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Abstract 
When dealing with a regular (fixed-support) one-parameter distribution, the 
corresponding maximum-likelihood estimator (MLE) is, to a good approxi-
mation, Normally distributed. But, when the support boundaries are func-
tions of the parameter, finding good approximation for the sampling distri-
bution of MLE (needed to construct an accurate confidence interval for the 
parameter’s true value) may get very challenging. We demonstrate the nature 
of this problem, and show how to deal with it, by a detailed study of a specific 
situation. We also indicate several possible ways to bypass MLE by proposing 
alternate estimators; these, having relatively simple sampling distributions, 
then make constructing a confidence interval rather routine. 
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1. Introduction 

Extensive literature exist describing how to find an approximate sampling dis-
tribution of one or more maximum-likelihood estimators of parameters of a 
regular distribution. The corresponding procedure is based on Rao-Cramer va-
riance (in one-parameter case) or Fisher-information matrix (several parame-
ters), resulting in (either univariate or multivariate, respectively) Normal distri-
bution; in the former case, this can be further improved by including a few extra 
terms of a more accurate Edgeworth expansion (see, for example, [1] and [2]). 
Constructing such approximation is quite routine, even though use of a com-
puter may be necessary to find the required first four moments. 

The purpose of this article is to show how much more difficult the same task 
becomes when the sampled distribution is not regular; we do this using the fol-
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lowing one-parameter example: sampling a distribution whose probability den-
sity function is given by 

( )
2

0 02
0 0

3 1 when
4

xf x xθ θ
θ θ

 
= − − < <  

 
              (1) 

(zero otherwise), and finding an approximation for the probability density func-
tion (PDF) of the maximum-likelihood estimator (MLE, denoted θ̂ ) of the 0θ  
(necessarily positive) parameter. We will also discuss several possibilities for 
constructing a confidence interval (CI) for the unknown value of 0θ , aiming for 
good accuracy in terms of both the CI’s length (which needs to be small), and its 
level of confidence (which can be often only approximated). 

Note that our example has two distinctive properties (beyond being a case of 
non-regular estimation), namely 
• it involves what is called a scaling parameter; this simplifies the search for a 

good estimator, 
• the corresponding MLE is at the local maximum of the likelihood function, 

not at its boundary (the latter case is easy to deal with—we leave it for another 
publication). 

In what follows, we use the following terminology: analytic describes results 
expressed in formula form, while numeric implies using a computational algo-
rithm; similarly, regarding accuracy, we use: exact (self-explanatory; only ana-
lytic results qualify), while practically exact answers can be computed numeri-
cally to arbitrary precision; accurate implies relatively small errors, and ade-
quate restricts errors to less than one percent. 

2. Maximum Likelihood Estimator 

To find the MLE of 0θ , we differentiate the natural logarithm of the corres-
ponding likelihood function, namely 

( )
2
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3ln 1 ln ln
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n nθ θ
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with respect to θ , thus getting 
2

3 2
1

2
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n
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X θθ
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=

−

−
∑                         (3) 

Making the last expression equal to 0 results in 
2

2

2

2

1
2

1

X

X
θ

θ

=
−

                          (4) 

where the bar indicates the sample mean of the full expression. Solving the last 
equation for θ , subject to the 

1
max ii n

Xθ
≤ ≤

>  constraint (this can be done only 
numerically) yields the resulting ML estimate, denoted θ̂ . Note that the distri-

https://doi.org/10.4236/ojs.2023.134024


J. Vrbik 
 

 

DOI: 10.4236/ojs.2023.134024 477 Open Journal of Statistics 
 

bution of 0
ˆ: θ θΘ =  is parameter free, which simplifies our task; we then need 

to find the sampling distribution of Θ only (or an adequate approximation to it); 
the corresponding transformation back to θ̂  is then quite routine. 

