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Abstract 
Regression and autoregressive mixed models are classical models used to 
analyze the relationship between time series response variable and other co-
variates. The coefficients in traditional regression and autoregressive mixed 
models are constants. However, for complicated data, the coefficients of co-
variates may change with time. In this article, we propose a kind of partial 
time-varying coefficient regression and autoregressive mixed model and ob-
tain the local weighted least-square estimators of coefficient functions by the 
local polynomial technique. The asymptotic normality properties of estima-
tors are derived under regularity conditions, and simulation studies are con-
ducted to empirically examine the finite-sample performances of the pro-
posed estimators. Finally, we use real data about Lake Shasta inflow to illu-
strate the application of the proposed model. 
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1. Introduction 

Regression and autoregressive mixed models are widely used tools to study the 
correlation between random indicators of time series types and their influencing 
factors. The expression of the model is 

0 1 1 1 1 ,i i s si i p i p iY X X Y Yα α α β β ε− −= + + + + + + +           (1) 

where time series { }iY , 1, ,i p n= +  , is the dependent variable; time series 

{ }, 1, ,jiX j s=  , represents s covariates; with jα  as their regression coeffi-
cients; 0α  is the intercept term; , 1, ,j j pβ =  , represents p autoregressive 

How to cite this paper: Li, H. and Cao, 
Z.Q. (2023) Partial Time-Varying Coeffi-
cient Regression and Autoregressive Mixed 
Model. Open Journal of Statistics, 13, 
514-533. 
https://doi.org/10.4236/ojs.2023.134026 
 
Received: July 7, 2023 
Accepted: August 8, 2023 
Published: August 11, 2023 
 
Copyright © 2023 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/  

  
Open Access

https://www.scirp.org/journal/ojs
https://doi.org/10.4236/ojs.2023.134026
https://www.scirp.org/
https://doi.org/10.4236/ojs.2023.134026
http://creativecommons.org/licenses/by/4.0/


H. Li, Z. Q. Cao 
 

 

DOI: 10.4236/ojs.2023.134026 515 Open Journal of Statistics 
 

coefficients and satisfies stationary conditions; and { }iε  is a white noise series, 
which is independent of both the covariates { }jiX  and response variable { }iY . 
Model (1) has been studied extensively in classical textbooks [1] [2]. Model (1) 
can also be regarded as a special case of an autoregressive model with exogenous 
variables or an autoregressive distributed lag model [3], which has a wide range 
of applications in finance, econometrics and biomedicine. 

The unknown parameters in model (1) are assumed to be constant, indicating 
that the effects between the dependent variable and the covariates will not 
change with the observation time. However, in practice, complex nonlinear corre-
lations between dependent variable and covariates are sometimes encountered. 
The varying-coefficient (or functional coefficient) time series model is an effective 
tool to handle data with such characteristics. The so-called varying-coefficient is 
that the parameters in the model are not constants but functions of some va-
riables such as observation time or some delay components of time series. If the 
expression of the coefficient function in the model is known, it is called a para-
metric varying-coefficient model. Otherwise, it is a nonparametric model. It is 
well known that a parametric model will fit better than a nonparametric model if 
the coefficient function is known. However, if we make a mistake in the expres-
sion of the coefficient function, then it will cause serious deviations in the esti-
mation and even result in misleading outcomes. In this case, the nonparametric 
model has more advantages. Nonparametric varying-coefficient models in time 
series were studied extensively, see [4]-[16]. In addition, there is a long history of 
models in the Bayesian realm to track the issue, where the time-variability of 
coefficients is (semi-) automatically shrunk to constancy in various ways [17] 
[18] [19]. 

It is noted that many scholars have carried out research on model extension 
for the time-varying coefficient model (i.e., coefficients are functions of time) 
proposed by Robinson [4], see [20]-[29]. Since the model in Robinson [4] is the 
basis of many studies and the model proposed in this article is an extension of 
the time-varying coefficient model of Robinson [4] and Cai [9], we first give the 
model expression: 

( ) ( ) ( )0 1 1 , 1, , ,i i i i d i di iY t t X t X i nβ β β ε= + + + + =          (2) 

where time series { }iY  is the dependent variable; time series { }, 1, ,jiX j d=  , 
represent d covariates; ( )jβ ⋅ , 0, ,j d=  , are 1d +  coefficient functions of 
observation time whose form are completely unknown and satisfy a certain de-
gree of smoothness; and { }iε  is an i.i.d (independent and identical distribu-
tion) series and is independent of { }jiX . It should be noted that the indepen-
dent variable of the coefficient function is it i n=  instead of i. This is a con-
straint that we need to satisfy when deducing large-sample properties of nonpa-
rametric smooth estimators of coefficients in a time-varying coefficient model, 
and the specific reasons can be seen in [4] [5] [9]. 

