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Abstract 
Recurrent event time data and more general multiple event time data are 
commonly analyzed using extensions of Cox regression, or proportional ha-
zards regression, as used with single event time data. These methods treat 
covariates, either time-invariant or time-varying, as having multiplicative ef-
fects while general dependence on time is left un-estimated. An adaptive ap-
proach is formulated for analyzing multiple event time data. Conditional ha-
zard rates are modeled in terms of dependence on both time and covariates 
using fractional polynomials restricted so that the conditional hazard rates 
are positive-valued and so that excess time probability functions (generalizing 
survival functions for single event times) are decreasing. Maximum likelihood 
is used to estimate parameters adjusting for right censored event times. Like-
lihood cross-validation (LCV) scores are used to compare models. Adaptive 
searches through alternate conditional hazard rate models are controlled by 
LCV scores combined with tolerance parameters. These searches identify ef-
fective models for the underlying multiple event time data. Conditional ha-
zard regression is demonstrated using data on times between tumor recur-
rence for bladder cancer patients. Analyses of theory-based models for these 
data using extensions of Cox regression provide conflicting results on effects 
to treatment group and the initial number of tumors. On the other hand, 
fractional polynomial analyses of these theory-based models provide consis-
tent results identifying significant effects to treatment group and initial num-
ber of tumors using both model-based and robust empirical tests. Adaptive 
analyses further identify distinct moderation by group of the effect of tumor 
order and an additive effect to group after controlling for nonlinear effects to 
initial number of tumors and tumor order. Results of example analyses indi-
cate that adaptive conditional hazard rate modeling can generate useful in-
sights into multiple event time data. 
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Times, Recurrent Events 

 

1. Introduction 

Cox regression, also called proportional hazard regression, is the commonly 
used approach for modeling single survival time, failure time, or time-to-event 
data (see [1] for an extensive overview). The hazard function is assumed to equal 
a product of an unspecified function of time and the exponent of a linear func-
tion of available covariates with estimation addressing only the slope parameters 
for the covariates while ignoring the underlying dependence of the hazard func-
tion on time. Extensions of Cox regression have been developed to handle mul-
tiple event times. For the case of recurrent events, Andersen and Gill [2] model 
the hazard rate (or intensity function) in terms of possibly time-varying covariates 
while Lin et al. [3] model proportional mean and rate functions for the underlying 
counting process in terms of possibly time-varying covariates. For the more gener-
al case of multiple event times, Prentice et al. [4] use marginal Cox regression 
models, one for each possible event, to model possibly time-varying covariates. 
Wei et al. [5] propose an alternative marginal Cox regression approach. What 
these approaches have in common is that covariates have multiplicative effects 
while general dependence on time is left un-estimated. The purpose of this ar-
ticle is to formulate and demonstrate an adaptive approach for conditional ha-
zard regression modeling of multiple event times data based on fractional poly-
nomials [6] [7] using an extension of the approach of Knafl [8] for modeling 
single event time data. This approach estimates the dependence of the condi-
tional hazard rate on current time values, prior time values, and event time order 
as well as on possibly time-varying covariates. 

2. Methods 
2.1. Multiple Event Times 

Let 0mT >  for 1 m M≤ ≤  denote M continuous, possibly correlated random 
event time variables. Also, let mC  for 1 m M≤ ≤  denote associated random 
indicators for whether mT  is right censored, that is, only a lower bound for mT  
is observable ( 1mC = ), or whether mT  is not censored, that is, an actual value 
for mT  is observable ( 0mC = ). Furthermore, let mZ  for 1 m M≤ ≤  be ran-
dom 1r×  covariate vectors consisting of random covariates ,i mZ  for 1 i r≤ ≤  
and 1 m M≤ ≤ . This formulation allows for time-varying covariates. In prac-
tice, many covariates will be time-invariant with ,i m iZ Z=  for 1 m M≤ ≤ . One 
natural time-varying covariate is event order with values equal to the event time 
index m. 

For 1 m M≤ ≤ , let 

( )TT T
1 1 1m m m mT T C C=W Z Z  
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be the ( )( )2 1m r⋅ + ×  random vector of measurements up to time m where 
TZ  denotes the transpose of Z . Also, let mt , mc , and mz  denote values as-

sociated with the random variables/vectors mT , mC , and mZ  and use these to 
form the associated vector values 

( )TT T
1 1 1m m m mt t c c=w z z  

 
for mW . Note that mt  is an actual value for mT  when 0mc = , that is, 

m mT t= , and a lower bound on mT  when 1mc = , that is, m mT t> . 
For 1 m M≤ ≤ , denote the conditional distribution function 

( ) ( )1 1 1; , | ,m m m m m m m m mF t P T t− − −= ≤ = =w z W w Z z  
For 0mt >  where 0 =W 0  and 0 =w 0  are ( )( )2 1m r⋅ + ×  zero-valued 

vectors so that 

( ) ( )1 0 1 1 1 1 1; , | .F t P T t= ≤ =w z Z z  
for time-invariant covariates with ,i m iZ Z= , the dependence of mT  on 

1 1m m− −=W w  and m m=Z z  is simpler than in general since it depends only on 
the single value iz . When 1 m M≤ ≤ , the associated excess time probability 
function is 

( ) ( ) ( )1 1 1 1; , 1 ; , | ,m m m m m m m m m m m mS t F t P T t− − − −= − = > = =w z w z W w Z z  
(generalizing the survival function for single time event data) and the associated 
conditional hazard rate function is 

( ) ( )

( )
( )

1 1
1 0

1

1

| , ,
; , lim

; ,
; ,

m m m m m m m m m
m m m t

m m m

m m m

P t T t t T t
t

t
f t
S t

λ − −
− ∆ ↓

−

−

< ≤ + ∆ > = =
=

∆

=

W w Z z
w z

w z
w z  

where ( )1; ,m m mf t −w z  is the conditional density function for  
( )1 1| ,m m m m mT − −= =W w Z z . Integration gives 

( ) ( ) ( )( )1 1 10
; , ; , d log ; ,mt

m m m m m m m mt t t S tλ− − −Λ = ⋅ = −∫w z w z w z
 

so that 

( ) ( )( )1 1; , exp ; ,m m m m m mS t t− −= −Λw z w z
 

and 

( ) ( ) ( )( )1 1 1; , ; , exp ; , .m m m m m m m m mf t t tλ− − −= ⋅ −Λw z w z w z
 

A common density function f is assumed for ( )1 1| ,m m m m mT − −= =W w Z z  for 
all m (and so also a common distribution function F, a common excess time 
probability function S, a common conditional hazard rate function λ, and a 
common integrated conditional hazard rate function Λ), but different functions 
for different m may be more appropriate. The above formulation assumes that 
such differences are accounted for using the event order covariate with values 
equal to the event time index m. Also, the formulation assumes that the range of 
possible values for mT  is not constrained by the values for 1 2 1, , , mT T T − . For 
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the special case of increasing event times cum
mT  (as for recurrent events [9]), 

values for cum
mT  are constrained to be larger than the value for cum

1mT − , but then 
consecutive differences cum cum

1m m mT T T −= −  with cum
0 0T =  can be modeled in-

stead using the above formulation. 

