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Abstract 
Forecasting mine production is pertinent to gold mining as it serves as pro-
duction goals for investors. It is therefore important to identify the exact dis-
tribution that gold production as a response variable naturally follows. It is 
even more appropriate to have a model(s) with few predictor variables. This 
paper seeks to identify appropriate statistical distribution functions for fitting 
gold production in Ghana. The empirical paper relied mainly on quarterly 
secondary datasets on gold production between the years 2009 and 2022 se-
cured from the Minerals Commission of Ghana, Accra. Several known sta-
tistical distributions including Weibull, Log-Normal, Generalized Extreme 
Value (GEV) were explored with Maximum Likelihood Estimation (MLE) 
and evaluated using model selection criteria as AIC, AICc and BIC. Good-
ness of Fits were evaluated using Kolmogorov-Smirnov Test (K-S), Cra-
mer-Von Mises Statistic and Anderson-Darling Statistic. Based on the analy-
sis conducted, the reduced modified 3-parameter Weibull distribution pro-
vided the best fit for gold production in Ghana. Though the reduced modified 
Weibull function is proposed, it is important however to recognize that other 
external factors can influence production levels. Also, the average quarterly 
fitted gold production is 1000334.8918 ± 75,327.080 (±7.5%) [i.e., 925,007.812 
– 1,075,661.972]. This indicates that the average annually fitted gold produc-
tion lies between 3700031.248 and 4302647.888 ounces at 99.9% confidence 
level. Therefore, the predicted gold production for the year 2022 is 3.7million 
ounces at 99.9% confidence level. 
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1. Introduction 

Forecasting gold production is a critical task with significant economic implica-
tions for mining companies, investors, and governments [1]. Accurate predic-
tions of gold production enable stakeholders to make informed decisions re-
garding investment strategies, resource allocation, and market positioning [2]. 
An essential aspect of gold production forecasting is identifying an appropriate 
statistical distribution to characterize the uncertainty and variability inherent in 
production data [3]. 

The relevance of selecting an appropriate statistical distribution for gold pro-
duction forecasting is supported by research and industry practices. Academic 
studies, such as the research conducted by Panagiotelis et al. [4], emphasize the 
importance of statistical modeling and distribution selection for accurate gold 
production forecasting. They highlight the need to consider the complex nature of 
production data and its inherent variability to improve forecasting accuracy [4]. 

Moreover, industry reports, such as the “World Gold Council’s Gold Demand 
Trends” publication, emphasize the significance of reliable production forecasts 
for understanding the global gold supply and demand dynamics [5]. These re-
ports highlight the critical role of statistical modeling techniques, including ap-
propriate distribution selection, in generating accurate and insightful production 
forecasts [4] [5]. 

By identifying an appropriate statistical distribution, analysts can better un-
derstand the probabilistic nature of gold production, estimate production vo-
lumes, assess project feasibility, and develop robust risk management strategies 
[6]. Furthermore, it aids in optimizing production processes, evaluating financial 
performance, and facilitating effective communication with stakeholders [7]. 

One of the major export commodities for Ghana is gold and it remains the 
core of Ghana’s mining and quarrying activities [8]. Although, indigenous min-
ing commenced in Ghana in the 4th century, the mining industry officially 
started in the year 1874 and it accounts for 5.5% of the country’s GDP, 14% of 
total tax revenue and contributes over 90% of the 48.4% minerals receipts as a 
share of total exports in Ghana in 2020 [9] and makes up 49% of the country’s 
total export value [10]. 

According to World Gold Council [11], Ghana is Africa’s largest gold pro-
ducer, 6th largest in the world (as of December 2021) and produces more ounces 
of gold per square kilometer than Nevada. Ghana’s overall gold concession as at 
first quarter of 2022 is 2,331.729 sqkm with a total gold reserve amounting to 
204,725,804.24 Metric Tons [12]. 

Additionally, Ghana’s gold production stood at 150 metric tons in 2020 irres-
pective of the COVID-19 pandemic [13] [14]. 

However, methods used by the mining companies as well as the environmen-
tal or weather conditions, agitations from local communities for access to min-
ing sites and other unregulated activities have had negative consequence on gold 
production [15] [16]. 
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Gold marketing has also been poorly done, especially among the small-scale 
local miners [17]. Due to these and many other factors, gold production and its 
market value have been fluctuating over the years [18]. However, a steady and 
progressive goal production encourages investors to pump more resources into 
the sector [19]. 

Studies, such as Matroushi [20], Yazdani-Chamzini et al. [21], Kaba et al. [22], 
Appiah et al. [23], Hafezi and Akhavan [24], and Chai et al. [25] modelled pro-
duction or price of gold with various statistical functions such as Beta, Chi- 
square, Erlang, Exponential, Fisher-Tippett, Gamma, Gumbel, Log-normal, Lo-
gistic, Normal, Student t, Neural Network and Bayesian structural time series 
model. However, none of these findings explored most of the statistical func-
tions, especially, those in the extreme value distribution families such as Genera-
lized Extreme Value (GEV) and Weibull two and three parameter distributions 
to ascertain or identify the actual or natural distributions that production of gold 
follow. Meanwhile, it is always best to model data around its own natural distri-
bution that it follows to get a parsimonious model [26] [27]. That is, identifying 
the exact distribution that a response or dependent variable naturally follows as-
sists the model to accomplish the desired level of explanation or prediction with 
fewer predictor variables thereby making the model to reach its highest parsi-
mony [28]. Also, since these studies did not explore the available extreme family 
distributions to identify the real distributions they followed before the model-
ling, they could not attain better precision [29]. Several fields, including struc-
tural engineering, finance, earth sciences, traffic prediction, and geological engi-
neering, frequently employ extreme value analysis [30] [31] [32]. Likewise, the 
production of gold falls within the jurisdictions of geological engineering, earth 
sciences and finance respectively [33]. 

Extreme Value Distributions, such as the Weibull distribution, are commonly 
used for modeling production data due to their relevance in capturing extreme 
events and tail behavior. These distributions provide a robust framework for 
analyzing rare, high-impact events that can significantly impact gold production 
[34]. 

The Weibull distribution is particularly well-suited for modeling production 
data because it offers flexibility in capturing a wide range of shapes, including 
skewed and heavy-tailed distributions. This is crucial as production data often 
exhibit non-normal characteristics, with a propensity for occasional large devia-
tions from the mean [35]. 

One of the primary reasons for the adoption of Weibull and other extreme 
value distributions is their ability to model the occurrence of extreme events, 
such as production spikes or declines. These distributions have tail properties 
that allow for the estimation of extreme quantiles, enabling analysts to assess the 
likelihood of rare events and plan for potential risks associated with them [36]. 

The relevance of using extreme value distributions like Weibull for modeling 
production data is supported by academic research and industry practices. Nu-
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merous studies have demonstrated the effectiveness of Weibull and other ex-
treme value distributions in modeling and forecasting production data in vari-
ous fields, including mining and resource extraction [37]. 

For example, in the paper “Application of the Weibull Distribution Function 
for Characterizing and Modeling Gold Grades in the Spent Ore Stockpile at Bo-
goso Gold Limited, Ghana” by Asante et al. [38], the authors utilized the Weibull 
distribution to model gold grades in a gold mining operation. The study demon-
strated that the Weibull distribution provided a good fit to the data and enabled 
the estimation of extreme quantiles for planning purposes. 

Another relevant reference is the book “Statistical Methods for Forecasting” 
by Bovas Abraham and Johannes Ledolter [39], which discusses the application 
of extreme value distributions, including Weibull, in forecasting time series data. 
The authors highlight the significance of extreme value distributions in captur-
ing tail behavior and managing risks associated with rare events. 

Forecasting mine production is pertinent to gold mining since it serves as 
production goals for investors [40]. Hence the introduction of models and tech-
niques that predict gold production with the focus of incorporating the impact 
of uncertainties by means of quantitative stochastic methods is necessary. This 
led the authors to consider and modify the Weibull distribution function and 
justify the same by comparing the results with the models reviewed above and 
used elsewhere. 

2. Materials and Methods 

The study mainly employed quarterly secondary datasets on gold production 
between the years 2009 and 2022 secured from the Minerals Commission of 
Ghana, Accra. Distributions such as Weibull, Log-Normal, Generalized Extreme 
Value (GEV) were considered. Parameter Estimation used was Maximum Like-
lihood Estimation (MLE). The Model/Distribution Selection Criteria used were 
AIC, AICc, BIC. The Goodness of Fit tests considered for this study are Kolmo-
gorov-Smirnov Test (K-S), Cramer-Von Mises Statistic and Anderson-Darling 
Statistic. 

