gλ  is symmetric and 
positive definite (SPD), whatever the rank of X  and the ranking between the 
integers n and p. That is why, in what follows, we do not impose any rank con-
straint on X  (apart being trivially ≥1 because X  is nonzero). No specific 
ranking either is assumed between n and p. 

However, hereafter, since it does not require extra work, we directly consider 
the extended setting of Generalized Ridge Regression (GRR) which, to fit the LM 
(14), estimates β  through solving the minimization problem:  

( )2 2

1

ˆ ˆ argmin ,
p

n

i i
i

yλ
β

β β β λ βΤ

=∈

 = = − + ⋅  
∑ Dx


            (55) 

where λ  is as in ORR and D  is a p p×  symmetric and semi-positive defi-
nite (SSPD) matrix, both given, while 2β β βΤ=D D . The solution of (56) is still 
(55), but now with  

,Gλ λΤ= +X X D                        (56) 

under the assumption that the latter is SPD. Since smoothing splines fitting can 
be cast in the GRR form (56), what follows applies to that hugely popular non-
parametric regression method as well. 

5.1. The MSPE Issue for Ridge Regression  

More than for Least Squares, depending on the unspecified parameter λ , it is 
critical to assess how Ridge Regression fits the LM for given data in order to be 
able to select the best λ  value, i.e. the one ensuring the best fit. From the pre-
diction error point of view stated in this article, this amounts to choosing the 

0λ >  for which the RR fit has the smallest MSPE. It, thus, requires to estimate 

( ) ( )2

0 0 0 0
ˆ ˆMSPE ,Y Y Y Yλ = −  for any given λ  value, where 0X  and 0Y  are as 

before, while 0 0
ˆŶ X λβ

Τ= . Traditionally, estimating ( )0 0
ˆMSPE ,Y Yλ  in this con-

text is mostly done using the Generalized Cross Validation (GCV) criterion in-
itially developed by Craven and Wahba for selecting the best value of the smooth-
ing parameter in a smoothing spline [3]. That GCV is obtained as a variation of 
the LOO-CV. Here, to estimate ( )0 0

ˆMSPE ,Y Yλ , we take a different route. We 
first note that the fitted sample response vector is  

1ˆˆ , with .H H Gλ λ λ λ λβ − Τ= = =y X y X X              (57) 

On the other hand, from (55),  

( ) ( )1 1ˆ | | , with .pG T T Gλ λ λ λ λβ β− Τ − Τ= = = ≠X X y X X X I     (58) 
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So, again, Corollary 2 does not apply. But, using Theorem 1,  

( ) ( ) ( )2
0 0 0 0

ˆˆMSPE , | tr se | ,Y Y X Xλ λσ β Τ = + ⋅ X X        (59a) 

( ) ( ) ( )2
0 0 0 0

ˆˆMSPE , tr se .Y Y X Xλ λσ β Τ = + ⋅            (59b) 

For estimating those quantities, we will need some preliminary results. 

5.2. Preliminary Results for Estimating the MSPE in Ridge  
Regression  

First, two simple, but remarkable identities about the matrices Hλ  and Tλ  
given in (58) and (59). 

Lemma 6 1
pT Gλ λλ −= −I D  and ( )1

nG Hλ λλ − = −X D I X .  
Proof. The first identity is easily got from (59) and (57). Indeed, one has:  

1 1 1 1 ,p G G G G T Gλ λ λ λ λ λλ λ− − Τ − −= = + = +I X X D D  

As for the second one,  

( ) ( )1 1 1 .nG G G G Hλ λ λ λ λλ − − Τ − Τ= − = − = −X D X X X X X X X I X    

  
Next, a key preliminary about the Mean Squared Error matrix of ˆ

λβ  as an 
estimate of β : 

Lemma 7 Under Assumptions ( 0A )-( 1A ), one has:  

( ) ( ) ( ) 22 2ˆtr se | tr .nH Hλ λ λβ σ βΤ ⋅ = + − X X X I X         (60) 

Proof. Inserting (20) in ( ) ( )ˆ ˆtr se | tr se |λ λβ βΤ Τ   ⋅ =   X X X X X X   
gives:  

( ) ( ) ( )ˆtr se | tr tr ,A Bλβ
Τ ⋅ = + X X X  

with ( )ˆcov |A λβ
Τ= X X X  and ( ) ( )ˆ ˆias iasB λ λβ β

Τ
 = ⋅  X X  . Now,  

( ) ( ) 2 2ˆcov | cov |A H H Hλ λ λ λσ= = =y X y X   

( ) ( ) ( ){ } ( )
( ) ( )

2

2 2 21

ˆ ˆ ˆtr tr ias ias ias

,p n

B

T G H

λ λ λ

λ λ λ

β β β

β λ β β

Τ

−

 = = 

= − = = −

X X X

X I X D I X

  
 

the last three identities using (59) and Lemma 6.   
With the above lemma, we are now in a position to be able to estimate  

( )0 0
ˆMSPE ,Y Yλ  in Ridge Regression. We examine, hereafter, two paths for achiev-

ing that: one leads to the FPE, the other one to the GCV. 