2.2. Fractional Polynomial Conditional Hazard Rate Modeling 

Fractional polynomials [10] [11] are based on power transforms of primary pre-
dictors u. For modeling the conditional hazard rate ( )1; ,m m mtλ −w z , the primary 
predictors u are functions of mt  and the entries of the vectors 1m−w  and mz . 
The values for 1 2, , , mt t t  are positive while the values for 1 2 1, , , mc c c −  are 
nonnegative. For most i, the entries ,1 ,2 ,, , ,i i i mz z z  will be nonnegative so that 
it is reasonable to restrict ,i mz  to be nonnegative for 1 i r≤ ≤  and 1 m M≤ ≤ . 
Under this assumption, power transforms of primary predictors u can be de-
fined as 

( ) 0, 0
;

0q

u
g u q

u u
=

=  >  
for real-valued powers q. 

The fractional polynomial conditional hazard rate is defined as 

( ) ( )T
1 1; , ; ,m m m m m mt tλ − −= ⋅w z x w z β  

where ( )1; ,m m mt −x w z  is a 1p×  vector of individual terms ( )1; ,j m m mx t −w z . 
Each term is a power transform of a single primary predictor or of a product of 
multiple power-transformed primary predictors (called a geometric combina-
tion, generalizing the standard interaction). The primary predictors for the frac-
tional polynomial are a subset of mt  and the entries of 1m−w  and mz  while 
β  is a 1p×  vector of slope parameters jβ  for 1 j p≤ ≤ . An intercept pa-
rameter can be included in the model using the unit transform 1u ≡  as a pri-
mary predictor. This formulation requires that ( )1; ,m m mtλ −w z  be constrained 
to take on positive values as addressed later. This restriction could be resolved by 
modeling instead the natural log of ( )1; ,m m mtλ −w z  as a linear function in β  
(as in [2] [3] [4] [5]), but then the integral 

( ) ( )1 10
; , ; , dmt

m m m m mt t tλ− −Λ = ⋅∫w z w z  

cannot always be expressed in closed form. The advantage of the above defini-
tion is that power transforms ( );j jg u q  are simply integrated with respect to 

mt , which can also speed up computation of estimates for the parameter vector 
β . The possible forms for ( )1; ,j m m mx t −w z  are a power transform of mt  in-
cluding the unit transform ( );0 1mg t ≡ , a power transform of any one entry of 
either 1m−w  or mz , a power-transformed geometric combination in mt  com-
bined with one or more entries of 1m−w  and/or mz , and a power-transformed 
geometric combination in one or more entries of 1m−w  and/or mz  but not in 

mt . Consequently, ( )1; ,j m m mx t −w z  can be expressed as the product of a func-
tion of mt  and a function of 1m−w  and mz , that is, 
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( ) ( ) ( ) ( ) ( )1 ,1 ,2 1 ,2 1; , , ; ,j m m m j m j m m m j j m mx t x t x g t q x− − −= ⋅ = ⋅w z w z w z
 

where ( ),2 1,j m mx −w z  is either the unit transform or depends on some subset of 
the entries of 1m−w  and mz  but not on mt . When 0jq =  for all j, none of the 

( ) ( )1 1; , ,j m m m j m mx t x− −=w z w z  depend on mt , and so the conditional hazard 
rate is constant in mt  and satisfies 

( ) ( ) ( )T
1 1 1; , , , .m m m m m m mtλ λ− − −= = ⋅w z w z x w z β  

Also, ( ),2 1,j m mx −w z  equals the unit transform when  
( ) ( )1 ,1; ,j m m m j mx t x t− =w z  depends only on mt . The power jq  is either the 

power for a single power transform of mt  or equals a product of a power q′  
of mt  and a power q′′  transforming a geometric combination containing the 
power q′  of mt . In general, ( ),2 1,j m mx −w z  can contain power transforms of 
the entries of 1m−w  and mz . 

Integration gives 

( ) ( )T
1 1; , ; ,m m m m m mt t− −Λ = ⋅w z h w z β  

where ( )1; ,m m mt −h w z  is the 1p×  vector with entries 

( ) ( ) ( )( ) ( )1 1 ,2 10 0
; , ; , d ; d , .m mt t

j m m m j m m j j m mh t x t t g t q t x− − −= ⋅ = ⋅ ⋅∫ ∫w z w z w z
 

Assume that 1jq > − , so that 

( ) ( ) ( )1 ,2 1

; 1
; , ,

1
m j

j m m m j m m
j

g t q
h t x

q− −

+
= ⋅

+
w z w z

 

with 
( ); 1

1
m j

j

g t q

q

+

+
 a positive function of time mt . The second term  

( ),2 1,j m mx −w z  is nonnegative, but not identically 0, for example, when it equals 

a single indicator variable z. By definition, ( )1; ,m m mS t −w z  is a decreasing func-
tion of mt  for each unique possible value of the entries of 1m−w  and mz , and 

so ( )1Λ ; ,m m mt −w z  must be an increasing function of mt  for functions of 

1m−w  and mz  determined by the fractional polynomial model. 