To avoid the “curse of dimensionality”, many researchers have studied non-
parametric estimation methods for varying-coefficient models. For example, 
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Robinson [4] proposed a pseudo-local maximum likelihood estimation method 
to study the local estimates of functional coefficients in the time-varying coeffi-
cient time series model (2). Chen and Tsay [6] and Hastie and Tibshirani [30] 
proposed a kernel smooth nonparametric estimation method for functional 
coefficients in autoregressive models. Ramsay and Silverman [31] and Brumback 
and Rice [32] estimated the parameters of the varying-coefficient regression 
model by using the B-spline method. Cai et al. [8] studied local polynomial es-
timates for functional-coefficient regression models. Huang et al. [33] proposed 
a B-spline estimation for a varying-coefficient regression model based on re-
peated measures data. Aneiros-Perez and Vieu [34] used Nadaraya-Watson-type 
weights to estimate the semi-functional partial linear regression model (SFPLR 
model) and derived the corresponding asymptotic properties of the estimators. 
Li et al. [20] and Fan et al. [22] applied local polynomial expansion techniques to 
explore parameter estimation for time series models with partial time dependen-
cies. Liu et al. [10] used a local linear approach to estimate the nonparametric 
trend and seasonal effect functions. Cai et al. [11] adopted a nonparametric ge-
neralized method of moments to estimate a new class of semiparametric dy-
namic panel data models. Chen et al. [23] applied a local linear method with 
cross-validation bandwidth selection to estimate the time-varying coefficients of 
the heterogeneous autoregressive model. By combining B-spline smoothing and 
the local linear method, Hu et al. [27] proposed a two-step estimation method 
for a time-varying additive model. Tu and Wang [14] applied adaptive kernel 
weighted least squares to estimate functional coefficient cointegration models. Li 
et al. [28] used classical kernel smoothing methods to estimate the coefficient 
functions in nonlinear cointegrating models. Karmakar et al. [29] applied local 
linear M-estimation to estimate the time-varying coefficients of a general class of 
nonstationary time series, among others. 

For time series data with complex correlations between sample components, 
sometimes neither the constant coefficient regression and autoregressive mixed 
model (1) nor the time-varying coefficient regression model (2) can fit the data 
well. Motivated by this, in this article, we introduce the idea of a time-varying 
coefficient into a simple mixed model (1) and propose a partial time-varying 
coefficient regression and autoregressive mixed model. The proposed model can 
not only estimate the constant effects of some covariates on the dependent vari-
able but also characterize the non-constant effects of other covariates, which 
greatly increases the flexibility and scope of the models (1) and (2). To the best 
of our knowledge, explicitly introducing part of the delay terms of the dependent 
variable into time-varying regression models as covariates is less actively studied. 
However, for time series with a strong correlation between components, some-
times introducing the delay term of the dependent variable as part of covariates 
can make full use of the data information and improve the model fitting degree. 
We will study this problem from the way of Cai [9] in this article, although the 
Bayesian parallel stream can be incorporated and put into perspective. 
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The remaining parts of this article are organized as follows. In Section 2, we 
introduce a partial time-varying coefficient regression and autoregressive mixed 
model, give the estimation method of model parameters and derive the large 
sample properties of the proposed estimators. We conduct a simulation study in 
Section 3 to examine the finite-sample performances of the proposed estimators. 
In Section 4, we use Shasta Lake inflow data to illustrate the application value of 
the model. Finally, we conclude with a discussion in Section 5. 

2. Model and Estimation 
2.1. Proposed Model 

As mentioned in Section 1, many researchers have studied different types of va-
rying-coefficient regression models, but research on partial time-varying coeffi-
cient regression and autoregressive mixed models is less actively studied. To fill 
this gap and study the correlation effects of dependent variables with covariates 
and delay components of partial dependent variables, we propose the following 
partial time-varying coefficient regression and autoregressive mixed model: 

( ) ( )
1 2 1 2

T T T T
1 , 2 , 1 , 2 , ,i i i s i s i i p i p iY t t ε= + + + +X X Y Yα α β β          (3) 

where ( ) ( ) ( ){ }1

T

1 1,1 1,, , sα α⋅ = ⋅ ⋅α  with the superscript T as transposition,  

it i n=  with 1 2 1, ,i p p n= + +  , ( )2

T

2 2,1 2,, , sα α= α ,  

( ) ( ) ( ){ }1

T

1 1,1 1,, , pβ β⋅ = ⋅ ⋅β , ( )2

T

2 2,1 2,, , pβ β= β , ( )1 1

T

, ,1 ,, ,i s i i sX X=X  ,  

( ) ( )( )2 1 1 2

T

, , 1 ,, ,i s i s i s sX X+ +=X  , ( )1 1 1

T

, , ,
pi p i i i iY Y− −=Y  ,  

( )2 11 1 2

T

, , ,
p p pi p i i i iY Y
+ +− −=Y   with 

1 21, , p pi i +  as a permutation of time indicator 

1 21, , p p+ . For the convenience of derivation, in this article, we set 
1 21, , p pi i +  

to be the order from 1 to ( )1 2p p+ ; 1 2s s s= +  and 1 2p p p= +  represent the 
number of regression covariates and the order of autoregression, respectively; 
and { }iε  is assumed to be a white noise series. Model (3) is an iterative formu-
la for the sequence { }iY . To make the time series { }iY  have a solution, certain 
constraints on the model parameters should be made, such as the autoregressive 
coefficient satisfies the stationary condition and ( ) 0i jE Yε =  when j i< . 
Since the autoregressive coefficients in model (3) are not necessarily constant, 
the corresponding constraints are stricter; for example, the time series in the 
model satisfies the α-mixing condition. We will give the conditions that need to 
be satisfied in Section 2.3. 