Goodness-of-fit statistics, such as the Kolmogorov-Smirnov (KS) test, Cra-
mer-Von Mises (CVM) statistic, and Anderson-Darling (AD) statistic, are com-
monly used to assess how well a statistical distribution fits a given set of data. 
These statistics provide quantitative measures to evaluate the agreement between 
the observed data and the expected distribution. Each test has its own characte-
ristics, interpretations, strengths, and limitations. 

1) Kolmogorov-Smirnov Test: The KS test compares the cumulative distribution 
function (CDF) of the observed data with the CDF of the expected distribution. It 
calculates the maximum vertical distance (D) between the two functions, 
representing the test statistic. The KS test assesses whether the observed data fol-
lows a specific distribution or if it significantly deviates from it. The test produces 
a p-value, which indicates the probability of obtaining a discrepancy as large as or 
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larger than the observed one if the data truly follows the expected distribution. 
Strengths: 

• Simple and widely used goodness-of-fit test. 
• Applicable to a wide range of distributions. 
• Nonparametric and distribution-free. 

Limitations: 
• Sensitive to discrepancies in the tails of the distribution. 
• Less powerful for small sample sizes. 

2) Cramer-Von Mises Statistic: The CVM statistic measures the integral of the 
squared difference between the observed cumulative distribution function and 
the expected distribution’s cumulative distribution function. It quantifies the 
overall discrepancy between the observed data and the expected distribution. 

Strengths: 
• Similar to the KS test but gives more weight to the tails of the distribution. 
• Suitable for comparing distributions with different shapes. 

Limitations: 
• May not work well with small sample sizes. 
• Requires cumulative distribution function estimation. 

3) Anderson-Darling Statistic: The AD statistic, similar to the CVM statistic, 
assesses the integral of the squared difference between the observed cumulative 
distribution function and the expected distribution’s cumulative distribution 
function. However, the AD test places greater emphasis on the tails of the dis-
tribution, making it more sensitive to discrepancies in those regions. 

Strengths: 
• Particularly useful for assessing goodness-of-fit in the tails of the distribution. 
• Applicable to a wide range of distributions. 

Limitations: 
• Can be sensitive to estimation errors. 
• Sample size dependency, with larger sample sizes leading to higher power. 

The choice of these goodness-of-fit statistics depends on the specific require-
ments and characteristics of the data. The KS test is commonly used as a gener-
al-purpose test, while the CVM and AD statistics are preferred when there is a 
particular interest in tail behavior. It is often recommended to employ multiple 
goodness-of-fit tests to gain a comprehensive understanding of how well the ex-
pected distribution fits the data. 

In a nutshell, goodness-of-fit statistics such as the KS test, CVM statistic, and 
AD statistic provide quantitative measures to assess the agreement between ob-
served data and expected distributions. While they have their respective strengths 
and limitations, they play a valuable role in evaluating the appropriateness of a 
chosen statistical distribution for modeling purposes. 

The study covered gold production between 2009 and 2021 gold production. 
Several distribution functions were evaluated as initial step towards identifying 
the likely candidate. The initial distribution fitting for gold production using the 
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XLSTAT software revealed that the three-parameter Weibull distribution per-
fectly fit the gold production data with Kolmogorov-Smirnoff test p-value of 
0.9438. The closest distribution was Beta four-parameter (K-S: 0.9420). Howev-
er, in view of the versatility of the Weibull three-parameter distribution was se-
lected and modified for the study (Table 1). 

3. Model Formulation and Modification 
3.1. Concepts of the Extreme Value Distributions 

The limiting distributions for the lowest or maximum of sizable collections of 
independent random variables drawn from the same arbitrary distribution are 
called extreme value distributions. The topic of extreme value theory is, by defi-
nition, restricting distributions (which are distinct from the normal distribu-
tion). Statistics’ severe deviations from the median of probability distributions 
are the focus of extreme value theory (EVT) or extreme value analysis (EVA) 
[41]. With an ordered sample of a particular random variable, it aims to deter-
mine the likelihood of events that are more extreme than anything previously 
recorded [41]. Several fields, including structural engineering, finance, earth 
sciences, traffic prediction, and geological engineering, frequently employ ex-
treme value analysis [30] [31] [32]. It should therefore be noted that production 
and price of gold fall within the jurisdictions of geological engineering, earth 
sciences and finance respectively [33]. Therefore, modifying the distributions  

 
Table 1. Initial distribution fitting for gold production using XLSTAT software. 

Distribution K-S-(p-value) 

Beta4 0.9420 

Chi-square <0.0001 

Erlang <0.0001 

Exponential <0.0001 

Fisher-Tippett (1) <0.0001 

Fisher-Tippett (2) 0.0005 

Gamma (1) <0.0001 

Gamma (2) 0.7297 

Gumbel <0.0001 

Log-normal 0.6700 

Normal 0.9253 

Normal (Standard) <0.0001 

Student <0.0001 

Weibull (1) <0.0001 

Weibull (3) 0.9438 

Source: Authors own estimation, 2023 
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that fall within the extreme value families to fit production and price of gold is 
laudable. 

For instance, the Leadbetter et al. [42] [43] extreme value theory queried that; 
given 1, , kX X  as a set of independent identically distributed random va-
riables, what possible limiting distributions will ( )1max , ,k k k kM a X X b = −   
follow as k →∞ ? That is, 

( )→∞

 −
→ 

 
k k

k
k

x bF G x
a  

However, to respond to this question, if a nondegenerate limiting cumulative 
distribution exists for some sequences of constants ka  and kb , it should fall 
within the following three categories.  

1) ( ) exp e ,xF x x− = − −∞ < < ∞  ; 

2) ( ) ( )
0, 0

exp , 0, 0

x
F x

x x−∝

≤=  − > ∝ >
; 

3) ( ) ( )exp , 0, 0

1, 0

x x
F x

x

∝  − − < ∝ >  = 
 ≥

. 

These three categories represent the Gumbel, Fréchet and Weibull distribu-
tions respectively. However, in a more modernized approach, these distributions 
have been combined to form the Generalized Extreme Value distribution with a 
cumulative density function as 

( )
1

exp 1 , , , 0
ξµξ µ ξ σ

σ

− 
 −   = − + −∞ < < ∞ >       

yF y

 

Defined for values of y for which 1 0y µξ
σ
− + > 

 
, where μ, ξ and σ are the  

location, shape and scale parameters respectively. Moreover, the shape parame-
ter ξ controls the three categories of the distributions. That is, when 0ξ = , we 
have the first type, which is the Gumbel light tailed distribution, while when 

0ξ > , we have the Fréchet heavy tailed distribution and finally, when 0ξ < , 
we have the Weibull bounded distribution. This is shown graphically in Figure 
1. Moreover, it should be noted that the location parameter μ is not the actual 
mean, it only represents the center of the distribution. Similarly, the scale para-
meter σ is not the standard deviation, it just governs the size of the deviations 
about the location parameter μ (Figure 1). 

3.2. The 3-Parameter Distribution and Its Modification and  
Parameter Derivations of Gold Production 

The Weibull 3-parameter distribution is an extension of the 2-parameter distri-
bution where a third parameter known as location or threshold is used when the 
data points do not fall on the straight line but on a concave up or down curve. 
The probability density function (PDF) of the 3-parameter Weibull distribution  
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Figure 1. The three families of the generalized extreme value distribution. 

 
is given by; 

Weibull (3);  

( )
1

; , , e
kx Qkk x Qf x k Q λλ

λ λ

−−  − 
 − =  

 
 for , 0x Q k> >  and 0λ >  

where k is the shape parameter, λ is the scale parameter and Q is threshold pa-
rameter. 

For the Weibull 3-parameter distribution to be legitimate, then; 

( ); , , d 1λ
∞

=∫Q f x k Q x
 

Therefore, 

( )
1

; , , d e d
kx Qk

Q Q

k x Qf x k Q x xλλ
λ λ

−
∞ ∞

−  − 
 − =  

 ∫ ∫             (1) 

let 
kx Qt

λ
− =  

 
 which implies, 

1
kx Q tλ− =  where 

1
kx t Qλ= +  and  

1 11d dkx t t
k
λ

−
= . 