Let { }:1J j j p= ≤ ≤ , { }1 :1 , 0jJ j j p q= ≤ ≤ ≠ , and 2 1\J J J= . Partition 
( )1; ,m m mt −x w z  into ( )1 1; ,m m mt −x w z  with entries ( )1; ,j m m mx t −w z  for 1j J∈  

and associated slope parameter vector 1β  as well as ( )2 1,m m−x w z  with entries 
( )1,j m mx −w z  for 2j J∈  depending only on 1m−w  and mz  but not on mt  

with associated slope parameter vector 2β . The conditional hazard function 
( )1; ,m m mtλ −w z  then satisfies 

( ) ( )
( ) ( )

T
1 1

T T
1 1 1 2 1 2

; , ; ,

; , ,
m m m m m m

m m m m m

t t

t

λ − −

− −

= ⋅

= ⋅ + ⋅

w z x w z

x w z x w z

β

β β  
so that 

( ) ( ) ( ) ( )
1 21 ,2 1 ,2 1; , ; , , .m m m m j j m m j j m m jj J j Jt g t q x xλ β β− − −∈ ∈

= ⋅ ⋅ + ⋅∑ ∑w z w z w z
 

Assume for now that 2J  is empty. For models based on a single transform of 
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mt , 

( ) ( ) ( )1 1 1; , ;m m m m mt t g t qλ λ β− = = ⋅w z  

can be guaranteed to be positive by restricting the associated slope 1β  to be 
positive-valued. For models based on multiple transforms of mt  but not on 

1m−w  and mz , 

( ) ( ) ( )
11; , ;m m m m m j jj Jt t g t qλ λ β− ∈

= = ⋅∑w z
 

can generate complicated integrals ( ) ( )1; ,m m m mt t−Λ = Λw z  that are not in-
creasing in mt  in general. Restricting all the associated slopes jβ  for 1j J∈  
to be positive-valued is a straightforward way to guarantee that ( )mtΛ  is in-
creasing in mt . More general models with 

( ) ( ) ( )
11 ,2 1; , ; ,m m m m j j m m jj Jt g t q xλ β− −∈

= ⋅ ⋅∑w z w z
 

generate integrals ( )1; ,m m mt −Λ w z  that need to be increasing in each unique 
choice for the terms ( ),2 1,j m mx −w z . This can be guaranteed in a straightforward 
way once again by restricting all the associated slopes jβ  for 1j J∈  to be pos-
itive-valued. 

On the other hand, when 2J  is nonempty, the assumption of all posi-
tive-valued slope parameters would be too restrictive. For example, consider a 
model based on two primary predictors: mt  and a time-invariant indicator va-
riable z for membership in one of two groups of study participants with additive 
effects to mt  and z. The term 

( ) ( )T T
1 1 1 1 1; ,m m m mt t− ⋅ = ⋅x w z xβ β  

models the dependence of the conditional hazard function on mt  in terms of 
1p −  parameters while 

( )T
2 1 2,m m pz β− ⋅ = ⋅x w z β  

provides for a shift in the conditional hazard function for the group coded as 
1z =  compared to the conditional hazard function for the group coded as 
0z = . In general, this shift can be in the negative or the positive direction, and so 

the slope of 2β  needs to be allowed to be negative. However, allowing for negative 
entries for 2β  means that ( )T

1; ,m m mt − ⋅x w z β  and ( )T
1; ,m m mt − ⋅h w z β  can 

sometimes take on negative or zero values. See Section 2.3 for how to handle 
such cases. 

Hazard ratios are naturally generated for models based on proportional ha-
zard rates. Hazard ratios are not needed to assess a fractional polynomial model 
but can be generated if desired. For example, consider the simple fractional po-
lynomial model ( )1; ,m mt t zλ −  based on the current time value mt , the previous 
time value 1mt − , and a single covariate z with values 1 and 2. The associated ha-
zard ratio is given by ( ) ( )1 1; , 2 ; ,1m m m mt t t tλ λ− − , that is, the conditional hazard 
rate for 2z =  divided by the conditional hazard rate for 1z = . Note that in 
general this is a function of the current time mt  and the previous time 1mt − . 
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2.3. Maximum Likelihood Estimation 

Let { }:1s S s s n∈ = ≤ ≤  denote indexes for n study participants who provide 
multiple event time data consisting of observations 

( )TT T
, 1, , 1, , 1, ,m s s m s s m s s m st t c c=w z z  

 

for ( )1 m M s M≤ ≤ ≤ . This allows for missing data, but just for large time in-
dexes ( )M s m M< ≤ . This is the kind of missing data occurring in the example 
data set of Section 3. More complex missing data can be readily handled if de-
sired (see [11]). The total number of measurements is thus 

( ) ( ).s SM S M s
∈

=∑  

All times ,m st  for all participants s can be uncensored, but not all of them 
should be censored. 

Let ( ), 1, ,; ,m s m s m st −x w z  be the observed vectors determined by some frac-
tional polynomial model. For each s S∈  and ( )1 m M s≤ ≤ , the conditional 
likelihood terms ( ),m sL β  satisfy 

( )
( )
( )

, 1, , ,
,

, 1, , ,

; , , 0

; , , 1
m s m s m s m s

m s
m s m s m s m s

f t c
L

S t c
−

−

 == 
=

w z

w z
β

 

so that the associated log-likelihood term ( ) ( )( ), ,logm s m sL= β β  satisfies 

( ) ( ) ( )( ) ( ), , , 1, , , 1, ,1 log ; , ; , .m s m s m s m s m s m s m s m sc t tλ − −= − ⋅ − Λw z w z β
 

The likelihood ( );L S β  equals the product over s S∈  and ( )1 m M s≤ ≤  
of the likelihood terms ( ),m sL β  with associated log-likelihood 

( ) ( )( ) ( ) ( ),1; log ; .M s
m ss S mS L S

∈ =
= =∑ ∑ β β β

 

The maximum likelihood estimate ( )Sβ  of β  maximizes the log-likelihood 
( );S β  over β , which is achieved by solving the estimating equations 

( );
0.

S∂
=

∂
 β

β  

For simplicity of notation, parameter estimates ( )Sβ  are denoted as func-
tions of the index set S for the observed data used in their computation without 
hat (^) symbols. 