Model (3) enhances the generalizability of time series regression models and 
contains many existing statistical models as specials. For example, when ( )1 ⋅ =α 0 , 

( )1 ⋅ =β 0 , 2 =β 0 , model (3) is the traditional linear regression model; when 

2 =α 0 , ( )1 ⋅ =β 0 , 2 =β 0 , model (3) reduces to the time-varying coefficient 
linear regression model; when ( )1 ⋅ =β 0 , 2 =β 0 , model (3) is a partial 
time-varying coefficient linear regression model; when ( )1 ⋅ =α 0 , 2 =α 0 , 

( )1 ⋅ =β 0 , model (3) is the autoregressive time series model; when ( )1 ⋅ =α 0 , 
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2 =α 0 , 2 =β 0 , model (3) is the time-varying coefficient autoregressive time 
series model; when ( )1 ⋅ =α 0 , ( )1 ⋅ =β 0 , model (3) becomes the traditional 
constant coefficient regression and autoregressive mixed model. 

Model (3) is a semi-parametric model since some of its parameters are un-
known functions, and we need to apply non-parametric estimation methods, 
such as local polynomial expansion methods [35] and spline techniques [36]. In 
this article, we combine the local polynomial expansion technique with the least 
squares estimation method to estimate unknown model parameters. 

2.2. Estimation Method 

First, we briefly introduce the local polynomial expansion method. The main 
idea of this method is that for a function whose form is completely unknown but 
satisfies certain smoothness conditions at a fixed local point, we apply Taylor 
expansion to approximate the function as a polynomial about the local point. By 
using this method, the estimation of the function can be transformed into a pa-
rameter estimation problem of local polynomial coefficients. In this article, we 
elucidate the estimation method by using the first-order Taylor expansion. The 
higher-order Taylor expansion only increases the number of parameters to be 
estimated, and there is no essential difference in the algorithm. Specifically, the 
coefficient functions ( )1 ⋅α  and ( )1 ⋅β  in model (3) are assumed to have a 
second continuous derivative, denoted as ( )1′ ⋅α , ( )1′′ ⋅α , ( )1′ ⋅β  and ( )1′′ ⋅β , re-
spectively. ( )0 0,1t∀ ∈ , by Taylor expansion, we have 

( ) ( ) ( )( ) ( ) ( ) ( )( )1 1 0 1 0 0 1 1 0 1 0 0, .i i i it t t t t t t t t t′ ′≈ + − ≈ + −α α α β β β  
Then, in the local neighborhood of 0t , model (3) can be approximated as fol-

lows: 

( ) ( ) ( ) ( )
( )( ) ( )( )

1 1 2 2

1 1

T T T T
, 1 0 , 1 0 , 2 0 , 2 0

T T
, 1 0 0 , 1 0 0

T , 1, , ,

i i s i p i s i p

i s i i p i i

i i

Y t t t t

t t t t t t

i n

ε

ε

≈ + + +

′ ′+ − + − +

= + =

X Y X Y

X Y

Z 

α β α β

α β

γ  
where 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ){ }TT TT T T T
0 1 0 1 0 2 0 2 0 1 0 1 0, , , , , ,t t t t t t t′ ′= =γ γ α β α β α β

 
and 

( ) ( ) ( ){ }1 1 2 2 1 1

TT T T T T T
0 , , , , , 0 , 0, , , , , .i i i s i p i s i p i s i i p it t t t t= = − −Z Z X Y X Y X Y

 
We can obtain a locally weighted least squares estimate of the coefficient func-

tion in the model (3) by taking the minimum of the weighted sum of squared 
errors as follows: 

( )( )2T
0

1
,

n

h i i i
i p

K t t Y
= +

− −∑ Zγ
 

where ( )K ⋅  is the kernel function, ( ) ( )hK K h h⋅ = ⋅ , and h is the bandwidth. 
Using the least squares estimation theory, it is not difficult to obtain the estima-
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tion of parameter γ , denoted as γ̂ , which has the following expression: 

( ) ( ) 1T T
0ˆ ˆ ,t

−
= = Z KZ Z KYγ γ                   (4) 

where ( ) ( ){ }1 0 0diag , ,h p h nK t t K t t+= − −K  , ( )T
1, ,p nY Y+=Y  , and  

( )0t=Z Z  is a ( ) ( )1 1n p p s s p− × + + +  matrix with the kth row as  

( ){ }T
0 , 1, ,k p t k n p+ = −Z  . 

For the residual term iε  in model (3), its variance can be estimated locally as: 

( ) ( )22 2 T
0

1

1 ˆˆ ˆ .
n

i i
i p

t Y
n p

σ σ
= +

= = −
− ∑ Zγ

 

2.3. Asymptotic Normality 
For the convenience of description, we introduce the following definitions and 
notations. Let H  be a diagonal matrix of order ( )1 1p s p s+ + + ; the first 

p s+  elements on the main diagonal are 1, and the other 1 1p s+  elements of 

the main diagonal are h. Let ( )dj
j u K u uµ = ∫ , ( )2 dj

j u K u uν = ∫  for  

0,1,2,3j = . Denote ( )1 1 2 2

TT T T T
, , , ,, , ,i i s i p i s i p=G X Y X Y , ( )1 1

TT T
, ,,i i s i p=V X Y ,  

1, ,i p n= +   and ( ) { }T
1 1 0 0|i it E t t= = =G GΩ Ω ,  

( ) { }T
2 2 0 0|i it E t t= = =G VΩ Ω , ( ) { }T

3 3 0 0|i it E t t= = =VVΩ Ω . Define 

( ) ( )1 2 1 2
0 0T T

2 3 2 3

, ,t t
   

= = = =   
   

D D
D D

D D
Σ Σ

Σ Σ
Σ Σ  

where ( ) ( )0 1 0 , 1, 2,3i i i it t iµ −= = =D D Ω , and the definition of ( )0i i t=Σ Σ  is 
provided in the Appendix. 