Also, when x Q= , 0t =  and when x = ∞ , t = ∞ . 
Substituting the above into equation 1, we have; 

( )

11
1 1

0

1; , , d e dλλ λ
λ λ

−

−∞ ∞ −

 
  =     
  

 
∫ ∫

k

k
t k

Q

k tf x k Q x t t
k

 

( )
0

; , , d e dt
Q

f x k Q x tλ
∞ −∞

=∫ ∫                    (2) 

( )
0

; , , d eλ
∞ ∞− = − ∫ t
Q

f x k Q x
 

( ) 0; , , d e eλ
∞ −∞   = − − −   ∫Q f x k Q x
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( ) [ ] [ ]; , , d 0 1λ
∞

= − −∫Q f x k Q x
 

( ); , , d 1λ
∞

∴ =∫Q f x k Q x
 

Hence the proof. This shows that the Weibull 3-parameter distribution is legi-
timate. 

Also, for the Cumulative Density Function (CDF), we have; 

( ) ( ) ( )
0

0
; , , d ; , , d ; , , d e dλ λ λ

∞ −

−∞
+ + =∫ ∫ ∫ ∫ t

Q

x

x

t
f x k Q x f x k Q x f x k Q x t

 

Since ( ) ( )0
; , , d ; , , d 0

x
f x k Q x f x k Q xλ λ

−∞

∞
= =∫ ∫  and  

( )
0

; , , d e d
x t t

Q
f x k Q x tλ −=∫ ∫  

0
CDF e d−∴ = ∫ tt

t
 
0CDF e e−   = − − −   

t

 
CDF 1 e−= − t

 
This implies 

CDF 1 e
kx Q

λ
− − 

 = −                        (3) 

Now, for the mean or expectation of the distribution, we have; 

( ) ( )
1

; , , d e d
kx Qk

Q Q

k x QE X xf x k Q x x xλλ
λ λ

−
∞ ∞

−  − 
 − = =  

 ∫ ∫        (4) 

Employing the technique used for equation 2 where 
1
kx t Qλ= + , we have; 

( )
1

0
e dλ −∞ 

= +  
 

∫ tkE X t Q t
 

( ) ( )
1

0 0
e d e dt tkE X Q t t tλ−∞ ∞ − 

= +   
 

∫ ∫                 (5) 

But 
0

e d 1t t−∞
=∫  

( )
1

0
e dλ −∞ 

∴ = +   
 

∫ tkE X Q t t
 

Also, let 
11
k

α − =  

( ) ( )1
0

e dαλ −∞ −∴ = + ∫ tE X Q t t
 

But ( ) 1
0

e dtt tαα − −∞
Γ = ∫  

( ) ( )λ α∴ = + ΓE X Q  

( ) 1 1E X Q
k

λ  ∴ = + Γ + 
 

                    (6) 

As well, for the variance of the 3-parameter Weibull distribution, we have; 
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( ) ( ) ( ) 22  = −  VAR X E X E X
 

( ) ( )
1

2 2 2; , , d e d
kx Qk

Q Q

k x QE X x f x k Q x x xλλ
λ λ

−−  − 
 ∞ ∞ − ∴ = =  

 ∫ ∫      (7) 

Employing the technique used for equation 4.2 where 
1
kx t Qλ= + , we have; 

( )
21

2
0

e dλ −∞ 
= +  

 
∫ tkE X t Q t

 

( )
21 1

2 2
0

2 e dtk kE X t Q Q t tλ λ
∞ −
  
 = + +     

∫               (8) 

( )
21 1

2 2
0 0 0

e d 2 e d e dt t tk kE X Q t Q t t t tλ λ
∞ − − −∞ ∞     

  = + +           
∫ ∫ ∫       (9) 

Based on the techniques used for Equations (5) and (6), 
1

2 2
0 0

1e d 2 e d 2 1λ λ
∞− −∞      + = + Γ +       

∫ ∫t tkQ t Q t t Q Q
k  

21 2
2

0 0
e d e dλ λ

∞ ∞− −
  
  =     

∫ ∫t tk kt t t t

 

Now, let 
21
k

α − =  

21
2 1

0 0
e d e dαλ λ −∞− −∞   

 ∴ =     
∫ ∫t tkt t t t

 

( )
21

2 2
0

2e d 1λ λ α λ
∞ −
     ∴ = Γ = Γ +         

∫ tkt t
k

 

( )2 2 21 22 1 1E X Q Q
k k

λ λ   ∴ = + Γ + + Γ +   
   

            (10) 

( )
2

2 21 2 12 1 1 1λ λ λ      ∴ = + Γ + + Γ + − + Γ +            
VAR X Q Q Q

k k k  

( ) 2 2

2 2 2

1 22 1 1

1 11 2 1

λ λ

λ λ

   ∴ = + Γ + + Γ +   
   

    − + Γ + + Γ +        

VAR X Q Q
k k

Q Q
k k  

( ) 2 22 11 1VAR X
k k

λ     ∴ = Γ + −Γ +        
             (11) 

Moreover, the Moment Generation Function (MGF) of the 3-parameter 
Weibull distribution is given as; 

( ) ( )
1

; , , d e d
kx Qk

n n n
Q Q

k x QE X x f x k Q x x xλλ
λ λ

−−  − 
 ∞ ∞ − = =  

 ∫ ∫      (12) 
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Employing the technique used for equation 2 where 
1
kx t Qλ= + , we have; 

( )
1

0
e d

n

n tkE X t Q tλ
∞ − 

= +  
 

∫                   (13) 

but ( )
0

, 0,1, 2, ,
n

n r n r

r

n
a b a b r n

r
−

=

 
+ = = 

 
∑              (14) 
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1

0
0

e d
r

n
n n r tk
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n
E X t Q t

r
λ −∞ −

=

  
∴ =      

∑∫               (15) 

This implies; 

( ) ( )

( )( )

2
2 21

1
0

3
3 3

1
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1 2
e d
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λ

λ
λ
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−

−
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− − + + + 


∫



        (16) 

Integrating equation 15 with reference to equations 8, 9 and 10, we have; 

( )
( )

( )( )

2 2

1

3 3

21 1
1 1

2!
31 2 1

1
3!

n

n n n

n

n

n n Q
kE X Q n Q

k

n n n Q
nk
k

λ
λ

λ
λ

−

−

−

 − Γ +    = + Γ + + 
 

 − − Γ +    + + + Γ + 
 



     (17) 

With reference to Equation (15), Equation (17) or the MGF becomes; 

( )
0

1 , 0,1,2, ,λ −

=

   = Γ + =   
  

∑ 

n
n r n r

r

n rE X Q r n
r k  

The Maximum Likelihood Estimation (MLE) of the 3-parameter distribution 
is also given as; 

( ) ( )
1

; , , ; , ,
n

i i
i

L x k Q f x k Qλ λ
=

=∏                  (18) 

( )
1

1
; , , e

k
ix Qkn

i
i

i

x QkL x k Q λλ
λ λ

− − − 
 

=

− =  
 

∏              (19) 

Taking antilog of both sides, we have; 

( )
1

1
ln ; , , ln e λλ

λ λ

− − − 
 

=

 −  =     
∑

k
ix Qkn

i
i

i

x QkL x k Q

 

( ) ( ) ( )
1

ln ; , , ln ln 1 ln lnλ λ λ
λ=

−  = − + − − − −   
  
 
    

∑
kn

i
i i

i

x QL x k Q k k x Q
 

Therefore, the log likelihood function is given as; 
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( ) ( ) ( )
1

ln ; , , ln ln 1 ln
kn

i
i i

i

x Q
L x k Q k k k x Qλ λ

λ=

−  = − + − − −     

  
 
  

∑    (20) 

Differentiating Equation (20) with respect to , ,k Qλ  as in Equations 
(21)-(23) respectively, 

( ) ( )
1

d ln ; , , 1 ln ln ln
d

kn
i i i

i
i

L x k Q x Q x Q
x Q

k k
λ

λ
λ λ=

 − −    = − + − −    
     

∑   (21) 

( ) ( )
1

2
1

d ln ; , ,
d

k
i

in
i

i

x Qk x QL x k Q kλ λ
λ λ λ

−

=

 − −    = − 
 
  

∑          (22) 

( ) ( ) 1

1

d ln ; , , 1
d

kn
i i

i i

L x k Q k x Qk
Q x Q

λ
λ λ

−

=

− − = − +  
  
 
  −   

∑           (23) 

Therefore, equating Equations (21)-(23) to zero and solving them simulta-
neously using numerical methods, the Maximum Likelihood Estimates of , ,k Qλ  
are produced. 