The gradient vector 
( );S∂
∂
 β

β
 has entries satisfying 

( ) ( )( )

( ) ( )
( ) ( )( )

,
1

, 1, ,
, , 1, ,T1

, 1, ,

;

; ,
1 ; ,

; ,

M s m s
s S m

j j

M s j m s m s m s
sm j m s m s m ss S m

m s m s m s

S

x t
c h t

t

β β∈ =

−
−∈ =

−

∂∂
=

∂ ∂

 
 = − ⋅ −
 ⋅ 

∑ ∑

∑ ∑
w z

w z
x w z

 ββ

β
 

for j J∈ . The Hessian matrix ( );SH β  has entries satisfying 
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( ) ( )( )

( ) ( ) ( )
( )( )

( )

22
,

1

, 1, , , 1, ,
, 21 T

, 1, ,

;

; , ; ,
1

; ,

M s m s
s S m

j j j j

M s j m s m s m s j m s m s m s
m ss S m

m s m s m s

S

x t x t
c

t

β β β β∈ =
′ ′

′ − −

∈ =

−

∂∂
=

∂ ∂ ∂ ∂

 ⋅ = − − ⋅  ⋅ 

∑ ∑

∑ ∑
w z w z

x w z

 ββ

β
 

for ,j j J′∈ . The gradient vector and Hessian matrix can be used in a Newton- 
Raphson algorithm to compute the maximum likelihood estimate ( )Sβ . 

When ( )T
, 1, ,; , 0m s m s m st − ⋅ ≤x w z β  or ( )T

, 1, ,; , 0m s m s m st − ⋅ ≤h w z β  for some s, 
set 

( ), 1, ,; ,m s m s m stλ δ− =w z  

for some small positive value δ  like 0.00001 and also set 

( ), 1, , ,Λ ; , .m s m s m s m st tδ− = ⋅w z
 

However, leave the gradient vector and Hessian matrix unchanged so that 
maximum likelihood estimation uses actual derivatives with respect to the pa-
rameter vector β . 

Models based on a single transform with 1p =  can be computed directly. In 
this case, ( )1β=β  and the gradient is a scalar value satisfying 

( ) ( )( ) ,
1 , 1, ,1

1 1

1;
; ,M s m s

m s m s m ss S m

cS
h t

β β −∈ =

−∂  
= − ∂  
∑ ∑ w z

 β

 
so that 

( )
( )

( ) ( )
,1

1
1 , 1, ,1

.
; ,

M s
m ss S m

M s
m s m s m ss S m

n c
S

h t
β ∈ =

−∈ =

−
= ∑ ∑
∑ ∑ w z

 
The covariance matrix for the parameter estimate vector ( )Sβ  can be esti-

mated in two ways: the model-based estimate treats the assumed model as the 
true model while the robust empirical (or sandwich) estimate allows for the true 
model to be different from the assumed model. The model-based estimate of the 
covariance matrix for ( )Sβ  equals the J J×  matrix satisfying 

( )( ) ( )( )1
MB ; ,S S S−= −Hβ βΣ

 
that is, the negative of the inverse of the Hessian matrix evaluated at the esti-
mated parameter vector ( )Sβ . The robust empirical estimate equals the J J×  
matrix satisfying  

( )( ) ( )( ) ( )( ) ( )( ) ( )( )1 T 1
RE ; ;SC S S S S S S− −= ⋅ ⋅ ⋅H G G Hβ β β β βΣ

 
where ( )( )SG β  is the ( )J m S×  matrix with entries ( )( ), ,j m s SG β  for 
1 j J≤ ≤ , ( )1 m M s≤ ≤ , and s S∈  satisfying 

( )( ) ( ),
, , .m s

j m s
j

S
β

∂
=

∂
G

 β
β

 

Note that the gradient vector 
( )( );S S∂

∂

 β
β

 equals the 1J ×  vector generated  
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by summing the rows of ( )( )SG β . The diagonal entries of ( )( )MB SβΣ  and 
( )( )RE SβΣ  are estimates of variances for the parameter estimates correspond-

ing to the entries of ( )Sβ , and so associated standard errors equal the square 
roots of these diagonal entries. These standard errors can be used to compute 
tests for zero individual model parameters to use in assessing specific theoreti-
cally important models. However, tests for parameters of adaptively generated 
models are typically significant as a consequence of the adaptive modeling 
process (as summarized in Section 2.5). Consequently, results for such tests are 
not reported for adaptive models generated in example analyses, but are re-
ported for theory-based models. 

2.4. Likelihood Cross-Validation 

Partition the index set S into 1k >  disjoint sets ( )S h , called folds, for 
{ }:1h H h h k∈ = ≤ ≤ . Note that all ( )M s  measurements ,m sw  for a given in-

dex s are allocated to the same fold. The LCV score for some model is defined as 

( ) ( )( )( )( ) ( )1
LCV ; \ .

M S

h H L S h S S h
∈

=∏ β
 

In other words, evaluate the likelihood for each fold ( )S h  using the para-
meter vector ( )( )\S S hβ  computed by maximizing the likelihood for the 
complement ( )\S S h  of the fold, normalize it by the total number of mea-
surements ( )M S , and multiply these normalized deleted fold likelihoods to-
gether to get the LCV score. 

When one or more slopes 0jβ ≤  for some 1j J∈  are generated as part of 
the estimation computations, reset ( );S = −∆ β  for some large value ∆  such 
as 700 unless ( );S β  is already smaller than −∆ . For a model with parameter 
vector estimate ( )Sβ  having one or more slopes ( ) 0j Sβ ≤  for some 1j J∈ , 
reset the LCV score to a very small value δ ′  such as 10−12. These adjustments 
guarantee that the adaptive modeling process of Section 2.5 generates models 
with acceptable parameter vector estimates ( )Sβ . 

A larger LCV score indicates a better model, but not necessarily a distinctly (sub-
stantially, significantly) better model. A 2χ -based LCV ratio test, analogous to a 
likelihood ratio test, can be used to decide if there is a distinct improvement or not 
in the LCV score. Following [7], these tests are expressed in terms of the percent 
decrease (PD) in the LCV score for the model with the smaller score compared to 
the model with the larger score and a cutoff for a distinct PD, changing with the 
sample size. A PD larger than the cutoff indicates that the model with the larger 
score distinctly (substantially, significantly) improves on the model with the smaller 
score. Otherwise, the model with the smaller score is a competitive alternative and, 
if also simpler, it is a parsimonious, competitive alternative and so a preferable 
choice. Examples of LCV ratio tests are provided in Section 3. 