3. Sampling Distribution of Θ 

Let us then investigate the distribution of Θ, a random variable defined as the 
unique (when 

1
max ii n

Yθ
≤ ≤

> ) solution to 
2

2

2

2

1
2

1

Y

Y
θ

θ

=
−

                          (5) 

where Y stands for a sample of size n from a distribution whose PDF is 

( ) ( )23 1 where 1 1
4

f y y y= − − < <                 (6) 

The usual (regular-case) approach would be to expand the LHS of (5) at 
1θ =  (the asymptotic mean of Θ), thus getting 

( )
( )

2 2

2 22

12 1
21 1

Y Y
Y Y

θ− ⋅ ⋅ − + =
− −


                (7) 

and then solving for 1θ − ; this yields the following approximate value of 1Θ− : 

( )
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2
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−
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⋅
−


                       (8) 

When both the numerator and denominator have finite moments, this then 
leads, without much difficulty, to the usual (Normal or Edgeworth) asymptotic 
result. 

Unfortunately, 
2

2:
1

YU
Y

=
−

 has 1
2

 as its expected value but its variance is 

infinite, while 
( )

2

22
:

1

YV
Y

=
−

 has both of these moments infinite. The best we  

can do at this point is to investigate the marginal distribution of the numerator 
and then, separately, of the denominator (deriving the bivariate distribution of U 
and V and proceeding in the manner of [3] or [4] proves too difficult). 

3.1. The Numerator 

Using (6), it is easy to derive the corresponding PDF of U, namely 

( )
( )5n 2

3 1 where 0
4 1

f u u
u u

= ⋅ >
+

               (9) 

This can be routinely converted into the corresponding characteristic function 
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(CF) of 1
2

U − , namely 

( ) ( ) ( )n 0 1
i i: exp i i

2 2 2
t t tt t K t Kχ     = − ⋅ − + − −    

    
         (10) 

where 0K  and 1K  are second-kind Bessel functions. When expanded in t, the 
ln of the last expression yields 

( ) 2 2
nln 0.2591 0.5890i 0.375 lnt t t t t tχ − + +          (11) 

implying that the ln of the characteristic function of 
2
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1
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n n
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−  − 

∑
                       (12) 

is (now expanded in terms which decrease with n) 
22 3 ln  3 ln ln 1.3821 0.589i

16 ln ln 8 ln ln
t t t tt n

n n n n
 − + − + − + 
 

         (13) 

The n →∞  limit of the last expression is 23
16

t− , which means that (12) 

has, in the same limit, the Normal distribution with the mean of 0 and variance 

equal to 3
8

, in agreement with [5] (yet, the actual variance of (12) remains infinite  

at any n). Unfortunately, the convergence to this limit is so slow that using it as 
an approximation is virtually useless; even when employing the full expression 
(9), adequate approximation is achieved only when 1000n ≥ . As an example, 
see Figure 1 which displays, 
• an empirical histogram of one million values of (12), generated by Monte 

Carlo (MC) simulation (done using Mathematica) of the same number of iY  
samples of size 1000n = , and converting each of them to a value of (12), 

 

 
Figure 1. Approximating U  distribution when n = 1000. 
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• and the corresponding PDF, obtained by raising e to the power of (13) and 
applying the inverse Fourier transform (also delegated to Mathematica) to 

the resulting CF; note that 
23 ln

exp
8 ln
t t

n
 
  
 

 had to be further expanded to 

23 ln
1

8 ln
t t

n
+  to facilitate proper convergence. 

The two graphs support our claim of extremely slow convergence to a Normal 

distribution, which needed to be extended by extra 1
ln n

 and ln ln
ln

n
n

-proportional  

terms of (13) to reach (still less than adequate) accuracy at n as large as 1000. 
Nevertheless, even this information (the normalizing constant of (12) in partic-
ular) is essential in our subsequent attempt to find a useful approximation for 
the PDF of MLE’s distribution. 

3.2. The Denominator 

By a similarly routine exercise, the PDF of V is 

( ) 2d 5

3 1 2 1 4 11
8 2 1 4

v vf v
v v

 + − +
= − 

+ 
            (14) 

when 0v >  (zero otherwise). This time, there is no simple analytic expression 
for the corresponding CF; nevertheless, we can still find its t expansion by di-
viding the required integral into two parts, thus: 

( ) ( ) ( ) ( ) ( ) ( )
0

1

0 1
exp d exp d exp divt f v v ivt f v v ivt f v v

∞ ∞
= +∫ ∫ ∫     (15) 

To evaluate the first of these, we expand ( )exp ivt  at 0t = , which lets us 
proceed by numerical integration; in the second part, we expand the ( )f v  at 
v = ∞ , which enables us to evaluate the resulting integral (term by term) analyt-
ically. This yields, for the final sum 