Also, the Cramer-Rao lower bound inequality attained for each of the esti-
mated parameters for , ,k Qλ  are as follows in Equations (24)-(26) respectively. 

( )( ) ( ) ( ) ( ) 2

1 1 1ˆ or
d ln ; , ,

d
i

Variance k x
nI k I k L x k Q

E
k

λ
≥ =

  
  
   

     (24) 

( )( ) ( ) ( ) ( ) 2

1 1 1ˆ or
d ln ; , ,

d
i

Variance x
nI I L x k Q

E

λ
λ λ λ

λ

≥ =
  
  
   

    (25) 

( )( ) ( ) ( ) ( ) 2

1 1 1ˆ or
d ln ; , ,

d
i

Variance Q x
nI Q I Q L x k Q

E
Q

λ
≥ =

  
  
   

    (26) 

3.3. Modification of the Weibull 3-Parameter Distribution 

This section modified the 3-parameter Weibull distribution by deducting the 
threshold parameter also from the scale parameter. This produced a better preci-
sion than the former. This was arrived at through a simulation. 

Given the Weibull (3); ( )
1

; , , e
kx Qkk x Qf x k Q λλ

λ λ

−−  − 
 − =  

 
 for , 0x Q k> >  

and 0λ >  let x Q x Q
Qλ λ

− −
=

−
 and also let k k

Qλ λ
=

−
. 

This implies that; 

( )
1

; , , e for , 0 and 0

kk x Q
Qk x Qf x k Q x Q k

Q Q
λλ λ

λ λ

 − −
− −  −

= > > > − − 
   (27) 
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where k is the shape parameter, λ is the scale parameter and Q is the threshold 
parameter. 

3.3.1. Legitimacy of the Modified 3-Parameter Weibull Distribution 
For the modified 3-parameter Weibull distribution (M3PWD) to be legitimate, 
then; 

( )
0

; , , d 1λ
∞

=∫ f x k Q x
 

Therefore, 

( )
1

0 0
; , , d e d

kk x Q
Qk x Qf x k Q x x

Q Q
λλ

λ λ

 − −
− ∞ − ∞  −

=  − − 
∫ ∫          (28) 

Let 
k

x Qt
Qλ

 −
=  − 

 which implies, ( )
1
kx Q t Qλ= − +  where  

( )
1 11d dkx Q t t

k
λ

−
= − . 

Also, when 0x = , 0t =  and when x = ∞ , t = ∞ . 
Substituting the above into Equation (28), we have; 

( ) ( )
1 11 1

0 0

1; , , d e dtk kkf x k Q x t Q t t
Q k

λ λ
λ

− −∞ ∞ −   
= −    −    

∫ ∫  

( ) ( )
1 11 1

0 0

1; , , d e dtk kkf x k Q x Q t t t
Q k

λ λ
λ

−∞ ∞ − −= −
−∫ ∫  

( ) 0
0 0

; , , d e dλ −∞ ∞
=∫ ∫ tf x k Q x t t

 

( )
0 0

; , , d e dtf x k Q x tλ
∞ −∞

=∫ ∫                   (29) 

( )
0 0

; , , d eλ
∞ ∞− = − ∫ tf x k Q x

 

( ) 0
0

; , , d e eλ −∞∞
   = − − −   ∫ f x k Q x

 

( ) [ ] [ ]
0

; , , d 0 1λ
∞

= − −∫ f x k Q x
 

( )
0

; , , d 1λ
∞

∴ =∫ f x k Q x
 

Hence the proof. This shows that the modified 3-parameter Weibull distribu-
tion is legitimate. 

3.3.2. Cumulative Density Function (CDF) of the Modified 3-Parameter 
Weibull Distribution 

For the Cumulative Density Function (CDF) with reference to Equations (28) 
and (29), we have; 

( ) ( ) ( )
0 0

0
; , , d ; , , d ; , , d e dλ λ λ −

−∞

∞
+ + =∫ ∫ ∫ ∫

x t t
x

f x k Q x f x k Q x f x k Q x t
 

Since ( ) ( )0
; , , d ; , , d 0

x
f x k Q x f x k Q xλ λ

∞

−∞
= =∫ ∫  and  

( )
0 0

; , , d e dtx t
f x k Q x tλ −=∫ ∫  
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0
CDF e d−∴ = ∫ tt

t
 
0CDF e e−   = − − −   

t

 
CDF 1 e−= − t

 
This implies 

CDF 1 e

kx Q
Qλ

 −
− − = −                       (30) 

Mean and Variance of the Modified 3-parameter Weibull distribution 
For the mean or expectation of the modified Weibull 3-parameter distribu-

tion, we have; 

( ) ( )
1

0 0
; , , d e d

kk x Q
Qk x QE X xf x k Q x x x

Q Q
λλ

λ λ
∞ ∞

 − −
− −  −

= =  − − 
∫ ∫      (31) 

Employing the techniques used for Equations (28) and (29) where  

( )
1
kx Q t Qλ= − + , we have; 

( ) ( )
1

0
e dtkE X Q t Q tλ

∞ − 
= − +  

 
∫  

    
( ) ( )

1

0 0
e d e dt tkE X Q t t Q tλ

∞− −∞
= − +∫ ∫                (32) 

Let 
11
k

α − = , which implies; 
1 1
k

α = +  

( ) ( ) ( )1
0

e dtE X Q t t Qαλ − −∞
∴ = − +∫  

But ( ) 1
0

e dtt tαα − −∞
Γ = ∫  

( ) ( ) ( )E X Q Qλ α∴ = − Γ +  

( ) ( ) 1 1E X Q Q
k

λ  ∴ = − Γ + + 
 

                   (33) 

As well, for the variance of the modified 3-parameter Weibull distribution, we 
have; 

( ) ( ) ( ) 22  = −  VAR X E X E X
 

( ) ( )
1

2 2 2
0 0

; , , d e d

kk x Q
Qk x QE X x f x k Q x x x

Q Q
λλ

λ λ

 − −
− −∞ ∞  −

∴ = =  − − 
∫ ∫    (34) 

Employing the techniques used for Equations (28) and 29 where  

( )
1
kx Q t Qλ= − + , we have; 

( ) ( )
21

2
0

e dtkE X Q t Q tλ
∞ − 

= − +  
 

∫
 

( ) ( ) ( )
21 1

2 2
0

2 e dtk kE X Q t Q Q Q t tλ λ −∞   
 = − + + −     

∫         (35) 
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( ) ( ) ( )
21 1

2 2
0 0 0

e d 2 e d e dt t tk kE X Q t Q Q t t Q t tλ λ− −∞ ∞ −∞     
  = + − + −          

∫ ∫ ∫
 

Based on the techniques used for Equations (28) and (29), 

( ) ( )
1

2 2
0 0

1e d 2 e d 2 1t tkQ t Q Q t t Q Q Q
k

λ λ− ∞ −∞      + − = + − Γ +       
∫ ∫

 

( ) ( )
21 2

2

0 0
e d e dt tk kQ t t Q t tλ λ

∞ ∞− −
  
 − = −     

∫ ∫
 

Now let 21
k

α − =  

( ) ( )
21

2 1
0 0

e d e dt tkQ t t Q t tαλ λ− −∞ −∞   
 ∴ − = −     

∫ ∫
 

( ) ( ) ( ) ( )
21

2 2

0

2e d 1tkQ t t Q Q
k

λ λ α λ
∞ −
     ∴ − = − Γ = − Γ +         

∫
 

( ) ( ) ( )22 2 1 22 1 1E X Q Q Q Q
k k

λ λ   ∴ = + − Γ + + − Γ +   
     

( ) ( ) ( )

( )

22

2

1 22 1 1

1 1

VAR X Q Q Q Q
k k

Q Q
k

λ λ

λ

   ∴ = + − Γ + + − Γ +   
   

  − + − Γ +      

( ) ( ) ( )

( )

22

22 2

1 22 1 1

1 11 2 ( ) 1

VAR X Q Q Q Q
k k

Q Q Q Q
k k

λ λ

λ λ

   ∴ = + − Γ + + − Γ +   
   

    − + − Γ + + − Γ +          

( ) ( )2 22 11 1VAR X Q
k k

λ     ∴ = − Γ + −Γ +        
           (36) 

From Equation (36), we can see that the variance of the modified distribution 
is less than that of the original 3-parameter distribution since the scalar of 
( )2Qλ −  might be less than 2λ . 