2.5. Adaptive Model Selection 

An effective choice of a fractional polynomial conditional hazard rate model 
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based on a subset of the primary predictors ,m st  and the coordinates of 1,m s−w  
and ,m sz  is identified adaptively using a heuristic search process controlled by 
tolerance parameters indicating how much of a change in the LCV score is al-
lowable at each stage of the process. Starting from a base conditional hazard rate 
model, which is usually the constant model, power transforms and also geome-
tric combinations if requested are systematically added to the model. Then, the 
expanded model is contracted, removing extraneous transforms if any and ad-
justing the powers of the remaining transforms. LCV ratio tests are used to de-
cide whether to stop the contraction or continue removing transforms. Only a 
brief overview of the adaptive modeling process is provided here; details are 
provided in [11]. Note that geometric combinations generalize standard interac-
tions and so provide for a nonlinear assessment of the concept of moderation 
[12]. Adaptive modeling applies to both independent and correlated outcomes in 
a variety of other regression contexts such as linear regression [7], logistic re-
gression [13], Poisson regression [14] [15], and discrete regression [16]. 

Power transforms of time values ,m st  can cause computational problems for 
the adaptive modeling process when some of those time values are large. For this 
reason, fractional polynomial conditional hazard rate models are computed us-
ing the normalized event time values *

, ,m s m st t t′ =  and associated vectors ,m s′w  
computed using these normalized times where 

( ){ }*
,max :1 ,m st t m M s s S≥ ≤ ≤ ∈

 
is an upper bound on the observed time values. This generates estimates 

( ), 1, ,; ,m s m s m stλ −′ ′ ′w z  and ( ), 1, ,; ,m s m s m sS t −′ ′ ′w z  of the conditional hazard rate and 
the excess time probability function, respectively. Then, define the estimated 
conditional hazard rate and excess time probability function for the original time 
values ,m st  as 

( ) ( )*
, 1, , , 1, ,; , ; ,m s m s m s m s m s m st t tλ λ− −′ ′=w z w z

 
and 

( ) ( )*
, 1, , , 1, ,; , ; ,m s m s m s m s m s m sS t S t t− −′ ′=w z w z

 
for any ,m st , 1,m s−w , and ,m sz . This adjustment guarantees that power trans-
forms are computed using bounded time values within the interval (0, 1]. It is 
not needed when * 1t ≤  to start with, but that is unlikely to hold except in rare 
cases. 

2.6. Modeling Constraints 

A variety of constraints are needed so that a fractional polynomial provides an 
appropriate conditional hazard rate model. Specifically, covariate values ,i mz  
for 1 i r≤ ≤ , 1 m M≤ ≤  are restricted to be nonnegative (Section 2.2). Power 
transforms ( );g t q  have powers restricted to satisfy 1q > −  (Section 2.2). 
Conditional hazard rates ( ), 1, ,; ,m s m s m stλ −w z  are adjusted to be positive-valued 
and their integrals ( ), 1, ,; ,m s m s m st −Λ w z  to be increasing in ,m st  (as addressed in 
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Section 2.3). Slope parameters jβ  for 1j J∈  corresponding to power trans-
forms depending on time t are restricted to be positive-valued (as addressed in 
Section 2.4). Also, fractional polynomial conditional hazard rate models are 
computed using normalized event times (as addressed in Section 2.5). 

3. Example Analyses 

Example analyses are presented in this section demonstrating the use and appli-
cability of conditional hazard regression modeling based on fractional polyno-
mials. These analyses use data on recurrence of bladder cancer tumors as de-
scribed in Section 3.1. Examples are provided of both theory-based modeling 
and adaptive modeling of these data. Analyses are conducted using SAS® Version 
9.4. A SAS macro for conducting adaptive modeling in a variety of regression 
contexts including conditional hazard regression is available on request from the 
author. 

3.1. Multiple Tumor Event Times for Bladder Cancer Patients 

Data are provided in [5] on the recurrence of up to 4M =  tumors for 86n =  
patients initially diagnosed with bladder cancer collected by [17]. Patients have 
from ( ) 1M s =  to ( ) 4M s =  possibly censored recurrence times for a total of 

( ) 179M S =  time measurements. LCV scores are computed using 5k =  folds 
with fold sizes ranging from 15 (17.4%) to 20 (23.3%) patients and from 31 
(17.3%) to 42 (23.5%) time measurements so that both fold sizes and fold com-
plement sizes are not proportionately sparse. The cutoff for a distinct percent 
decrease (PD) in the LCV score for data with ( ) 179m S =  observations is 
1.07%. 

Patients have follow-up times max
st  ranging from 0 to 64 months for s S∈ . 

Observed tumor recurrence event times cum max
,s m st t≤  have values increasing in 𝑚𝑚. 

When a patient has a total of 0 3m′≤ ≤  tumor recurrences with cum max
m st t′ < , a 

censored time cum max
, 1s m st t′+ =  is added to the measurements for this patient, and 

so then ( ) 1 4m s m′= + ≤  for that patient and the only possible censored event 
time for all patients is the last one ( )

cum
,s M st . In cases where patients have 4m′ =  

total tumor recurrences and cum max
,s m st t′ < , a fifth censored time could be added 

but has not been to restrict to at most 4 event times (as in [5]). One patient has 
follow-up time max 0st =  with no observed tumor recurrences. Technically, this 
introduces a single censored event time cum

,1 0st = , which is trivial (i.e., the asso-
ciated likelihood has value 1), and so the follow-up time for this patient has been 
changed to max 1st =  so that cum

,1 1st =  is non-trivial. Example analyses use the 
consecutive times between tumors given by the differences cum cum

, , , 1s m s m s mt t t −= −  
with cum

,0 0st = . Censoring is unchanged. 
Available covariates include treatment group, the initial number of tumors, 

and the initial tumor size. Patients are categorized into two treatment groups: 48 
(55.8%) receiving a placebo treatment (group = 1) and 38 (44.2%) receiving thi-
otepa treatment (group = 2). Initial numbers of tumors range from 1 - 8 with 51 
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(59.3%), 11 (12.8%), 10 (11.6%), and 14 (16.3%) patients having 1, 2, 3, and 4-8, 
respectively. Initial tumor sizes range from 1 - 7 with 49 (57.0%), 10 (11.6%), 16 
(18.6%), and 11 (12.8%) patients having 1, 2, 3, and 4-7, respectively. These co-
variates are time-invariant. They are denoted as group, number, and size in ex-
ample analyses for brevity. The primary theory-based model for the data is the 
one based on these three covariates considered jointly. 