( ) ( )d 1 0.4334 i 0.4574 0.357 lnt t t tχ = − − + +           (16) 

implying that the ln of the CF of 

( )
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n n
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∑
                        (17) 

is (when expanded as a function of n rather than t) 

ln0.3018 0.375 ln ln 0.5890.375 i 0.375i
ln ln ln ln

t tn t t
n n n n

 − + − − + 
 

     (18) 

This readily implies that, in the n →∞  limit, (17) converges to the constant 
3
8

 (yet, its expected value and variance remain infinite at any n); but again: this  

asymptotic (degenerate) distribution is modified (at any finite n) by additional 
terms, which make the actual convergence extremely slow. Similarly to results of 
the previous section, the empirical distribution of (17) agrees with the PDF con-
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structed (via inverse Fourier transform) from (18) only at fairly large values of n; 
Figure 2 illustrates that, even when 1000n = , the error of this approximation is 
less than adequate. 

 

 
Figure 2. Approximating the V  distribution when n = 1000. 

3.3. And Their Ratio 

Having such (rather imperfect) approximations for the distributions of both the 
numerator and denominator of (8) does not readily translate into a similar ap-
proximation for the ratio itself; attempting to find one would be extremely diffi-
cult and (considering the very limited accuracy achieved by such approach so 
far) ultimately of a very limited practical value. There is empirical evidence that 
the RHS of (8) cannot adequately approximate 1Θ−  unless additional terms of 
the (7) expansion are included, thus further complicating the matter. 

Nevertheless, the previous two sections have given us a good indication that 
1Θ−  needs to be multiplied by lnn n  to converge to an asymptotic distribu-

tion whose main part is Normal (with zero mean and variance equal to 2
3

), but 

which needs additional, 1
ln n

 and ln ln
ln

n
n

-proportional extra terms to reach  

adequate accuracy. But, to construct such an approximation, we can now rely 
only on MC simulation of a large number of random independent samples (RIS) 
from (6), each yielding one random value of Θ , as described earlier. Doing this, 
we discover that, unlike U  and V , the moments of the 1Θ−  distribution are 
finite; this enables us to use Edgeworth approximation (described shortly) for 
the corresponding PDF. 

But first we go over some details of the MC simulation. 

4. Monte-Carlo Simulation 

Existing software (such as Mathematica) can easily generate random values from  
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any of the commonly used distributions. Since : 2 1Y T= − , where T is a random 
variable having the Beta (2, 2) distribution, it is quite easy to generate a RIS of a 
specific size n from this distribution. Solving (5) for θ  is more difficult, as the 
procedure needs to be fast, accurate and reliable. The way we do it starts with 

1

0.2max ii n
Y

n
θ

≤ ≤
= +                       (19) 

and continues by performing four iteration of the basic Newton technique, 
where a single iteration replaces the current value of θ  by 

2
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  −  
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      ⋅    −       

                    (20) 

This results in a single, random value of Θ ; to get the corresponding empiri-
cal distribution of Θ , this is repeated as many times as feasible. The resulting 
mega-sample of the values of 

( ): 1  lnW n n= Θ−                       (21) 

can then be used to 
• display the corresponding histogram; 
• convert it into an empirical PDF function (we use Mathematica’s “Smooth-

Kernel Distribution” for this purpose; for the details of the corresponding 
algorithm, see [6]); 

• find accurate estimates of the first few moments of the W distribution, of se-
lected percentiles, etc. 

Note that all our simulations use such large mega-samples (of one million 
RISs, to be specific) that their results can be considered practically exact. 

4.1. Example 

As an example, we present the results of this procedure when 30n = , displaying 
the histogram of the W values together with the corresponding empirical PDF in 
Figure 3; note that the latter can be evaluated only numerically (it does not have 
an analytic form). Also note both graphs have been constructed based on the 
same set of data; this explains their perfect agreement. 

The simulation has also yielded the following (practically exact) values of the 
mean, variance, skewness and excess kurtosis of the W distribution: −0.331, 
2 0.120
3
− , −0.571 and 0.391 respectively, while −2.598, −2.342, −1.978, −1.670. 