Moment Generation Function (MGF) of the Modified 3-parameter Wei-
bull distribution 

The Moment Generation Function (MGF) of the Modified 3-parameter Wei-
bull distribution is given as; 

( ) ( )
1

0 0
; , , d e d

kk x Q
Qn n n k x QE X x f x k Q x x x

Q Q
λλ

λ λ

 − −
∞ ∞ − −  −

= =  − − 
∫ ∫     (37) 

Employing the techniques used for Equation (28) and (29) where  

( )
1
kx Q t Qλ= − + , we have; 
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( ) ( )
1

0
e d

n

n tkE X Q t Q tλ
∞ − 

= − +  
 

∫                (38) 

But ( )
0

, 0,1, 2, ,
n

n r n r

r

n
a b a b r n

r
−

=

 
+ = = 

 
∑              (39) 

( ) ( )
1

0
0

e d
r

n
n n r tk

r

n
E X Q t Q t

r
λ −∞ −

=

  
∴ = −     

∑∫            (40) 

This implies; 

( ) ( ) ( )( )

( )( )( ) ( )

2
2 21

1
0

3
3 3

1
2!

1 2
e d

3!

nk
n n nk

n nk
n tk

n n Q t Q
E X Q n Q t Q

n n n Q t Q
Q t t

λ
λ

λ
λ

∞
−

−

−
−


− −= + − +




− − − + + + − 


∫



  (41) 

Integrating (41) with reference to Equations (34)-(36), we have; 

( ) ( )
( )( )

( )( )( )
( )

2 2

1

3 3

21 1
1 1

2!
31 2 1

1
3!

n

n n n

n

n

n n Q Q
kE X Q n Q Q

k

n n n Q Q
nk Q
k

λ
λ

λ
λ

−

−

−

 − − Γ +    = + − Γ + + 
 

 − − − Γ +    + + + − Γ + 
 



 (42) 

With reference to Equations (39)-(41), the MGF becomes; 

( ) ( )
0

MGF 1 , 0,1,2, ,
n

rn n r

r

n rE X Q Q r n
r k

λ −

=

   = = − Γ + =   
  

∑ 

 

3.4. The Maximum Likelihood Estimation (MLE) of the Modified 
3-Parameter Distribution 

The Maximum Likelihood Estimation (MLE) of the Modified 3-parameter dis-
tribution is also given as; 

( ) ( )
1

; , , ; , ,
n

i i
i

L x k Q f x k Qλ λ
=

=∏                  (43) 

( )
1

1
; , , e

k
ix Qkn

Qi
i

i

x QkL x k Q
Q Q

λλ
λ λ

− −
− − 

=

− 
=  − − 
∏            (44) 

Taking antilog of both sides, we have; 

( )
1

1
ln ; , , ln e

k
ix Qkn

Qi
i

i

x QkL x k Q
Q Q

λλ
λ λ

− −
− − 

=

  − =   − −  
∑

 
( )

( ) ( ) ( ) ( )
1

ln ; , ,

ln ln 1 ln ln

i

kn
i

i
i

L x k Q

x Qk Q k x Q Q
Q

λ

λ λ
λ=

  −  = − − + − − − − −    −   
∑
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Therefore, the log likelihood function is given as; 

( ) ( ) ( ) ( )
1

ln ; , , ln ln 1 ln
kn

i
i i

i

x Q
L x k Q k k Q k x Q

Q
λ λ

λ=

− 
= − − + − − −

  
 
 

 −  
∑  (45) 

Differentiating Equation (45) with respect to , ,k Qλ  we obtain the respective 
Equations (46)-(48); 

( ) ( ) ( )
1

d ln ; , , 1 ln ln ln
d

kn
i i i

i
i

L x k Q x Q x Q
Q x Q

k k Q Q
λ

λ
λ λ=

 − −    = − − + − −    − −     
∑  (46) 

( ) ( )

( )

1

2
1

d ln ; , ,
d

k
i

in
i

i

x Qk x Q
L x k Q Qk

Q Q

λ λ
λ λ λ

−

=

 − 
−  −  = − 

− − 
 
 

∑        (47) 

( ) 1

1

d ln ; , , 1
d

kn
i i

i i

L x k Q x Qk k
Q x Q Q Q

λ
λ λ

−

=

− −
= − +  − − −

  
 
   

∑         (48) 

Therefore, equating Equations (46)-(48) to zero and solving them simulta-
neously using numerical methods, the Maximum Likelihood Estimates of 

, ,k Qλ  are produced. 

3.4.1. Cramer-Rao Lower Bound Inequality for the M3PWD 
Also, the Cramer-Rao lower bound inequality attained for each of the estimated 
parameters for , ,k Qλ  are as follows in Equations (49)-(51) respectively. 

( )( ) ( ) ( ) ( ) 2

1 1 1ˆ or
d ln ; , ,

d
i

Variance k x
nI k I k L x k Q

E
k

λ
≥ =

  
  
   

     (49) 

( )( ) ( ) ( ) ( ) 2

1 1 1ˆ or
d ln ; , ,

d
i

Variance x
nI I L x k Q

E

λ
λ λ λ

λ

≥ =
  
  
   

     (50) 

( )( ) ( ) ( ) ( ) 2

1 1 1ˆ or
d ln ; , ,

d
i

Variance Q x
nI Q I Q L x k Q

E
Q

λ
≥ =

  
  
   

    (51) 

3.4.2. Reduction of the Modified 3-Parameter Weibull Distribution 
This section reduced the modified 3-parameter Weibull distribution by equating 
the shape parameter (k) to threshold parameter. That is, when the shape is same 
as the threshold. Where k is the shape parameter, λ is the scale parameter and Q 
is threshold parameter. 

Given the Modified Weibull (3); 

( )
1

; , , e for , 0 and 0λλ λ
λ λ

 − −
− −  −

= > > > − − 

kk x Q
Qk x Qf x k Q x Q k

Q Q  
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If Q k= , it reduces to 

( )
1

; , e for 0, 0 and 0
kx kk

kk x kf x k x k
k k

λλ λ
λ λ

−−  − − − = > > > − − 
    (52) 

where k is the shape parameter and λ is the scale parameter. In this reduced pa-
rameter distribution, there is no threshold parameter. 

Legitimacy of the reduced Modified 3-parameter Weibull distribution 
For the reduced Modified 3-parameter Weibull distribution (RM3PWD) to be 

legitimate, then; 

( )
0

; , d 1λ
∞

=∫ f x k x
 

Therefore, 

( )
1

0 0
; , d e d

kx kk
kk x kf x k x x

k k
λλ

λ λ

−−  − − ∞ ∞ − =  − − ∫ ∫            (53) 

Let 
kx kt

kλ
− =  − 

 which implies, ( )
1
kx k t kλ= − +  where  

( )
1 11d dkx k t t

k
λ

−
= − . 

Also, when 0x = , 0t =  and when x = ∞ , t = ∞ . 
Substituting the above into Equation (53), we have; 

( ) ( )
1 11 1

0 0

1; , d e dλ λ
λ

− −∞ −∞    
= −    −    

∫ ∫ tk kkf x k x t k t t
k k  

( ) ( )
1 11 1

0 0

1; , d e dλ λ
λ

− −∞ −∞
= −

−∫ ∫ tk kkf x k x k t t t
k k  

( ) 0
0 0

; , d e dλ
∞∞ −=∫ ∫ tf x k x t t

 

( )
0 0

; , d e dtf x k x tλ
∞ −∞

=∫ ∫                    (54) 

( )
0 0

; , d eλ
∞∞ − = − ∫ tf x k x

 

( ) 0
0

; , d e eλ
∞ −∞   = − − −   ∫ f x k x

 

( ) [ ] [ ]
0

; , d 0 1λ
∞

= − −∫ f x k x
 

( )
0

; , d 1λ
∞

∴ =∫ f x k x
 

Hence the proof. This shows that the reduced modified 3-parameter Weibull 
distribution is legitimate. 