Time-varying covariates are also considered in example analyses. These ad-
dress possible dependence of the conditional hazard rate on event order and 
time. The dependence predictors include tumor order m with possible values 1 - 
4, the current observed time mt , the prior observed time 1mt −  with 0 0t = , and 
the prior cumulative time cum

1mt −  (or, equivalently, the sum of the prior time val-
ues 0 1mt t −+ + ) with cum

0 0t = . Note that the last two of these predictors in-
duce dependence of an order 1 autoregressive type. Dependence predictors of 
higher order autoregressive types may have value especially for data with rela-
tively large maximum numbers of event times M, but these are not considered in 
example analyses for brevity. 

Of the 179 tumor recurrence times, 86 (48.0%) occur at tumor order 1, 46 
(25.7%) at tumor order 2, 27 (15.1%) at tumor order 3, and 20 (11.2%) at tumor 
order 4. Also, 67 (37.4%) of these recurrence times are censored. 

The example analyses are actually conducted using times cum *
mt t  normalized 

by * 60t =  and their differences. However, the unadjusted symbols cum
mt  and 

mt  are used to denote times in the example analyses to reduce the complexity of 
the notation. The patient index s is dropped for the same reason. 

3.2. Modeling the Conditional Hazard Rate 

Existing methods [2] [3] [4] [5] for modeling multiple event times are extensions 
of Cox regression methods, and so ignore the general dependence on current 
and prior times except for how those times affect covariates. Thus, they restrict 
to estimating only such covariate effects. However, fractional polynomial condi-
tional hazard rate models need to estimate dependence effects prior to conduct-
ing theory-based or adaptive modeling based on other covariates. This section 
provides example analyses addressing dependence for the bladder cancer event 
times using fractional polynomials. 

To address the dependence of conditional hazard rates over time, consider 
models based on the following three time-varying predictors: tumor order m, the 
current time value mt , and the prior time value 1mt − . The adaptive additive 
model in these three dependence predictors is based on untransformed tumor 
order m (i.e., transformed by the power 1) without an intercept and with LCV 
score 1.07006. The associated moderation model in these three dependence pre-
dictors (i.e., allowing for geometric combinations) is based on the single power 
transform 0.99m  without an intercept, almost the same model as the additive 
model. 

An alternate approach for accounting for dependence would be the adaptive 
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model based on the following three time-varying predictors: tumor order m, the 
current time value mt , and the prior cumulative time value cum

1mt − , that is, with the 
prior time value replaced by the prior cumulative time value. The adaptive additive 
model in these three dependence predictors is based on untransformed event order 
m without an intercept, the same model as generated using the prior time value. 
The associated moderation model in these three dependence predictors is based on  

the single power transformed geometric combination ( )( )1.20.21.5 cum 0.08
1m mm t t−⋅ ⋅  with  

an intercept and LCV score 1.07036. The associated additive model with LCV 
score 1.07006 has non-distinct PD 0.03% (i.e., less than the cutoff of 1.07% for a 
distinct PD), and so is preferable as a parsimonious, competitive alternative. 

This preferable dependence model generates increasing conditional hazard 
rate estimates of 1.73, 3.47, 5.20, and 6.93 as tumor order m varies from 1 - 4. 
Estimated excess time probability curves are plotted in Figure 1. The excess time 
probability decreases with increased times between tumors and more quickly for 
larger tumor orders m. Also, observed ranges for times between tumors tend to 
be smaller for larger tumor orders, contributing to higher estimated conditional 
hazard rates and more quickly decreasing estimated excess time probability 
curves. This dependence model is used next to address theory-based effects to 
non-dependence covariates using fractional polynomial conditional hazard rate 
models. 

3.3. Modeling Theory-Based Effects 

Analyses of multiple event times using the methods of [2] [3] [4] are supported 
by SAS PROC PHREG (for proportional hazards regression). Results generated 
using SAS for these methods applied to the bladder cancer event times are re-
ported in [18] and described in what follows. Results for the method of [5] applied  

 

 
Figure 1. The estimated excess time probability as a function of time between bladder can-
cer tumors by tumor order. 
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to the bladder cancer event times are reported in that article. 
The model of [2] is called the intensity model since it models the hazard rate. 

The joint intensity model in group, number, and size has associated p-values 
0.022, <0.001, and 0.538, respectively, generated using model-based standard 
errors. These results support the conclusion of significant joint effects on the 
hazard rate due to group and number but not due to size. The estimate for group 
is negative indicating that thiotepa treatment reduces the hazard rate for times 
between bladder cancer tumors. The estimate for number is positive indicating 
that a larger number of initial tumors increases the hazard rate for times be-
tween bladder cancer tumors. The model of [3] is called the proportional means 
model. It has the same slope estimates as the intensity model but uses the robust 
empirical standard errors to test these slope estimates. The joint proportional 
means model in group, number, and size has associated p-values 0.075, 0.005, 
and 0.572, respectively, supporting a significant joint effect due to number (and 
also increasing in number as before), but not due to group and size. 

The model of [4] is called a marginal Cox model since it treats the effects of 
group, number, and size as changing with tumor order m. It can be applied to 
times between tumors, and is then called a gap model, or alternately to cumula-
tive times. It is more complex having different slopes for group, number, and 
size for each of the 4 values for tumor order m. Of these 12 slopes, only two es-
timates for the gap model are significant: the estimates for number for tumor 
orders 1 and 4 ( 0.002p =  and 0.034p = , both with positive slope estimates). 
Results reported in [5] for their alternate marginal Cox model applied to the 
bladder cancer data are described as "providing some evidence, though not very 
strong, of thiotepa slowing down tumor recurrence" (they focus on only the ef-
fects to thiotepa over the 4 tumor orders controlling for number and size rather 
than on the effects for all three covariates in combination). 

Results for the theory-based conditional hazard rate model based on fractional 
polynomials are reported in Table 1 including model-based and robust empiri-
cal tests for group, number, and size. Robust empirical test results are more 
conservative in the sense that standard errors are larger and so p-values are larg-
er. However, for both of these two types of tests, estimates for group and number  

 
Table 1. Assessing the theory-based model for times between bladder cancer tumors us-
ing conditional hazard rate modeling based on fractional polynomials. 