0.733, 0.893, 1.078 and 1.203 are its empirical percentiles (also known as critical  
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Figure 3. Empirical PDF of W when n = 30. 

 
values), corresponding to 0.5%, 1%, 2.5%, 5%, 95%, 97.5%, 99% and 99.5% re-
spectively (these enable us to construct CIs for 0θ  when 30n = , as explained 
below). 

4.2. Edgeworth Approximation 

When a reasonably accurate analytic formula is desired (for the PDF of W, at a 
specific value of n), it is natural to use the usual Edgeworth-series expansion, 
namely 

( )

2

3 6 4 2
2

3 3

4 2

4

exp
2 3 15 45 151

6 722

6 3
24

z
z z z z zf w

z z

α α

α

 
−   − − + − = ⋅ + ⋅ + ⋅


− +

⋅

π

+ 


    (22) 

where 
wz

V
µ−

=                           (23) 

and µ , V, 3α  and 4α , are the mean, variance, skewness and excess kurtosis 
taken from a MC simulation. This approximation will not be as accurate as the 
empirical PDF of Figure 3—the actual difference (when 30n = ) is displayed in 
Figure 4—but it can be utilized by people lacking the sophistication and com-
puter resources to do their own simulation. Note that the maximum error of this 
approximation is never bigger than 1% (the shaded area of Figure 4), and is ex-
pected (as has been confirmed) to decrease when the sample size gets larger. 

By extending the simulation (this will take several hours of CPU) to get the 
same set of results for 2 930,30 2,30 2 , ,30 2n = ⋅ ⋅ ⋅

, we have computed and are 

displaying (in Figure 5) the values of µ  (red), 2
3

V −  (blue), 3α  (green) and  
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Figure 4. Error of Edgeworth approximation when n = 30. 

 

 
Figure 5. Four characteristics of W distribution. 

https://doi.org/10.4236/ojs.2023.134024


J. Vrbik 
 

 

DOI: 10.4236/ojs.2023.134024 484 Open Journal of Statistics 
 

4α−  (brown) of the W distribution, for any practical sample size n (on the ho-
rizontal, log10 scale); the small dots represent the simulated values, each of the 
four curves has the (sufficiently flexible, by numerical exploration) form of 

ln ln
ln ln
a b n c
n n n

⋅
+ +                       (24) 

where , ,a b c  have been found by a least-square fit. The accuracy of the result-
ing (22)-based approximation is similar to what we have observed for 30n =  
(improving, rather slowly, with increasing n). 

Note that the mean (also known as the expected value) of W has such a sub-
stantial bias (the red line) that (unlike in a regular case) it cannot be ignored 
even when n gets extremely large (this goes for the other three quantities as 
well). 

5. Confidence Intervals 

We will now turn our attention to constructing CIs for 0θ , with the aim of 
making their expected length short and their claimed level of confidence as ac-
curate as possible. 

The CI construction critically depends on the sample statistics used for the 
point estimator of 0θ ; we will consider several possibilities, staring with the ob-
vious choice of MLE (the only estimator discussed so far). 

5.1. MLE-Based CI 

Most of what is needed to construct a CI for the true value of 0θ  has already 
been done in the previous section. Now, we just need to 
• choose the level of confidence (denoted 1 α− ), with α  typically between 

1% and 10% (5% being most common); 
• find the corresponding critical values (denoted 2Cα  and 1 2C α− ) of the W 

distribution (these are obtained either as a by-product of MC simulation or, 
somehow less accurately, computed from the Edgeworth’s approximation to 
the PDF of W); 

• find θ̂ , based on a real (not simulated) RIS of size n, and solve 

1 2
0

ˆ
1  lnn n C α

θ
θ −

 
− =  

 
                    (25) 

for 0θ  to get the CI’s lower limit, and repeat with 2Cα  in place of 1 2C α−  to 
get the upper limit. 

Note that the expected length of the resulting CI is, to a sufficient approximation 

( )1 2 2 ˆ
 ln

C C

n n
α α θ− −

⋅                       (26) 

When 0.05α =  and 30n = , this yields 00.293 θ⋅  (implying that we can be 
easily off the true value of 0θ  by 30%); increasing n to 30720, the expected CI 
length is reduced to an impressive 00.00598 θ⋅ . 

