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Abstract 
Multicollinearity in factor analysis has negative effects, including unreliable 
factor structure, inconsistent loadings, inflated standard errors, reduced dis-
criminant validity, and difficulties in interpreting factors. It also leads to re-
duced stability, hindered factor replication, misinterpretation of factor im-
portance, increased parameter estimation instability, reduced power to detect 
the true factor structure, compromised model fit indices, and biased factor 
loadings. Multicollinearity introduces uncertainty, complexity, and limited 
generalizability, hampering factor analysis. To address multicollinearity, re-
searchers can examine the correlation matrix to identify variables with high 
correlation coefficients. The Variance Inflation Factor (VIF) measures the in-
flation of regression coefficients due to multicollinearity. Tolerance, the reci-
procal of VIF, indicates the proportion of variance in a predictor variable not 
shared with others. Eigenvalues help assess multicollinearity, with values great-
er than 1 suggesting the retention of factors. Principal Component Analysis 
(PCA) reduces dimensionality and identifies highly correlated variables. Oth-
er diagnostic measures include the condition number and Cook’s distance. Re-
searchers can center or standardize data, perform variable filtering, use PCA 
instead of factor analysis, employ factor scores, merge correlated variables, or 
apply clustering techniques for the solution of the multicollinearity problem. 
Further research is needed to explore different types of multicollinearity, as-
sess method effectiveness, and investigate the relationship with other factor 
analysis issues. 
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1. Introduction 

Factor analysis is a powerful statistical technique widely utilized in both social 
sciences and statistics. It serves as a valuable tool for understanding the under-
lying structure of complex data sets, identifying latent variables, and extracting 
meaningful information [1]. 

Factor analysis is a statistical technique used to uncover the latent structure 
underlying a set of observed variables. It aims to identify a smaller number of 
unobservable factors that explain the patterns and correlations observed in the 
data [2] [3]. The fundamental assumption of factor analysis is that the observed 
variables are influenced by a smaller number of underlying factors [4]. Factor 
analysis helps to minimize the dimensionality of the data and offers insights into 
the latent structure by investigating the correlations between the observed va-
riables [5].  

Factor analysis holds significant importance in the fields of social sciences and 
statistics due to its numerous applications and benefits [1]. By understanding the 
underlying structure of complex data sets and identifying latent variables, factor 
analysis enables researchers to extract meaningful information and gain deeper 
insights [3]. 

Across various disciplines such as psychology [6], sociology [7], economics 
[8], and market research [9], the persistent utilization of this approach continues 
to be observed. 

When exploring regression models, a noteworthy phenomenon arises known 
as multicollinearity, whereby predictor variables display a heightened degree of 
interdependence. This intricate interplay emerges when two or more indepen-
dent factors exhibit a robust linear relationship, thereby posing a formidable 
challenge in estimating the distinctive impacts of each variable. Multicollinearity 
can result in unstable parameter estimates, inflated standard errors, and inaccu-
rate hypothesis tests [10]. It poses challenges in interpreting the importance of 
individual variables and may affect the overall reliability and validity of the re-
gression model [11].  

According to studies [12] [13], multicollinearity can result in imprecise esti-
mations of the relationships between variables, making it challenging to interp-
ret the findings. As a result, incorrect inferences about the underlying structure 
of the data may be made. Multicollinearity can have important practical ramifi-
cations in industries including finance, marketing, and healthcare. Multicolli-
nearity in factor analysis, for instance, can lead to bad investment choices in the 
financial sector as a result of inaccurate assessments of the risk and return of a 
portfolio [14]. Similar to this, multicollinearity can make it difficult to pinpoint 
the crucial elements that influence a specific health outcome, which can result in 
inefficient treatment plans [15]. 

The pursuit of uncovering latent variables and unraveling the intricate con-
nections between observed variables lies at the core of factor analysis. Yet, the 
looming specter of multicollinearity casts a shadow upon estimating these cor-
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relations accurately, jeopardizing our inferences regarding the fundamental 
structure of the data [16]. Thus, a paramount task emerges: the identification 
and mitigation of multicollinearity within component analysis, to safeguard the 
veracity and reliability of the outcomes [1]. 

Generally speaking, multicollinearity and factor analysis are two essential 
concepts in statistical analysis that can help researchers understand the underly-
ing structure of their data and ensure the reliability and validity of their models. 
By understanding these principles and using the appropriate approaches to ad-
dress them, researchers can increase the quality and rigor of their study findings. 