5.3. Estimating the MSPE in Ridge Regression by the FPE  

Here, we first estimate ( )0 0X X Τ  by nΤX X  in (60a). Then, given (61), this 
suggests the preliminary estimate of ( )0 0

ˆMSPE , |Y Yλ X  in RR:  
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 ( ) ( )
( ) ( )

0 2
0 0

22
2

1 ˆˆMSPE , | tr se |

tr
1 ,n

Y Y
n

H H
n n

λ λ

λ λ

σ β

β
σ

Τ = + ⋅ 

  −
 = + +
  

X X X X

I X



       (61) 

which is also, therefore, a preliminary estimate of ( )0 0
ˆMSPE ,Y Yλ . It is only a 

preliminary estimate because even given λ , it still depends on the two un-
knowns 2σ  and β . Interestingly, it can be shown ([8] Chapter 3, page 46) 
that (62) coincides with ( )ˆPSE |λy X  given by (62) in the present setting. 

It is useful to note that (62) depends on β  only through the squared bias 
term ( ) 2

n Hλ β−I X . To estimate the latter, let ( )ˆ ˆ n Hλ λ λ= − = −e y y I y , the 
vector of sample residuals, and 2ˆSSRλ λ= e , the sum of squared residuals in 
the Ridge Regression fit. Then, thanks to a well known identity ([9] Chapter 2, 
page 38),  

( ) ( ) ( )2 22SSR | tr ,n nH Hλ λ λβ σ  = − + − X I X I  

implying that ( )22SSR tr n Hλ λσ  − − I  is an unbiased estimate of  
( ) 2

n Hλ β−I X . Hence a general formula for computing an estimate of the 
MSPE in Ridge Regression:  

( ) ( )2
2 ˆ2 tr SSR

ˆFPE ,
H

n
λ λσ

σ
+

=                  (62) 

where 2σ̂  is a chosen estimate of 2σ , possibly computed from the RR fit, thus 
dependent on λ . 

We denoted ( )2ˆFPE σ  the estimate of the MSPE given by (63) for the reason 
to follow. Indeed, probably the most popular estimate of the residual variance 

2σ  from an RR fit is the one proposed by Wahba in the context of smoothing 
splines [28]:  

( )
2
1

SSRˆ .
trn H

λ

λ

σ =
−

                      (63) 

Now, if one uses 2 2
1ˆ ˆσ σ=  in (63), an algebraic manipulation easily leads to:  

( ) ( )
( )

2
1

trSSRˆFPE FPE,
tr

n H
n n H

λλ

λ

σ
+

= ⋅ =
−

              (64) 

recovering the classical formula of the FPE for this setting, but this time as an es-
timate of the MSPE rather than the PSE. 

5.4. Estimating the MSPE in Ridge Regression by the GCV  

Here, we estimate ( )0 0X X Τ  in (60a) rather by ( )trn Hλ
Τ  − X X . With (61), 

this suggests a preliminary estimate  ( )1
0 0
ˆMSPE , |Y Yλ X  of ( )0 0

ˆMSPE , |Y Yλ X  
in RR, correspondig to  ( )0

0 0
ˆMSPE , |Y Yλ X  where the denominators n have 

been replaced by ( )trn Hλ− . Using the same unbiased estimate of  
( ) 2

n Hλ β−I X  as in the previous section and an estimate 2σ̂  of 2σ , we get 
another general formula for computing an estimate of the MSPE in RR:  
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( ) ( )
( )

2
2 ˆ tr SSR

ˆGCV .
tr

H
n H

λ λ

λ

σ
σ

+
=

−
                 (65) 

We denoted it ( )2ˆGCV σ  because again taking 2 2
1ˆ ˆσ σ= , one gets:  

( )
( )

2
1 21

SSRˆGCV GCV,
1 trn n H

λ

λ

σ
−

= =
 − 

             (66) 

the well known formula of Craven and Wahba’s GCV [3] for this setting, but 
this time derived without any reference to Cross Validation. 

6. Conclusion and Perspectives  

In this work, the goal was not to derive new and better selection criteria to assess 
the goodness-of-fit in regression, but rather to show how one can derive the well 
known Akaike’s FPE and, Craven and Wahba’s GCV [3] as direct estimates of 
the measure of prediction error most commonly known to users, which is not 
how they are traditionally derived. We achieved this for some of the best known 
linear model fitters, with the two derivations differing only slightly for each of 
them. But, nowadays, in regression, use of the FPE criterion is generally not 
recommended because much better performing criteria are known [29], while 
GCV has its own shortcomings in certain settings (e.g. small sample size), though 
hugely popular and almost the best in some difficult high dimensional situations 
[12]. It is then our hope that, in the future, one can, through the same unified 
framework used in this paper, derive new and better selection criteria, different 
from other already available such proposals for the same setting, among which 
we can cite the AICc [30], the modified GCV [31] [32], the modified RGCV and 
R1GCV [33] [34], RC p , RC p

+  and RC p  [5]. 
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