We still need to explain how to get (practically exact) critical value Cβ  for a  
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Figure 6. Critical values C0.975 (top) and C0.05 (bottom). 

 
given sample size n, based on a mega-sample of a million θ̂  estimates: all we 
need to do is to take the kth smallest of these estimates, where k is the nearest in-
teger to 610β ⋅  (something we have already done for several values of β  and 

30n = ). By an extensive simulation (discussed previously) we have extended 
these results up to 30720n = ; the values of 0.025C  and 0.975C  are displayed in 
Figure 6. This time, the curves were fitted using (24) with an additional constant 
term. 

An alternate (but more elaborate) way of constructing an MLE-based CI is to 
minimize the distance between two percentiles (denoted Cβ  and 1C α β− + , 
where 0 β α< < ) while keeping the probability of the corresponding interval 
equal to 1 α− ; this is achieved (based on the same mega-sample) by usual mi-
nimization of this distance, after displaying it as a function of β  (this can be 
done graphically). In the case of 30n =  and 5%α = . this yields −1.855 (in-
stead of −1.978) and 0.977 (instead of 1.078) when 0.0333β = ; the distance of 
the corresponding critical values has thus been shortened to 2.832 (from the old 
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3.056, i.e. by about 8%), thus improving the CI’s predictive power. 
The main disadvantage of using the technique of this section rests in our ina-

bility to find, without extensive simulation, an analytic and sufficiently accurate 
expression for the PDF of W (even computing the estimate itself may prove dif-
ficult for some). Yet, it needs to be acknowledged that MLE is more efficient 
than any other potential estimator of 0θ , especially at large values of n (due to  

the extra 1
ln n

 factor in its variance; most estimators have a variance decreasing 

with 1
n

 only). Therefore, in our subsequent search for a simpler, formu-

la-based point estimator of 0θ , we must expect some reduction in the estima-
tor’s relative efficiency, and thus in the predictive power of the resulting CI. 

The question now is: when abandoning MLE, what other potential candidates 
are there for a good (i.e. relatively efficient and also unbiased, at least asymptot-
ically) estimator? Furthermore, we would like to be able find, analytically, the 
asymptotic form of its distribution, and have the exact distribution rapidly con-
verge to this n →∞  limit. 

5.2. Method of Moments 

The next traditional choice of an estimator (called MME) uses the method of 
moments. It works by solving the ( )X X=  equation for 0θ , where ( )X  
stands for the expected value of a single X, and X  is the usual sample mean of 
n such values. Since, in our case, ( ) 0X =  (thus, not a function of 0θ ), the 
method needs to be modified by using a function of X instead of X itself; in our 
case, a convenient choice is X , whose PDF, namely 

2

02
0 0

3 1 when 0
2

x x θ
θ θ

 
− < < 

 
                 (27) 

leads to ( ) 0
3
8

X θ= . The new (fully unbiased) estimator of 0θ  is thus 

18ˆ :
3

n
ii X

n
θ == ∑                        (28) 

(we keep the original notation for the new estimator). 
We can now (rather routinely) compute the mean, variance, skewness and 

excess kurtosis of this estimator to be 0µ θ= , 
2
019

45
V

n
θ

= ⋅ , 3 3

514
19 n

α =  

and 4
2106

2527n
α = −  respectively. The Central Limit Theorem (CLT) tells us that  

the sampling distribution of θ̂  is approximately Normal, having the above 
mean and variance. Unlike the previous case of MLE, this approximation is 
adequate even at relatively small values of n. Furthermore, we can substantially 
improve its accuracy by incorporating corrections indicated by (22); Figure 7 
displays (using the z scale) the corresponding error of both approximations  
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Figure 7. Error of CLT and Edgeworth (dashed) PDFs when n = 30. 

 
relative to (MC generated but practically exact) PDF of 

0

ˆ
: 1W nθ

θ
 

= −  
 

                       (29) 

Note that the simulation was required only for this comparison; it is not a part 
of the technique itself. 

The largest possible error of the CLT approximation at 30n =  (the 
worst-case scenario) is about 1% (adequate), while the Edgeworth approxima-
tion is distinctively more accurate (indicated by the area under the curve, not by  

its height). Note that the CTL’s error will decrease with 1
n

, while that of Ed-

geworth’s approximation does it with 3 2

1
n

 (substantially faster). 