Throughout the derivation, we impose the following conditions: 
C1 The measurable functions ( )( )1, 11, ,i i sα ⋅ =   and ( )( )1, 11, ,j j pβ ⋅ =   

have second continuous derivatives in the interval [ ]0,1 . 
C2 The kernel function ( )K ⋅  is symmetrically bounded and has a compact 

support on the interval [ ]1,1− . 
C3 ( )1 2, ,, , , 1, ,i i s i sY i n=X X   is a strictly stationary α-mixing process, there 

exists 0δ >  such that ( )2 2
iE Y δ+ < ∞ , and the mixing coefficient  

( ) ( )i O i τα −= , where ( )( )2 1τ δ δ δ= + + . 

C4 The bandwidth satisfies 1 4nh δ+ → ∞ . 
C5 For ( )0 0,1t ∈ , the matrix ( )0tD  is full rank. 
C6 For ( )0 0,1t ∈ , the matrix ( )0tΣ  is positively definite. 
Note that C1, C2 and C4 are the conditions that the local polynomial expan-

sion method needs to satisfy, C3 is the condition required for the moment of 
random variables, and C5 and C6 are requirements to be satisfied by the large 
sample properties of the estimators. Conditions C1-C4 are similar to those in 
Robinson [4] and Cai [9]. 

Theorem 1. Under Conditions C1-C6, when 0h →  and nh →∞ , we have 
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( )
2

0ˆ , ,
2
hnh N

 
− − → 

 
H b  0 γγ γ Σ

 

where ( ) ( )1
1 2 2 0

0
t

t
µ− ′

= =  
 

b b
Ω Ω η

0
 and ( ) ( )

( )
1 0

0
1 0

t
t

t
′′ 

′ =   ′′ 

α
η

β
,  

( ) 1 1
0t

− −= = D DΣ Σ Σγ γ . 

Therefore, we obtain 

( ) ( ) ( ) ( )
2

1
0 0 1 2 2 0

ˆ , ,
2
hnh t t t Nµ− 

′− − → 
 

 0 ξξ ξ ηΩ Ω Σ
 

where ( ) ( ) ( ) ( ) ( ){ }TT T T T
0 0 1 0 2 0 1 0 2 0, , ,t t t t t= =ξ ξ α α β β  and  

( ) 1 1
0 1 1 1t − −= = D DΣ Σ Σξ ξ . 

In practice, the variance-covariance matrix of ( )( )0 0
ˆ t −ξ ξ  can be calculated 

by using the following formula: 

( ) 1 1 1
,1 ,1 ,1,n n nnh − − −D DΣ                        (5) 

where 

( ) ( )T
,1 ,1 0 0

1

1 ,
n

n n i i h i
i p

t K t t
n p = +

= = −
− ∑D D G G

 

( ) ( ) ( )
T

,1 0 0
1 10

ˆ ˆ ,
n n

n i i h i j j h j
i p j p

h K t t K t t
n p

ε ε
ν = + = +

  
= − −  −   

∑ ∑G GΣ
 

and ˆ , 1, ,i i p nε = +  , are residuals of model (3). The proof of Theorem 1 is 
provided in the Appendix. 

For constant coefficients in the model (3), the corresponding estimators ob-
tained from (4) are not n  consistent. To improve its convergence rate, we 
use the following formula (6) to obtain a global estimator, that is, 

( )
( )
( )

2 02
0 0

2 2 0

ˆ
d ,ˆ

t
t t

t

  
=        
∫





Γ
αα

β β
                   (6) 

where the weight matrix ( )0tΓ  satisfies ( )0 0d s st t ×=∫ IΓ


, and I  is an iden-
tity matrix. Typically, we choose ( )0tΓ  to be the standardized inverse cova-
riance matrix [37] of ( )2 0ˆ tα  and ( )2 0

ˆ tβ , which can be obtained from (5). 
Then, the finite sample variances of the global estimators ( )TT T

2 2, α β  can be 
calculated by the following formula (7): 

( ) ( ) ( ) ( ) ( )1 1 1 T T

1

1 ,
n

i n i n i n i i
i p

t t t t t
n p

− − −

= +− ∑ AD D AΓ Σ Γ           (7) 

where A  is a ( ) ( )2 2 1 1s p p s s p+ × + + +  matrix with ija  as the ( ),i j th 
element of A ; furthermore, 1ija =  for 2 21, ,i s p= + , 1 1j i s p= + + ; oth-
erwise, 0ija = . Definitions of nD  and nΣ  can be seen in the Appendix. 