Cumulative Density Function (CDF) of the reduced modified 3-parameter 
Weibull distribution 

For the Cumulative Density Function (CDF) with reference to Equations (53) 
and (54), we have; 

( ) ( ) ( )0

0 0
; , d ; , d ; , d e dλ λ λ

∞ −

−∞
+ + =∫ ∫ ∫ ∫

x t
x

t
f x k x f x k x f x k x t
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Since ( ) ( )0
; , d ; , d 0

x
f x k x f x k xλ λ

−

∞

∞
= =∫ ∫  and ( )

0 0
; , d e dtx t

f x k x tλ −=∫ ∫  

0
CDF e d−∴ = ∫ tt

t
 
0CDF e e−   = − − −   

t

 

CDF 1 e−= − t
 

This implies 

CDF 1 e
kx k

kλ
− − − = −                       (55) 

Mean and Variance of the reduced Modified 3-parameter distribution. 
For the mean or expectation of the reduced parameter distribution, we have; 

( ) ( )
1

0 0
; , d e d

kx kk
kk x kE X xf x k x x x

k k
λλ

λ λ

−−  − − ∞ ∞ − = =  − − ∫ ∫  

Employing the techniques used for Equations (53) and (54) where  

( )
1
kx k t kλ= − + , we have; 

( ) ( )
1

0
e dtkE X k t k tλ

∞ − 
= − +  

 
∫

 

( ) ( )
1

0 0
e d e dt tkE X k t t k tλ

∞− −∞
= − +∫ ∫        (56) 

( ) ( )
1

0
e dtkE X k t t kλ −∞

= − +∫  

Let 
11
k

α − = , which implies; 
1 1
k

α = +  

( ) ( ) ( )1
0

e dtE X k t t kαλ − −∞
∴ = − +∫  

But ( ) 1
0

e dtt tαα − −∞
Γ = ∫  

( ) ( ) ( )E X k kλ α∴ = − Γ +  

( ) ( ) 1 1E X k k
k

λ  ∴ = − Γ + + 
 

                 (57) 

As well, for the variance of the reduced Modified 3-parameter Weibull distri-
bution, we have; 

( ) ( ) ( ) 22  = −  VAR X E X E X
 

( ) ( )
1

2 2 2
0 0

; , , d e d
kx kk

kk x kE X x f x k Q x x x
k k

λλ
λ λ

− − − − ∞ ∞ − ∴ = =  − − ∫ ∫    (58) 

Employing the techniques used for Equation (28) and (29) where  

( )
1
kx k t kλ= − + , we have; 

( ) ( )
21

2
0

e dtkE X k t k tλ
∞ − 

= − +  
 

∫
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( ) ( ) ( )
21 1

2 2
0

2 e dtk kE X k t k k k t tλ λ −∞   
 = − + + −     

∫          (59) 

( ) ( ) ( )
21 1

2 2
0 0 0

e d 2 e d e dt t tk kE X k t k k t t k t tλ λ− −∞ ∞ −∞     
  = + − + −          

∫ ∫ ∫
 

With reference to Equations (28) and (29),  

( ) ( )
1

2 2
0 0

1e d 2 e d 2 1t tkk t k k t t k k k
k

λ λ− ∞ −∞      + − = + − Γ +       
∫ ∫

 

( ) ( )
21 2

2

0 0
e d e dt tk kk t t k t tλ λ

∞ ∞− −
  
 − = −     

∫ ∫
 

Let 21
k

α − =  

( ) ( )
21

2 1
0 0

e d e dt tkk t t k t tαλ λ− −∞ −∞   
 ∴ − = −     

∫ ∫
 

( ) ( ) ( ) ( )
21

2 2

0

2e d 1tkk t t k k
k

λ λ α λ
∞ −
     ∴ − = − Γ = − Γ +         

∫
 

( ) ( ) ( )22 2 1 22 1 1E X k k k k
k k

λ λ   ∴ = + − Γ + + − Γ +   
   

       (60) 

( ) ( ) ( )

( )

22

2

1 22 1 1

1 1

VAR X k k k k
k k

k k
k

λ λ

λ

   ∴ = + − Γ + + − Γ +   
   

  − + − Γ +    

 

( ) ( ) ( )

( ) ( )

22

22 2

1 22 1 1

1 11 2 1

VAR X k k k k
k k

k k k k
k k

λ λ

λ λ

   ∴ = + − Γ + + − Γ +   
   

    − + − Γ + + − Γ +          

( ) ( )2 22 11 1VAR X k
k k

λ     ∴ = − Γ + −Γ +        
           (61) 

From Equation (61), we can see that the variance of the reduced distribution is 
less than that of the three-parameter distribution since the scalar of ( )2kλ −  
might be less than 2λ  even with reference to the two-parameter Weibull dis-
tribution. 

Moment Generation Function (MGF) of the reduced Modified 3-parameter 
Weibull distribution 

The Moment Generation Function (MGF) of the reduced Modified 3-parameter 
Weibull distribution is given as; 

( ) ( )
1

0 0
; , d e d

kx kk
n n n kk x kE X x f x k x x x

k k
λλ

λ λ

− − − − ∞ ∞ − = =  − − ∫ ∫     (62) 
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Employing the techniques used for Equation (53) and (54) where  

( )
1
kx k t kλ= − + , we have; 

( ) ( )
1

0
e d

n

n tkE X k t k tλ −∞  
= − + 

 
∫                 (63) 

But ( )
0

, 0,1, 2, ,
n

n r n r

r

n
a b a b r n

r
−

=

 
+ = = 

 
∑   

( ) ( )
1

0
0

e d
r

n
n n r tk

r

n
E X k t k t

r
λ −∞ −

=

  
∴ = −     

∑∫             (64) 

This implies; 

( ) ( ) ( )( )

( )( )( ) ( )

2
2 21

1
0

3
3 3

1
2!

1 2
e d

3!

nk
n n nk

n nk
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n n k t k
E X k n k t k

n n n k t k
k t t

λ
λ

λ
λ

∞
−

−

−
−


− −= + − +




− − − + + + − 


∫



    (65) 

Integrating Equation (65) with reference to Equations (59)-(61), we have; 

( ) ( )
( )( )

( )( )( )
( )

2 2

1

3 3

21 1
1 1

2!
31 2 1

1
3!

n

n n n

n

n

n n k k
kE X k n k k

k

n n n k k
nk k
k

λ
λ

λ
λ

−

−

−

 − − Γ +    = + − Γ + + 
 

 − − − Γ +    + + + − Γ + 
 



 (66) 

3.4.3. The Maximum Likelihood Estimation (MLE) of the Reduced  
Modified 3-Parameter Weibull Distribution 
The Maximum Likelihood Estimation (MLE) of the reduced Modified 3-parameter 
Weibull distribution is also given as; 

( ) ( )
1

; , ; ,
n

i i
i

L x k f x kλ λ
=

=∏                    (67) 

( )
1

1
; , e

k
ix kkn

i k
i

i

x kkL x k
k k

λλ
λ λ

− −
− − 

=

− 
=  − − 
∏              (68) 

Taking antilog of both sides, we have; 

( )
1

1
ln ; , ln e λλ

λ λ

− − − − 

=

 −  =   − −  
∑

k
ix kkn

ki
i

i

x kkL x k
k k

 

( ) ( ) ( ) ( ) ( )
1

ln ; , ln ln 1 ln lnλ λ λ
λ=

−  = − − + − − − − −    −

  
 
  

∑
kn

i
i i

i

x kL x k k k k x k k
k

 

Therefore, the log likelihood function is given as; 
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( ) ( ) ( ) ( )
1

ln ; , ln ln 1 ln
kn

i
i i

i

x k
L x k k k k k x k

k
λ λ

λ=

 −  = − − + − − −  −   
∑    (69) 

Differentiating Equation (69) with respect to ,k λ  we obtain the respective 
Equations (70) and (71); 

( )

( ) ( )
1

d ln ; ,
d

1 ln ln ln

i

kn
i i

i
i

L x k
k

x k x kk kk x k
k k k k k

λ

λ
λ λ λ λ=

 −  −     = − − + + − − +     − − − −      
∑

 (70) 

( ) ( ) ( )
1

2

1

d ln ; ,
d

kn
i i

i
i

L x k x kk k x k k
k k

λ
λ

λ λ λ

−
−

=

 −  = − − −  − −   
∑      (71) 

Therefore, equating Equations (70) and (71) to zero and solving them simul-
taneously using numerical methods, the Maximum Likelihood Estimates of 

,k λ  are produced. 
Cramer-Rao lower bound inequality 
Also, the Cramer-Rao lower bound inequality attained for each of the esti-

mated parameters for ,k λ  are as follows in Equations ((72), (73)) respectively; 

( )( ) ( ) ( ) ( ) 2

1 1 1or
d ln ; ,

d

ˆ

i

Variance x
nI k I k L x k

E
k

k
λ

≥ =
  
  
    

     (72) 

( )( ) ( ) ( ) ( ) 2

1 1 1ˆ or
d ln ; ,

d
i

Variance x
nI I L x k

E

λ
λ λ λ

λ

≥ =
  
  
    

     (73) 

3.5. Forecasting Future Values with the Inverse CDF for the  
Weibull Distributions 

The inverse cumulative distribution function (CDF), also known as the quantile 
function or percent-point function, is a mathematical function that allows for 
determining the value at which a given probability occurs in a probability dis-
tribution [44]. 