The advantage of these approximations is that both have a simple analytic 
form; this enables us to directly compute the critical values required for con-
struction of CIs. Furthermore, these critical values (using the W scale) are, when 
using the CLT approximation, independent of n; thus, for example  

0.025
191.960 1.274
25

C = − ⋅ = −  and similarly 0.975 1.274C = . Using MC simula-

tion and 30n = , we have established the true confidence level of the corres-
ponding CI to be 0.9508; the approximation is thus quite accurate even for such  
a small samples (better accuracy yet can be achieved via the Edgeworth approx-
imation; something we leave for the reader to try). 

Using the appropriate analog of (26), namely 

( )1 2 2 ˆC C

n
α α θ− −

⋅                       (30) 

the expected length of a CI when 0.05α =  and 30n =  is 00.465 θ⋅  (59% 
longer than MLE-based CI); when n increases to 30,720, the length becomes 0.0145 
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(2.43 times longer, which makes the technique rather non-competitive at large n). 
In summary: using (28) as a basis of CI construction is computationally quite 

simple, as its distribution is approximately Normal yet reasonably accurate; un-
fortunately, the predictive power of the resulting CI (measured by its length) is 
less than impressive. 

5.3. Utilizing Order Statistic 
In this section, we explore yet another estimator of 0θ , namely the nth-order sta-

tistic of a sample of n values of X , i.e. 
1

ˆ : max ii n
Xθ

≤ ≤
= ; note that its exact sam-

pling distribution and the corresponding n →∞  limit are now both readily 
available in an analytic form. The idea of using this estimator rests on a hint we 
get from our MLE (which was always only slightly bigger than this maximum). 

Transforming θ̂  to 

1

0

max
: 1

ii n
X

W n
θ

≤ ≤
 
 = − ⋅
 
 

                    (31) 

We can easily compute 

( )
3

3 2
2

0

3Pr Pr 1 1 when 0
2 2

n nX w wW w w w n
n nnθ

   
> = − > = − + < <   

  
 (32) 

based on 

  

3

3

3
2

0
2

1
3 3Pr 1 1 1
2 3 2 2

w
X w w wn w

n nn nθ

  
 −     < − = − − = − +   

   
 
 

    (33) 

which follows from (27), and the corresponding 
3

0

3Pr when 0 1
2 3

X xx t x
θ

   
< = − < <   

  
             (34) 

Note that, when n is sufficiently large, we can approximate (32) by its n →∞  
limit, namely 

( ) 23Pr exp when 0
2

W w w w > − > 
 

              (35) 

Both formulas (exact and approximate) indicate that θ̂  is unbiased only 
asymptotically; the exact bias needs to be computed from (32); for sufficiently 
large n we get the asymptotic result of 

( ) 0
ˆ 1

6n
θ θ

 
= − ⋅  
 

π                      (36) 

obtained from (35). Similarly, the asymptotic variance of θ̂  is 2
0

4
6n

θ⋅π− . 

To construct a CI for 0θ , one needs to find 2Cα  ( 1 2C α− ) by solving 
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( )Pr 1
2

W w α
> = −  (

2
α

= ) for w, and then solve 2W Cα=  for 0θ  (getting the 

lower boundary) and 1 2W C α=  (upper boundary). In Figure 8, we plot the two 
critical values (using 5%α = ) as functions of n; note that there are only minute 
differences between these and their n →∞  limits, namely to 0.025 0.1299C =  
and 0.975 1.5682C = . 

This implies that the asymptotic values can be used at practically any n; even 
when 30n = , the true confidence level thus achieved is 94.6% instead of 95% (a 
tolerable error). 

To assess the predictive power of the new technique: the expected length of a 
CI (when 0.05α =  and 30n = ) is, based on (30), 00.305 θ⋅  (only 4% higher 
than when using MLE); increasing n to 30720 reduces it to 00.00829 θ⋅  (about 
39% higher—still quite tolerable). 

Furthermore, we can make any such CI shorter by optimizing its length while 
keeping the confidence level at 95%, as done in the previous section; to demonstrate 

 

 
Figure 8. C0.975 (top) and C0.025 (bottom) of (31) distribution. 
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this, we use 30720n =  and the asymptotic formulas (practically exact at such large 
n). Skipping routine details, this yields 0.0439 0.5375C =  and 0.9939 1.4435C = , re-
sulting in a new length of 00.00787 θ⋅  (only 32% higher than MLE-based CI). 