2.4. Selection Best Bandwidth and Order 

When using estimator (4) to obtain γ̂ , bandwidth h and order p ( 1 2p p p= + ) 
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must be determined. Cheng et al. [26] proposed a Bayesian approach to deter-
mine bandwidth selection for local constant estimators of time-varying coeffi-
cients, Chen et al. [23] applied the cross-validation (CV) bandwidth selection to 
estimate the time-varying coefficient heterogeneous autoregressive model. In-
spired by the idea of the average mean squared (AMS) criterion proposed by Cai 
et al. [8], we slightly modify this criterion to simultaneously select the best 
bandwidth h and the optimal order p of model (3). The procedure is as follows: 
First, we divide the sample data into m groups and denote the sample size of the 
qth group as qn , 1, ,q m=  . Second, given the values of h and p, and based on 
data of removing the qth group, we estimate γ  by using (4), denoted as ˆqγ . 
Third, we calculate the estimated mean square error for sample data of the qth 
group, denoted as ( )AMS ,q h p , and then we obtain the total mean squared er-
ror when q goes from 1 to m. Finally, the optimal h (i.e., opth ) and p (i.e., optp ) 
that minimize the (AMS) error has the following form: 

( ) ( )T
opt opt

, 1
, arg min AMS , ,

m

q
h q q

h p h p
=

= ∑
 

where for 1, ,q m=  , 

( )
( )

{ }
1

2T

=1 1

1 ˆAMS , .
q

q

qn

q i i
i q n pq

h p Y
n p

+

+ − +

= −
− ∑ Zγ

 

Note that in the second step, except for all covariates of 
1,i sX  and 

2,i sX , we 
can also try to use subsets of 

1,i sX  and 
2,i sX  in iZ  when we estimate γ  by 

using (4). Obviously, different subsets of covariates of X  may result in differ-
ent best combinations of h and p, and we take the combination of h and p cor-
responding to the minimum value of AMS for all subsets of covariates of interest 
as the optimal bandwidth and the order of the autoregressive part. Therefore, 
AMS can also be used to conduct variable selection of model (3). 

3. Simulation Studies 

We perform simulation studies to examine the finite-sample performances of 
the proposed estimators and consider the following partial time-varying coeffi-
cient regression and autoregressive mixed model: 

( ) ( )1 ,1 2 ,2 1 1 2 2 , 3, 4, , ,i i i i i i i iY t X X t Y Y i nα α β β ε− −= + + + + =       (8) 

where ( ) ( )1 sini it tα = , 2 0.3α = , ( ) ( )1 0.5expi it tβ = , 2 0.1β = − ; ,1iX  fol-
lows the autoregressive moving average model with 1p =  and 1q = , i.e., 
ARMA(1,1); and ,2iX  is an autoregressive (AR) model of order 1, i.e., AR(1). 
Typically, ,1 1,2 ,1 1,10.1 0.3i i i iX X e e− −= + +  and ,2 1,2 ,20.2i i iX X e−= + . Both ,1ie  
and ,2ie  are standard white noise series with mean 0 and variance 1, i.e., 

( ),1 ~ 0,1ie WN  and ( ),2 ~ 0,1ie WN . Also, ( )~ 0,0.04i WNε  and that is inde-
pendent of both ,1iX  and ,2iX . We run 500 Monte Carlo simulations for 9 grid 
points at 0 0.1, ,0.9t =   in the time interval [ ]0,1  and examine the average of 
500 simulations of the parameters in model (8) at these 9 points. We apply the 
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Gaussian kernel function with standard error 2 to the estimation of γ . Once γ̂  
is obtained by (4), then 0̂ξ  is immediately known and its variance estimation 
can be calculated by (5). For constant parameter vector 2α  and 2β , we obtain 
their global estimators 2α  and 2

β  by using formula (6), and compute the cor-
responding variance estimation of 2α  and 2

β  by (7). For each simulation, we 
consider the sample size as 300n =  and 800n = , respectively. According to 
simulation results under sample size 300 and 800, we find that estimation results 
are good when bandwidth is between 0.02 and 0.08. Thus, three bandwidths of h 
are chosen, that is, 0.03,0.05h =  and 0.07. Finally, we report the following 
quantities under each h and n for 0̂ξ  in Table 1 & Table 2: Monte Carlo aver-
age estimators of 0̂ξ , Monte Carlo standard deviation of estimates (ESD), Monte 
Carlo average of estimated standard errors (ASE) and coverage probability of 
nominal 95% confidence intervals (CP). 

 
Table 1. Estimation results for time-varying coefficient ( ) ( )1 sint tα =  and ( )1 0.5e ttβ −=  under different scenarios. 

n 0t  h ( )1 0tα  ( )1 0ˆ tα  ASE ESD CP (%) ( )1 0tβ  ( )1 0
ˆ tβ

 ASE ESD CP (%) 