Covariate1 Estimate 
Model-based tests2 Robust tests1,2 

SE p SE p 

group −0.70 0.25 0.006 0.28 0.013 

number 0.59 0.19 0.002 0.21 0.006 

size 0.01 0.12 0.907 0.12 0.911 

SE—standard error; 1Group has values 1 (placebo) and 2 (thiotepa), number has values 1 
- 8, and size has values 1 - 7. 2Tests based on the model controlling for all three covariates 
as well as for tumor order to address dependence over time. 
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are significant at 0.05p <  while the estimate for size is not significant. This 
holds while controlling jointly for all three of these covariates as well as for the 
dependence predictor untransformed tumor order m as identified in Section 3.1. 
As for the intensity model of [2], the estimate for group is negative indicating 
that thiotepa treatment reduces the hazard rate for times between bladder cancer 
tumors and the estimate for number is positive indicating that a larger number of 
initial tumors increases the hazard rate for times between bladder cancer tumors. 

The impact of these dependence and non-dependence covariates can be fur-
ther assessed adaptively by contracting the full model in all 4 covariates to a par-
simonious competitive alternative while restricting the contraction to leave the 
covariates untransformed. The generated model is based on untransformed ef-
fects to tumor order, group, and number with the estimate for group negative as 
before and the estimate for number positive as before. The inclusion of group 
and number in this adaptively reduced model means that the removal of each of 
these from the model generates a distinct PD in the LCV score, providing fur-
ther support for conclusions about the significance of their joint effects on time 
between bladder cancer tumors. 

The above result indicates that there is a distinct effect to group controlling 
for number. This raises the question of what effect group has by itself, not con-
trolling for number and size, but still allowing for dependence on untransformed 
tumor order. The estimated slope for group in this model is negative as before, 
but it is non-significant for both the model-based ( 0.349p = ) and the robust 
empirical ( 0.436p = ) tests. This indicates that the conclusion of significance of 
the effect of group based on theory-based models requires controlling for number. 

3.4. Adaptive Modeling Results 

This section addresses adaptive modeling of times between bladder cancer tu-
mors. These models assume that dependence is a function of only tumor order 
m as supported by the results of Section 3.1, but allows for its possible transfor-
mation rather than keeping it untransformed as in Sections 3.1-3.2. Section 3.3.1 
addresses the impact of group by itself while Section 3.3.2 addresses the com-
bined impact of group and number. Effects to size are not addressed for brevity. 
This seems reasonable given that size has weak effects for the theory-based mod-
els of Section 3.2. 

3.4.1. Adaptive Modeling in Terms of Group 
The adaptive additive model in tumor order m (to account for dependence) and 
group is the model based on untransformed tumor order by itself and does not 
depend on group. This is the same model reported in Section 3.1 with LCV score 
1.07006. The associated adaptive moderation model in these two predictors is the 
model based on the two transformed geometric combinations ( ) 0.41.22group m

−−⋅  
and ( ) 5.317group m

−−⋅  without an intercept and with LCV score 1.08477. The 
LCV score for the additive model generates a distinct PD of 1.36%, indicating 
that group distinctly moderates the effect of tumor order on time between blad-
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der cancer tumors. 
Estimated conditional hazard rates for this moderation model are depicted in 

Figure 2. For all 4 tumor orders, the conditional hazard rate for patients given 
thiotepa is lower than for patients given placebo treatment with the effect 
strongest for tumor order 2. 

3.4.2. Adaptive Modeling in Terms of Group and Number 
In order to generate models in number that are more readily interpretable, ana-
lyses in this section use ( )min number,4 , that is, number bounded to be no 
more than 4, combining the smaller categories 4 - 8 into one. The additive model 
in tumor order m, group, and ( )min number,4  is the model based on 0.6m , 

( )( )12
min number,4 , and group with LCV score 1.11380. The associated modera-

tion model in these three predictors is the model based on the two transformed 
geometric combinations 

( )( )( ) 0.50.62group min number,4m
−−−⋅ ⋅

 
and 

( )( )( )119 7group min number,4 m−⋅ ⋅
 

without an intercept and with LCV score 1.12023. The LCV score for the addi-
tive model generates a non-distinct PD of 0.57%, indicating that the additive 
model is preferable as a competitive alternative. It is also simpler since the effect 
of group is the same for all values of tumor order and of ( )min number,4 . 

Estimated conditional hazard rates for patient on thiotepa treatment based on 
the above additive model are depicted in Figure 3. Estimated conditional hazard 
rates are increasing in tumor order with, for each tumor order, essentially the  

 

 
Figure 2. The estimated conditional hazard rate as a function of tumor order and treat-
ment group (placebo or thiotepa) for times between bladder cancer tumors. 
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same values for numbers 1 - 3 and much larger values for numbers 4 - 8 com-
bined. In all cases, estimated conditional hazard rates are larger by 1.07 units for 
patients on placebo treatment (not plotted in Figure 3). 

Figure 4 provides plots for excess time probability curves for number 1 com-
pared to numbers 4 - 8, each by group for tumor order 1. For each group, the 
curves for numbers 4 - 8 decrease more quickly than the curves for number 1 
(which is about the same as for number 2 and for number 3, but these are not 
plotted). For each of the number 1 and 4 - 8 cases, the curves for the placebo  
 

 
Figure 3. The estimated conditional hazard rate as a function of tumor order and initial 
number for times between bladder cancer tumors for patients on thiotepa treatment; es-
timates for placebo treatment are all 1.07 units larger. 

 

 
Figure 4. The estimated excess time probability as a function of time between bladder 
cancer tumors by initial number 1 and numbers 4-8, each by group for tumor order 1. 

https://doi.org/10.4236/ojs.2023.134025


G. J. Knafl 
 

 

DOI: 10.4236/ojs.2023.134025 509 Open Journal of Statistics 
 

group decrease more quickly than the curves for the thiotepa group with a 
stronger thiotepa benefit for number 1 than for numbers 4 - 8. 

Figure 5 provides plots for excess time probability curves for the same cases 
as in Figure 4 but for tumor order 2. The patterns are similar to those of Figure 
4, but with curves decreasing more quickly than associated curves of Figure 4. 
Plots are not provided for tumor order 3 - 4, but in general curves tend to de-
crease more quickly for larger tumor orders, but observed data are also relatively 
sparse for tumor order 3 - 4. 