To summarize: with the last estimator, we have achieved a combination of 
simplicity, ease of computation and a fast convergence to asymptotic formulas, 
without much loss in the predictive power of the corresponding CI. 

6. Conclusions and Future Research 

We have shown that finding an accurate and efficient CI for a single parameter 
is, in a case of non-regular estimation, a surprisingly difficult task; as a convinc-
ing simple example, we have presented a case study of estimating a scaling pa-
rameter of a distribution closely related to Beta (2, 2). We have delineated sever-
al possibilities for dealing with this problem by using the MLE, MME, and the 
largest-order statistics as point estimators, and investigating their sampling dis-
tributions. We have discovered that this distribution converges to Normal for 
both MLE and MME, but that in the former case the convergence is too slow to 
be of any practical use (the CI construction needs to rely on CPU-intensive nu-
merical approach). Using MME and max X  resulted in simple, analytic for-
mulas for each of their sampling distributions and their asymptotic form 
(reached relatively quickly as n increases). Unfortunately, the variance of MME 
is too large to make the resulting CI competitive, but using max X  proved to 
be both simple and relatively efficient. 

Empirically (and rather surprisingly) we have also discovered that, similarly to 
regular cases, the distribution of 

( ) ( )0
ˆ2 2θ θ−                         (37) 

(where ( )θ  was defined in (2)) is approximately 2
1χ . This is demonstrated 

in Figure 9 using 10n =  (at such small n, most approximations become visibly 
inaccurate; the practically perfect fit we see here is truly amazing). To construct a 

 

 
Figure 9. Histogram of (37)-values and PDF of 2

1χ . 
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95% CI for the value of 0θ , all we have to do is to compute θ̂  (based on a spe-
cific RIS), make (37) equal to 0.95C  of the 2

1χ  distribution (i.e. 3.8415), and 
solve for 0θ  (there will always be two solutions, providing the CI’s boundaries). 
This produces CI’s similar to those constructed in the last paragraph of the pre-
vious section, including the 1 n -proportional decrease of the CI’s length. 
Theoretical justification of these statements, and finding out whether they are 
true in general (after excluding MLEs involving max or min which have differ-
ent, but easy-to-find, asymptotic distributions) will require further investigation. 

We acknowledge that every case of non-regular estimation is unique and may 
require exploring other possibilities than those presented here; nevertheless, the 
results of our article provide guidelines for such an exploration. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Edgeworth, F.Y. (1905) The Law of Error. Transactions of the Cambridge Philo-

sophical Society, 20, 36-66, 113-141. 

[2] Vrbik, J. (2022) Fisher Transformation via Edgeworth Expansion. arXiv: 2208.05070v1. 

[3] Logan, B.F., Mallows, C.L., Rice, S.O. and Shepp, A.L. (1973) Limit Distributions of 
Self-Normalized Sums. The Annals of Probability, 1, 788-809.  
https://doi.org/10.1214/aop/1176996846 

[4] Spataru, A. (2014) Convergence and Precise Asymptotics for Series Involving 
Self-Normalized Sums. Journal of Theoretical Probability, 29, 267-276.  
https://doi.org/10.1007/s10959-014-0560-1sss 

[5] Gnedenko, B.V. and Kolmogorov, A.N. (1954) Limit Distributions for Sums of In-
dependent Random Variables. Addison-Wesley, Cambridge. 

[6] https://reference.wolfram.com/language/ref/SmoothKernelDistribution.html   
 
 

https://doi.org/10.4236/ojs.2023.134024
https://doi.org/10.1214/aop/1176996846
https://doi.org/10.1007/s10959-014-0560-1
https://reference.wolfram.com/language/ref/SmoothKernelDistribution.html

	Non-Regular Example of Confidence-Interval Construction
	Abstract
	Keywords
	1. Introduction
	2. Maximum Likelihood Estimator
	3. Sampling Distribution of Θ
	3.1. The Numerator
	3.2. The Denominator
	3.3. And Their Ratio

	4. Monte-Carlo Simulation
	4.1. Example
	4.2. Edgeworth Approximation

	5. Confidence Intervals
	5.1. MLE-Based CI
	5.2. Method of Moments
	5.3. Utilizing Order Statistic

	6. Conclusions and Future Research
	Conflicts of Interest
	References