300 0.2 0.03 0.199 0.199 0.025 0.025 92.6 0.409 0.407 0.064 0.058 94.2 

  0.05  0.199 0.020 0.018 93.8  0.406 0.051 0.046 92.0 

  0.07  0.198 0.018 0.017 94.0  0.409 0.047 0.043 92.8 

 0.4 0.03 0.389 0.389 0.026 0.023 93.2 0.335 0.333 0.049 0.046 92.2 

  0.05  0.388 0.018 0.018 95.0  0.336 0.039 0.036 92.0 

  0.07  0.386 0.015 0.015 94.0  0.338 0.031 0.031 94.0 

 0.6 0.03 0.565 0.564 0.025 0.023 92.0 0.274 0.271 0.039 0.037 93.4 

  0.05  0.562 0.018 0.018 93.4  0.274 0.031 0.029 92.6 

  0.07  0.558 0.015 0.016 93.4  0.277 0.026 0.025 94.2 

 0.8 0.03 0.717 0.716 0.024 0.024 93.4 0.225 0.223 0.032 0.031 92.2 

  0.05  0.715 0.020 0.019 93.6  0.226 0.025 0.025 93.0 

  0.07  0.713 0.017 0.018 95.4  0.225 0.023 0.023 94.8 

800 0.2 0.03 0.199 0.199 0.014 0.014 95.4 0.409 0.407 0.039 0.036 92.6 

  0.05  0.198 0.011 0.011 94.6  0.410 0.031 0.029 93.2 

  0.07  0.197 0.011 0.010 95.2  0.410 0.027 0.026 95.2 

 0.4 0.03 0.389 0.389 0.015 0.014 93.4 0.335 0.336 0.030 0.029 94.6 

  0.05  0.387 0.012 0.011 92.6  0.337 0.024 0.023 94.8 

  0.07  0.386 0.010 0.010 93.2  0.337 0.020 0.019 93.8 

 0.6 0.03 0.565 0.565 0.016 0.015 94.0 0.274 0.272 0.023 0.023 94.2 

  0.05  0.562 0.012 0.011 93.2  0.277 0.019 0.018 94.6 

  0.07  0.560 0.010 0.010 93.2  0.276 0.016 0.015 93.4 

 0.8 0.03 0.717 0.716 0.015 0.015 93.0 0.225 0.225 0.020 0.019 94.4 

  0.05  0.715 0.012 0.012 95.8  0.225 0.016 0.016 94.8 

  0.07  0.713 0.011 0.011 92.0  0.226 0.014 0.014 95.4 
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Table 1 shows that both estimators of ( )1α ⋅  and ( )1β ⋅  are approximate to 
their true values. The ASEs are close to the ESDs, which demonstrates the good 
performance of the variance estimation by Theorem 1. 95% confidence interval 
coverage probabilities are reasonably accurate, matching the nominal level. Ac-
cording to the estimation results from Table 2, biases of 2α  and 2β  can be 
ignored, ASEs are still approximate to the ESDs and CPs of both estimators are 
close to 95%, which means good variance estimation of global estimators 2α  
and 2β . Furthermore, when bandwidth h increases from 0.03 to 0.07, as ex-
pected, biases of ( )1α̂ ⋅  and ( )1̂β ⋅  tend to be larger, and corresponding ASEs 
and ESDs tend to be smaller. When the sample size n increases from 300 to 800, 
the ASEs and ESDs of all estimators decrease, which indicates that increasing the 
sample size can improve our proposed estimators. 

Figure 1 & Figure 2 present the true and estimated time-varying coefficients  
 
Table 2. Estimation results for constant coefficients 2 0.3α =  and 2 0.1β = −  under different scenarios. 

n h 2α  2α  ASE ESD CP (%) 2β  2β  ASE ESD CP (%) 

300 0.03 0.3 0.301 0.012 0.012 95.2 −0.1 −0.102 0.021 0.022 95.8 

 0.05  0.300 0.012 0.013 96.0  −0.102 0.021 0.023 96.6 

 0.07  0.300 0.012 0.013 97.2  −0.100 0.020 0.023 97.2 

800 0.03 0.3 0.300 0.007 0.008 95.6 −0.1 −0.100 0.013 0.014 95.4 

 0.05  0.300 0.007 0.008 97.4  −0.101 0.013 0.014 95.6 

 0.07  0.300 0.007 0.008 97.2  −0.101 0.012 0.014 97.4 

 

 
Figure 1. Estimated curves of ( ) ( )1 sint tα =  with bandwidth 0.05h = . (a) Sample size 300n = ; (b) sample size 800n = . The 

solid lines are the true functions of ( )1 tα , the dashed lines are the estimates of ( )1 tα , and the dash-dotted lines are the 95% 

confidence intervals. 
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Figure 2. Estimated curves of ( )1 0.5e ttβ −=  with bandwidth 0.05h = . (a) sample size 300n = ; (b) sample size 800n = . The 

solid lines are the true functions of ( )1 tβ , the dashed lines are the estimates of ( )1 tβ , and the dash-dotted lines are the 95% 

confidence intervals. 
 

of model (8) as well as 95% pointwise confidence intervals. It can be intuitively 
seen that the estimated curves of ( )1α̂ ⋅  and ( )1̂β ⋅  are very close to the true 
curves, which again confirms the good performance of our proposed estimators. 

4. Real Data Analysis 

In this Section, we use Lake Shasta inflow data [38] to illustrate the application 
value of our proposed model. The data includes 454 months of measured values 
for several climatic variables: air temperature (Temp), dew point (DewPt), cloud 
cover (CldCvr), wind speed (WndSpd), precipitation (Precip), and inflow (In-
flow) at Lake Shasta, California, USA. We are interested in building models to 
predict Lake Shasta inflow based on these climate variables. We treat the lake 
water inflow (Inflow) as a time series, but it has both autocorrelation and hete-
roscedasticity through the Box-Ljung autocorrelation test and Lagrange Multiplier 
test. We let the dependent variable be the inflow of lake water. According to the 
suggestion by Shumway and Stoffer [38], it is better to model this variable after 
logarithmic transformation. Therefore, we set ( )log Inflow , 1, , 454i iY i= =   
and then use the proposed partial time-varying coefficient regression and auto-
regressive mixed model (3) to model the relationship between inflows and the 
other five climate variables. 