4. Discussion 

An adaptive approach is formulated for analyzing multiple event time data. 
Conditional hazard rates are modeled in terms of dependence on both time and 
covariates using fractional polynomials, that is, weighted sums of products of 
powers of time and other available predictors. Models are restricted so that con-
ditional hazard rates have positive values and so that estimated excess time 
probability functions decrease with time for functions of the other predictors 
determined by the model. Maximum likelihood is used to estimate parameters 
adjusting for right censored event times. 

Likelihood cross-validation (LCV) scores are used to compare models. LCV 
scores are normalized products of deleted likelihoods for 5k =  subsets, called 
folds, of the data computed using parameters estimated using the complements 
of those folds. A model with a larger LCV score is a better model, but may not be 
a distinctly better model. LCV ratio tests generalizing standard likelihood ratio 
tests are used to identify distinct differences in LCV scores. These tests are based 
on a cutoff for a distinct percent decrease in the LCV score. 

 

 
Figure 5. The estimated excess time probability as a function of time between bladder can-
cer tumors by initial number 1 and numbers 4-8, each by group for tumor order 2. 
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Adaptive searches through alternative models are used to identify effective mod-
els for a given data set in the sense that the removal of any of the model’s terms ge-
nerates a distinct decrease in the LCV score. This is accomplished in two stages: an 
expansion to grow the model followed by a contraction to prune ineffective terms if 
any from the expanded model. Geometric combinations equal to products of pow-
ers of multiple predictors can optionally be generated. These generalize standard 
interactions and so provide for a nonlinear assessment of moderation. 

Conditional hazards regression is demonstrated using data consisting of up to 
four possibly censored tumor recurrence times for patients diagnosed with 
bladder cancer. Dependence is modeled for times between tumor recurrence in 
terms of tumor order, the current time to recurrence, the prior time to recur-
rence, and the prior cumulative time. Adaptive analyses indicate that depen-
dence for these times between tumor recurrence is reasonably modeled in terms 
of tumor order by itself, indicating that adaptive modeling of the tumor recur-
rence data can reasonably base dependence solely on tumor order. Figure 1 pro-
vides plots for associated estimated excess time probability curves by tumor or-
der. This dependence model is used to conduct theory-based modeling of the 
times between tumor recurrence. 

The example analyses start with an assessment of theory-based modeling. The 
primary theory-based model for times between tumor recurrence is based on the 
joint covariate effects of treatment group (thiotepa versus placebo), initial num-
ber of tumor (1 - 8), and initial size of the tumors (1 - 7). Existing methods for 
analyzing these data provide conflicting conclusions for this theory-based mod-
el. The intensity model of [2] identifies significant effects to group and initial 
number using model-based tests for zero slopes. The proportional means model 
of [3] generates the same slope estimates as the intensity model but uses robust 
empirical tests which identify only a significant effect to initial number. The 
marginal Cox model of [4] assumes that the slopes for the three covariates 
change with the four tumor orders, thereby increasing the number of parameters 
four-fold and so possibly overfitting the data. This model only identifies signifi-
cant effects to initial number for two of the four tumor orders. The alternate 
marginal Cox model of [5] focuses on the group effect controlling for the other 
effects and concludes that there is “some evidence, though not very strong” of a 
group effect. It is not clear which of these models should be used to reach an ap-
propriate theory-based conclusion. 

On the other hand, fractional polynomial modeling indicates that there are 
significant effects to group and initial number using both model-based and ro-
bust empirical tests (Table 1). This approach differs from the approaches of [2] 
and [3] by estimating the dependence as well as the covariate effects, which re-
sults in consistent conclusions about the group effect for both model-based and 
robust empirical tests. It differs from the marginal Cox approaches of [4] and [5] 
in using tumor order to model dependence rather than having all covariate ef-
fects change with tumor order, which apparently is more effective due to gene-
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rating a more parsimonious model. All five approaches indicate that initial tu-
mor size has no effect. 

Further assessment of the theory-based model using fractional polynomial 
modeling indicates that there is a distinct effect to group, but only after control-
ling for the effect to initial number and not when considered by itself. Further 
adaptive modeling indicates that group considered by itself distinctly moderates 
the effect of tumor order on times between tumor recurrence. Figure 2 provides 
a comparison of estimated conditional hazard rates by tumor order and group 
for this moderation model. 

Adaptive modeling also identifies combined effects to tumor order, group, and 
initial number of tumors, but with the latter covariate adjusted to combine the 
small categories of 4 - 8 numbers in order to provide for a more readily interpreta-
ble effect to initial number of tumors. The additive model in these predictors is 
preferable over the associated moderation model. Figure 3 displays the estimated 
conditional hazard rate over tumor order and initial number for the thiotepa 
group. The conditional hazard rate for each tumor order is almost the same for 
each of initial numbers 1 - 3 and then increases for initial numbers 4 - 8 combined 
and this pattern increases with increasing tumor order. In all cases, the conditional 
hazard rate for patients on placebo treatment is 1.07 units higher. Figure 4 & Fig-
ure 5 provide plots of estimated excess time probability curves generated by this 
model for tumor order 1 and 2, respectively. Plots are not provided for tumor or-
der 3 and 4, but in general these curves tend to decrease more quickly for larger 
tumor order. However, observed data are relatively sparse for tumor order 3 and 4. 

The example analyses are limited in only addressing recurrent event time data 
and not more general multiple event time data, but the methods have been for-
mulated to handle more general cases. Censoring for these analyses can only 
occur for the last event for each participant. However, conditional hazards re-
gression has been formulated in terms of previous time values whether they are 
censored or not and so generalizes to more complex censoring situations. Con-
ditional hazards regression can also be applied to model clustered multiple event 
time data (as in [19]) as long as the clusters can be assigned appropriate event 
orders indexes. Future work is needed to investigate these more complex mul-
tiple event time data issues. 

In summary, conditional hazard regression modeling has been formulated to 
model dependence across multiple event times as well as the effects of covariates. 
It has also been demonstrated using both theory-based and adaptive analyses of 
times between tumor recurrence for bladder cancer patients. Results of example 
analyses indicate that adaptive conditional hazard rate modeling can generate 
useful insights into multiple event time data, but future work is needed to apply 
this method to more general sets of data. 
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