Therefore, for the original 3-parameter Weibull distribution, the CDF is given 
as (see Equation (3)); 

CDF 1 e λ
− − 

 = −

kx Q

 
If p is the result of the probability that a single observation from the original 

3-parameter Weibull distribution with parameters , ,k Qλ  in the interval [0 x], 
then; 

1 e λ
− − 

 = −

kx Q

p  
Taking natural log of both sides and making x the subject, we have; 
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( )
1

ln 1 kx Q pλ= + − −                       (74) 

This therefore means that the result of the value of x is an observation from 
the original 3-parameter Weibull distribution with parameters , ,k Qλ  that falls 
in the range [0 x] with probability p. 

Also, for the Modified 3-parameter Weibull distribution, the CDF is given as 
(see Equation (30)); 

CDF 1 e λ
 −

− − = −

kx Q
Q

 
If p is the result of the probability that a single observation from the Modified 

3-parameter Weibull distribution with parameters , ,k Qλ  in the interval [0 x], 
then; 

1 e λ
 −

− − = −

kx Q
Qp  

Taking natural log of both sides and making x the subject, we have; 

( ) ( )
1

ln 1 kx Q Q pλ= + − − −                    (75) 

This therefore means that the result of the value of x is an observation from 
the Modified 3-parameter Weibull distribution with parameters , ,k Qλ  that 
falls in the range [0 x] with probability p. 

Similarly, for the Reduced Modified 3-parameter Weibull distribution, the 
CDF is given as (see Equation (54)); 

CDF 1 e λ
− − − = −

kx k
k

 
If p is the result of the probability that a single observation from the Reduced 

Modified 3-parameter Weibull distribution with parameters ,k λ  in the inter-
val [0 x], then; 

1 e λ
− − − = −

kx k
kp  

Taking natural log of both sides and making x the subject, we have; 

( ) ( )
1

ln 1 kx k k pλ= + − − −                     (76) 

This therefore means that the result of the value of x is an observation from 
the Reduced Modified 3-parameter Weibull distribution with parameters ,k λ  
that falls in the range [0 x] with probability p. 

4. Results and Discussions 
4.1. Evaluation of Statistical Distribution Functions in Modeling 

Gold Production 

Figure 2 represents the scatter plot of the quarterly gold produced between 2009 
to 2021 in Ghana. In the first quarter of 2009, gold produced was 727,907 
ounces. This figure went up to 774,443 ounces in the second quarter of same  
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year (i.e., 2009) and continued this upwards move to 1,124,809.3 ounces in the 
first quarter of 2013 but fell drastically to 757,990 ounces in the fourth quarter of 
2015. It then began to pick up in the first quarter of 2016 to 978,893 ounces and 
continued this right movement until in the third quarter of the year 2020 when it 
started falling from 1,224,868 ounces in the second quarter of 2020 to 927,781 
ounces in the third quarter of 2020. 

The lowest gold production was recorded in the third quarter of 2021 (i.e., 
661,277 ounces) with the highest being recorded in the fourth quarter of 2013 
(i.e., 1,273,786.88 ounces). Although COVID-19 was severe in 2020 in Ghana, 
that year recorded higher gold production than the year 2021. 

From the look at the scatterplot, the data cannot be fitted linearly. This depicts 
a non-linear family of distributions [45] (Table 2 & Table 3). 

The results indicate that the data is normally distributed [46]. This is pre-
sented graphically in Figure 3 and Figure 4. 

Now, to fit a distribution to the gold production data, we must check whether 
it is independent and identically distributed. That is, in probability theory, the 
random variable must be independent and identically distributed [47]. 

Table 4 represents the independent and identically distributed (iid) test. From 
the test, the data is iid from lag 4 since their p-values are greater than 0.05 [48]. 
This depicts the nature of the data since it is a quarterly data. This justifies the 
fitting of the distribution function to the gold production data [47]. 

 

 
Source of data: Minerals Commission of Ghana [12]. 

Figure 2. Scatterplot of the Quarterly gold production in ounces between 2009 and 2021. 
 

Table 2. Descriptive statistics of quarterly gold production (2009-2021). 

Variable Observations Minimum Maximum Mean Std. deviation 

Gold (Oz) 52 661,277.000 1,273,786.880 999,333.944 165,732.913 

Source of data: Minerals Commission of Ghana [12]. 
 

Table 3. Normality Test on the gold production data. 

Variable Shapiro-Wilk Anderson-Darling Lilliefors Jarque-Bera 

(Gold_Oz) 0.2094 0.4581 0.6686 0.3643 

Source: Estimation from the gold production data. 
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Source: Authors own estimation, 2023. 

Figure 3. Normality Test on the gold production data. 
 

 
Source: Authors own estimation, 2023. 

Figure 4. QQPLOT of gold production (2009-2021). 
 

Table 4. IID Test on the gold production data. 

Lag J [x, |x|] P-value 

1 33.351 0.000 

2 19.840 0.000 

3 11.447 0.003 

4 5.169 0.075 

5 1.336 0.513 

6 0.622 0.733 

7 0.398 0.820 

8 0.439 0.803 

9 0.776 0.678 

10 3.498 0.174 

Source: Authors own estimation, 2023. 
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4.2. Application of the Reduced Modified Parameter Distribution 
on Gold Production 

The theoretical plot comparison between the new and the old distribution is 
shown in Figure 5. It is clear from Figure 5 that the new plot is closer to the 
y-axis than the original 3-parameter Weibull distribution. This shows that the 
two are significantly different but have similar shapes. 

Table 5 presents the estimated parameters of the fitted distributions to the  
 

 
Source: Authors own estimation, 2023. 

Figure 5. Theoretical plot of the new (in blue) and old (in red) distributions. 
 

Table 5. Estimated parameters of the fitted distributions of the gold production. 

Distribution K Λ Q Fitted Mean 
Fitted Std.  
deviation 

Weibull (3) 3.8810 609,471.5201 449,280.3234 1,000,763.4749 158,998.6203 

Standard Error 0.3878 15,570.4049 26,572.7288   

Z value 9.335 249,660,000,000 741,200,000,000   

P-value 0.0000 0.0000 0.0000   

M3PWD 7.1371 1,068,303.5082 7.1371 1,000,334.8918 165,077.3099 

Standard Error 0.7848 21,887.4978 0.7848   

Z value 9.5894 126,180,000,000 9.5894   

P-value 0.0000 0.0000 0.0000   

RM3PWD 7.1371 1,068,303.5082  1,000,334.8918 165,077.3099 

Standard Error 0.7848 21,887.4978    

Z value 9.5894 126,180,000,000    

P-value 0.0000 0.0000    

Source: Authors own estimation, 2023. 
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quarterly gold production data. The p-values of all the parameters show that 
they are 99.9% significant to be part of the fitted models or distributions. Also, 
the average quarterly fitted gold production is 1000334.8918 ± 75,327.080 
(±7.5%) [i.e., 925,007.812 - 1,075,661.972]. This indicates that the average an-
nually fitted gold production lies between 3700031.248 and 4302647.888 ounces 
at 99.9% confidence level. Therefore, the predicted gold production for the year 
2022 is 3.7million ounces at 99.9% confidence level. Therefore, the predicted 
gold production for the year 2022 is 3.7million ounces at 99.9% confidence level. 

Table 6 represents the goodness of fit and the selection criteria for the gold 
production data. The results in Table 6 show clearly that the modified and the 
reduced distributions performed better than the original three-parameter Wei-
bull distribution in terms of all the goodness of fit measures as well as with the  
selection criteria. The paper revealed that the risk of rejecting the new model 
based on the Kolmogorov-Smirnoff test is 99.3%. Also, with the AIC and BIC 
values of 1399.003 and 1402.905 respectively, the new model is adjudged as the 
best probability distribution in fitting the gold production quarterly data with 
the minimal error. This finding is therefore more accurate than those done by 
Kaba et al. [22] and Appiah et al. [23]. Findings of Kaba et al. [22], showed that, 
with a Beta (P-value of 0.75) distribution, the total average mining production fell 
within 210,414.86 ± 3301.59 in Bank Cubic Meters at 95% confidence level while 
that of Appiah et al. [23] revealed that Gompertz stochastic model was identified 
to give the best approximation of gold production trends in Ghana with R-Square 
of 0.9402 with RMSE of 335,866.94. Meanwhile, the proposed current model pro-
duced a Kolmogorov-Smirnov (K-S) of 0.993 which is the best as compared to 
those of Kaba et al. [22], Appiah et al. [23] and other research findings. 