Before using (4) to obtain estimators, we need to determine the optimal 
bandwidth h, the autoregressive order p and which covariates have time-varying 
coefficient effects as well as which covariates have constant coefficient effects. In 
other words, we need to conduct variable selection. As we mentioned in Section 
2.4, the criterion AMS can not only determine the optimal bandwidth h and the 
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autoregressive order p, but also conduct variable selection. In this analysis, when 
choosing a combination of covariates, i.e., which variables should be put into 

1,i sX  and which variables are put into 
2,i sX , as well as which lag terms of the 

dependent variable are put into 
1,i pY  and 

2,i pY , respectively, one rule we follow 
is that the vectors 

1,i sX  and 
1,i pY  cannot be empty simultaneously. Otherwise, 

model (3) will reduce to the traditional regression and autoregressive mixed 
model. The autoregressive order p we consider starts at 1 and increases sequen-
tially. A rough criterion for p is that there is no autocorrelation and heterosce-
dasticity in the residuals of the model. When p is given, we determine the op-
timal combination of bandwidth h with a combination of covariates according to 
the value of AMS. If the estimator of a constant effect covariate selected by the 
AMS is insignificant, then we delete this covariate and calculate AMS again. By 
using this strategy, we can guarantee that all covariates with constant coefficients 
selected by the AMS are significant. 

The procedure of using the proposed model to analyze real data is as follows: 
First, we let Temp, DewPt, CldCvr, WndSpd and Precip be five candidate cova-
riates. When calculating AMS, according to the suggestion of Cai et al. [8], we 
choose 4m =  and [ ]0.1qn n= , where [ ] denotes a rounding function, and the 
optimal bandwidth satisfies 1 5h n−∝ . Since the sample size of Shasta Lake in-
flow data is 454, we set the selection range of bandwidth h from 0.08 to 0.50. 
Combined with other rules mentioned in the previous paragraph, that is, the 

1,i sX  and 
1,i pY  cannot be empty simultaneously, the estimation for covariates 

selected by the model with constant coefficients should be significant. Then, we 
consider that model (3) contains only 1, 2, 3, 4 and 5 of the candidate covariates 
and calculate the corresponding values of AMS based on given p and h. Next, by 
comparing AMS under all various combinations, we find the minimum value of 
AMS occurring at 0.15h = , 4p = , and the covariate combination is  

( )
1

T
, CldCvr , WndSpdi s i i=X , 

2, Precipi s i=X ,  

( ) ( ) ( )( )1

T
, 1 2 3log Inflow , log Inflow , log Inflowi p i i i− − −=Y  and  

( )
2, 4log Inflowi p i−=Y . Thus, ( ) ( )1 2 1 2, , , 2,1,3,1s s p p = . Figure 3(a) shows the 

AMS changes with different h under this combination in model (3). 
Therefore, the final model to be estimated is: 

( ) ( ) ( )
( ) ( )

1,1 1,2 2,1 1,1 1

1,2 2 1,3 3 2,1 4

CldCvr WndSpd Precip

,
i i i i i i i i

i i i i i i

Y t t t Y

t Y t Y Y

α α α β

β β β ε
−

− − −

= + + +

+ + + +
     (9) 

where ( )log Inflowi iY = . Once 
1,i sX , 

2,i sX , 
1,i pY  and 

2,i pY  are determined, 
we then use (4) to obtain local estimators and (6) to get global estimators of con-
stant coefficients. To evaluate the prediction performance of model (9), we use 
the first 451 sample data to estimate the unknown parameters and obtain 

( )ˆ ~ 0,0.049i WNε . The estimated time-varying coefficients ( )1,1α̂ ⋅ , ( )1,2α̂ ⋅ , 
( )1,1β̂ ⋅ , ( )1,2β̂ ⋅  and ( )1,3β̂ ⋅  are presented in Figure 3(b), and the estimated 

constant coefficients 2,1α  and 2,1β  are reported in Table 3. Interestingly, con-
sidering the time-varying coefficient estimation results, it seems that the prediction  
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Figure 3. (a) AMS results under different bandwidths h for model (9); (b) time-varying coefficient estimation results of model (9). 
 

Table 3. Constant coefficient estimation results of model (9). 

Coefficient Estimate Std. Error T value Pr (>|t|) 

2,1α
 1.852 × 10−3 0.155 × 10−3 11.983 <0.001 

2,1β
 0.141 0.036 3.930 <0.001 

 
effect of lag order 2 of iY  (i.e., 2iY − ) increases with time it  while the lag order 
1 of iY  (i.e., 1iY − ) has no such characteristic, and effect of the lag order 3 of iY  
(i.e., 3iY − ) is close to zero. The time-varying effects from both CldCvri  and 
WndSpdi  decrease with it . 

The last three sample values are used to calculate the relative prediction error 
(RPE) defined as: 

ˆ
RPE ,i i

i

Y Y
Y
−

=
 

where ( )( )ˆ log Inflow 452,453,454iiY i= =  are predicted by model (9). 
Table 4 shows the relative prediction error results of model (9) for the three 

forward steps. It can be seen that the average RPE of model (9) is only 2.6%. For 
comparison, Table 4 also shows the 3-step forward prediction results of the lake 
inflow based on the FAR(p) model. According to the AMS criterion of Cai et al. 
[8], the optimal fitted FAR(p) model is obtained when 0.17h = , 3p =  and 

1d = , that is, 

( ) ( ) ( ) ( )0 1 1 1 1 2 1 2 3 1 3ˆ ˆ ˆ ˆ ,i i i i i i i iY Y Y Y Y Y Y Yα α α α− − − − − − −= + + +        (10) 

In addition, we also apply classical regression and autoregressive models to 
analyze the lake water inflow and find that residuals have heteroskedasticity. 
Therefore, we combine AR (p) model with the autoregressive conditional  
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Table 4. 3-step forward relative prediction error of ( )log Inflow t  under different models. 

Forward step True value Model (9) Model (10) Model (11) 

1 4.301 0.003 0.061 0.056 

2 4.436 0.072 0.075 0.017 

3 4.535 0.001 0.133 0.114 

Average RPE  0.026 0.090 0.062 

 
heteroskedasticity (ARCH) model, i.e., AR(p)-ARCH(q) model, to fit the resi-
duals. The final optimal AR(p)-ARCH(q) model is: 

1 21.335 0.460 0.159 0.415CldCvr
0.212WndSpd 0.002Precip ,

i i i i

i i i

Y Y Y
R

− −= + + +

+ + +
          (11) 

1 2 30.093 0.088 0.161 ,i i i i iR R R R δ− − −= − − − +  
( ), ~ 0,1 ,i i i i WNδ φη η=  

2 20.040 0.078 .i iφ δ= +  
By comparing the prediction results of the three models in Table 4, our pro-

posed model (9) performs better than the other two models. Compared to model 
(10), model (9) takes into account the effects of covariates on lake inflow; com-
pared to model (11), model (9) uses the advantages of the time-varying coeffi-
cient. Since our proposed model combines the strengths of the FAR(p) model 
and the classical regression and autoregressive mixed model, it has advantages 
on modeling time series data with complex correlations between sample com-
ponents. 

5. Conclusions and Future Works 

In this article, we propose a partial time-varying coefficient regression and auto-
regressive mixed model, which can be regarded as an extension of traditional re-
gression and autoregressive mixed model and time-varying coefficient regres-
sion model. The proposed model is very flexible and can handle both complex 
correlations between time series components and effects of other covariates, so it 
can improve model fitting when building relationships between complex time 
series and covariates. We apply the local polynomial expansion technique and 
the least squares estimation method to obtain local estimates of the parameter 
functions in the model. At the same time, we also propose a global estimator al-
gorithm for the constant coefficients in the model. In addition, we derive the 
asymptotic normality of the proposed estimators and conduct simulation studies 
to examine their finite-sample performances, and find our proposed estimators 
perform well. Finally, we apply the model to analyze the relationships between 
the water inflow of Shasta Lake and the other five climatic variables. 

As we mentioned in Section 1, local polynomial technique is widely used to 
estimate varying-coefficient models, including time-varying coefficient time se-
ries models. One advantage of this method is it has solid theory so that we can 
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derive out explicit biases of corresponding estimators. Furthermore, local poly-
nomial method is easily implemented. Based on the local estimators, we can ob-
tain global estimators for constant coefficients by using formula (6). Note that it 
is needed to select the best bandwidth when using local polynomial method. 
However, if we apply other smooth methods such as spline approach to estimate 
time-varying coefficients in (3), we also need to determine some turning para-
meters, e.g., knots and degree. 

Although we can apply the local polynomial expansion technique and the least 
squares estimation method to obtain the local estimators as well as correspond-
ing variances, how to test these estimated time-varying coefficients is another 
important problem. For example, the AMS criterion suggests that model (9) in-
cludes five time-varying coefficients, that is, ( )1,1α ⋅ , ( )1,2α ⋅ , ( )1,1β ⋅ , ( )1,2β ⋅  
and ( )1,3β ⋅ , but Figure 3(b) shows that some estimated curves seem to be flat 
across time. Thus, it makes us wonder whether those estimated time-varying 
coefficients can be treated as constant. One way to assess this is to construct the 
confidence band to see whether a time-varying coefficient is a function or a con-
stant. This method may be realized by obtaining weak Bahadur representations 
of estimators [29]. Another way is to develop a more objective and theoretical 
test following the simulation-assisted hypothesis testing procedure proposed in 
Zhang and Wu [21]. This will be our future research work. 
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Appendix: Proof of Theorem 1 

We first introduce some notations for the convenience. Denote 
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Noting the definitions of nT  and n

∗T , it is easy to know 
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After a simple combination, we can obtain 
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Note that the equivalent form of formula (4) is: 
1 1ˆ .n n
− −= H D Tγ                        (A.2) 

By (A.1) and (A.2), it is easy to know 
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Next, we discuss the large sample properties of n
∗T . To facilitate the deriva-

tion, the following notation is introduced: ( ) ( )2
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It can be seen from the above that for a stationary process  
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Thus, we have ( )( ) ( ) ( ) ( ) ( ) ( )( )1 1
,0 0 1 0 0 0 0 01Var 2n kknh t t t t ν∞∗
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milarly, we obtain 
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Next, we derive the properties of ( )0n tD . From the approximation of the 
Riemann summation of definite integrals, it is known that when 00 1t< < , we 
have 
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Since the kernel function ( )K ⋅  is symmetrical, 0 1µ = , 1 3 0µ µ= = . 
Therefore, 
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when n →∞ . Combining the results of (A.3)-(A.7), it is not difficult to obtain 
the conclusion of Theorem 1. 
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