In Table 7, we can see that the actual gold production figures almost fall 
within the estimated intervals with the new reduced modified Weibull distribution. 

Figure 6 represents the empirical plot of the modified distribution on the 
quarterly gold production data between 2009 and 2021. It is obvious from this 
plot that the new model fitted the data appropriately. It can therefore be con-
cluded that this current model deduced from the three-parameter Weibull dis-
tribution is better fit to the quarterly gold production data. 

5. Conclusions 

Based on the analysis conducted, it is concluded that the reduced modified  
 

Table 6. Goodness of fit and selection criteria for gold production. 

Distribution 
KS 

(P-value) 
AD 

(P-value) 
CM 

(P-value) 
−2 log L AIC AICc BIC 

Weibull (3) 0.9438 0.915 0.9431 1394.737 1401.000 1401.000 1407.000 

M3PWD 0.9896 0.9772 0.9931 1395.003 1401.000 1401.000 1407.000 

RM3PWD 0.9930 0.9772 0.9931 1395.003 1399.003 1399.247 1402.905 

Source: Authors own estimation, 2023. 
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Table 7. Comparison between the estimated intervals and the actual production values. 

Quarter 
Actual Gold 

(oz) 
Lower 
bound 

Upper 
bound 

Relative 
frequency 

Density 
(Distribution) 

1q-2009 727,907 600,000 668,000 0.0192 0.0183 

2q-2009 774,443 668,000 736,000 0.0577 0.0332 

3q-2009 813,962 668,000 736,000 0.0577 0.0332 

4q-2009 803,520 668,000 736,000 0.0577 0.0332 

1q-2010 756,932 736,000 804,000 0.0962 0.0556 

2q-2010 849,423 736,000 804,000 0.0962 0.0556 

3q-2010 901,003 736,000 804,000 0.0962 0.0556 

4q-2010 867,069 736,000 804,000 0.0962 0.0556 

1q-2011 931,342 736,000 804,000 0.0962 0.0556 

2q-2011 897,387 804,000 872,000 0.0577 0.0860 

3q-2011 945,740 804,000 872,000 0.0577 0.0860 

4q-2011 895,396 804,000 872,000 0.0577 0.0860 

Source: Authors own estimation, 2023. 
 

 
Source: Source: Authors own estimation, 2023. 

Figure 6. Empirical plot of the RM3PWD on gold production data. 
 

3-parameter Weibull distribution provides a perfect fit for modeling gold pro-
duction in Ghana. The statistical analysis and goodness-of-fit tests support the sui-
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tability of this distribution for describing the behavior of gold production in the 
mining industry. This finding indicates that the reduced modified 3-parameter 
Weibull distribution can serve as an effective tool for understanding and pre-
dicting gold production trends in Ghana. While the reduced modified 
3-parameter Weibull distribution provides a perfect fit for gold production, it is 
important to recognize that other external factors can influence production le-
vels. Factors such as changes in mining techniques, geological conditions, envi-
ronmental regulations, or geopolitical factors may impact gold production. It is 
recommended that future modeling activities incorporate these additional factors 
to enhance its predictive capabilities and improve operational efficiency. 

Implications and significance for investors 
The finding that the reduced modified 3-parameter Weibull distribution pro-

vides the best fit for gold production in Ghana carries significant implications 
for forecasting gold production and holds great significance for investors. The 
identified distribution can be leveraged to set production goals and make in-
formed investment decisions in the following ways: 

1) Accurate Production Forecasts: By utilizing the reduced modified 3-parameter 
Weibull distribution, analysts can generate more precise and reliable forecasts 
of gold production in Ghana. The distribution’s ability to capture the shape, 
scale, and location parameters of the data allows for improved estimation of 
future production levels. This accuracy enhances decision-making by provid-
ing stakeholders with a clearer understanding of the expected production vo-
lumes. 

2) Risk Assessment and Mitigation: The identified distribution enables a 
comprehensive assessment of risk associated with gold production in Ghana. By 
analyzing the distribution’s properties, such as the shape parameter, analysts can 
quantify the likelihood of extreme events, such as production disruptions or sig-
nificant fluctuations. This assessment aids in the development of risk manage-
ment strategies, contingency plans, and operational adjustments to mitigate the 
potential negative impacts on production and investments. 

3) Setting Realistic Production Goals: The identified distribution assists in set-
ting realistic and achievable production goals in Ghana’s gold mining opera-
tions. By analyzing the distribution’s parameters and tail behavior, stakeholders 
can establish production targets that account for both the average production 
levels and the potential for extreme outcomes. This approach allows for more 
robust planning and resource allocation, improving operational efficiency and 
optimizing overall production processes. 

4) Informed Investment Decisions: The choice of the reduced modified 
3-parameter Weibull distribution for gold production forecasting provides val-
uable insights for investors. The distribution’s characteristics help assess the ex-
pected range of production outcomes and associated risks. Investors can utilize 
this information to make informed decisions regarding funding, project evalua-
tions, and portfolio diversification strategies. Understanding the probabilistic 
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nature of gold production through the identified distribution enhances the abil-
ity to evaluate the potential returns and risks associated with gold mining in-
vestments in Ghana. 

In summary, the finding that the reduced modified 3-parameter Weibull dis-
tribution offers the best fit for gold production in Ghana has significant implica-
tions for forecasting and investment decisions. The distribution enables accurate 
production forecasts, facilitates risk assessment and mitigation, assists in setting 
realistic production goals, and provides valuable insights for investors. By le-
veraging the identified distribution, stakeholders can make more informed de-
cisions and optimize their strategies in the dynamic gold mining industry in 
Ghana. 

Details of the external factors 
Indeed, external factors can have a significant impact on gold production le-

vels and, consequently, influence the chosen statistical distribution’s accuracy 
and reliability in forecasting. Several examples of these external factors and their 
potential implications are as follows: 

1) Changes in Mining Techniques: Advancements in mining technologies and 
techniques can lead to changes in production processes, extraction rates, and ef-
ficiencies. For instance, the introduction of new equipment or innovative extrac-
tion methods may alter the shape and scale parameters of the production distri-
bution. This can impact the accuracy of the forecasting model if the chosen sta-
tistical distribution does not adequately capture these changes, potentially re-
sulting in biased forecasts. 

2) Geological Conditions: Variations in geological conditions, such as changes 
in ore grades, mineral composition, or deposit characteristics, can influence gold 
production. Different geological conditions may require adjustments to the dis-
tribution parameters, affecting the model’s accuracy. For example, if the distri-
bution assumes a constant average production rate but the geological conditions 
exhibit a declining trend in ore grades, the forecasts may overestimate future 
production levels. 

3) Environmental Regulations: Stringent environmental regulations and com-
pliance requirements can affect gold production by imposing limitations on 
mining activities. These regulations may lead to production disruptions, reduced 
output, or changes in the mining processes to comply with environmental stan-
dards. The impact of such regulations may not be adequately captured by the 
chosen statistical distribution, potentially leading to forecast inaccuracies. 

4) Geopolitical Factors: Geopolitical events and factors, such as changes in 
government policies, political instability, trade disputes, or legal frameworks, can 
significantly influence gold production. For instance, the introduction of new 
mining regulations or the imposition of export restrictions can impact the dis-
tribution’s parameters and result in deviations from historical production pat-
terns. Failure to account for these geopolitical factors may compromise the re-
liability of the forecasting model. 
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The implications of these external factors for the accuracy and reliability of 
the forecasting model are substantial. Ignoring or underestimating their influ-
ence can lead to biased forecasts and inadequate risk assessments. It is crucial to 
regularly update and refine the chosen statistical distribution to incorporate new 
information and adapt to changing external conditions. Continuous monitoring 
of external factors, robust sensitivity analysis, and ongoing calibration of the 
model based on actual production data and external indicators are essential to 
improve the accuracy and reliability of the forecasting model in the presence of 
these influential factors. 

In brief, external factors such as changes in mining techniques, geological 
conditions, environmental regulations, and geopolitical factors can significantly 
impact gold production and the chosen statistical distribution’s accuracy and re-
liability in forecasting. It is vital to consider and incorporate these factors into 
the forecasting model to enhance its ability to provide accurate and reliable 
forecasts in a dynamic and evolving mining industry. 
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