2. The Problem 

The phenomenon of multicollinearity in factor analysis has captured the atten-
tion of researchers in the field, spurring extensive investigation and the proposi-
tion of diverse methodologies for identification and mitigation. The exploration 
of this issue traces back to the pioneering work of Hotelling [17], who unders-
cored the significance of recognizing and tackling multicollinearity in regression 
analysis—a field intimately linked to factor analysis [18]. An insightful observa-
tion made by Kline [16] emphasized that multicollinearity can engender inflated 
standard errors and curtailed statistical power, thereby impeding the detection 
of meaningful associations among variables. As such, addressing this intricate 
challenge assumes paramount importance in analytical pursuits. 

Multicollinearity can have various detrimental effects on factor analysis. These 
effects can undermine the reliability and interpretability of factor analysis re-
sults. For example, a study by Stevens and Book [19] examined the impact of 
multicollinearity on factor analysis results in a dataset related to job satisfaction. 
They found that high multicollinearity among variables measuring different fa-
cets of job satisfaction led to unstable and unreliable factor loadings, making it 
difficult to draw meaningful conclusions about the latent factors. Additionally, a 
study by Johnson and Wichern [20] explored the impact of multicollinearity on 
factor analysis results in a dataset related to consumer preferences. They found 
that highly correlated variables measuring different aspects of consumer prefe-
rences led to unclear factor interpretations and diminished the ability to distin-
guish between distinct underlying constructs. 

Multicollinearity consequently can lead to unstable factor structures, making 
it challenging to interpret the underlying dimensions or constructs accurately. 
This instability manifests as inconsistent factor loadings across different samples 
or in the presence of random variations [1]. Another consequence is inflated stan-
dard errors. Multicollinearity can cause inflated standard errors for factor load-
ings, resulting in imprecise estimates of the associations between variables and 
factors. This inflation of standard errors hampers the determination of the signi-
ficance and reliability of factor loadings [21]. Multicollinearity can also reduce 
discriminant validity. When predictor variables are highly correlated, factors may 
not adequately capture unique variance, limiting their ability to discriminate be-
tween distinct underlying dimensions. This reduced discriminant validity dimi-
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nishes the effectiveness of factor analysis in differentiating between different 
constructs [5]. Additionally, multicollinearity increases the difficulty in accu-
rately interpreting factors. Highly correlated variables may contribute to mul-
tiple factors simultaneously, making it challenging to identify the specific con-
structs that each factor represents. This ambiguity complicates the process of fac-
tor interpretation [18]. Furthermore, multicollinearity can lead to reduced sta-
bility of factor solutions. Minor changes in data or model specification can result 
in different factor structures due to multicollinearity, introducing instability in 
the factor analysis results. This instability hampers the reproducibility and gene-
ralizability of factor analysis findings [16]. Also impairs factor replication across 
different samples or datasets. High intercorrelations among predictors can result 
in inconsistent factor loadings, making it challenging to replicate the underlying 
dimensions reliably. This hindrance in factor replication undermines the validity 
and generalizability of factor analysis outcomes [22]. Moreover, it can lead to the 
misinterpretation of factor importance. When predictors are highly correlated, 
their unique contributions may become distorted, making it challenging to iden-
tify the most influential variables in explaining the factors. This misinterpreta-
tion can lead to misguided conclusions regarding the relative importance of pre-
dictors [23]. Another effect is the increased parameter estimation instability. Mul-
ticollinearity introduces instability in parameter estimation, resulting in impre-
cise estimates of factor loadings. High correlations among predictors can cause 
parameter estimates to vary greatly across different model specifications or esti-
mation techniques [24]. Multicollinearity reduces the power to detect the true fac-
tor structure. Highly correlated predictors can lead to larger standard errors and 
attenuated estimates, making it more challenging to detect significant factor load-
ings. This reduction in statistical power diminishes the reliability of factor analy-
sis in capturing the true underlying structure [25]. Furthermore, multicollinear-
ity compromises model fit indices commonly used in factor analysis, such as the 
Chi-square statistic and the root mean square error of approximation (RMSEA). 
The presence of highly correlated variables can lead to inflated Chi-square values 
and inaccurate assessments of model fit, undermining the accuracy of model 
evaluation [16]. Also it can introduce bias in factor loadings. Highly correlated 
predictors can result in distorted factor loadings, deviating from the true under-
lying structure. This bias misrepresents the relationships between variables and 
factors, leading to inaccurate estimates [26]. In addition, multicollinearity can 
compromise the estimation of factor scores, which are used to represent indi-
viduals’ positions on the latent factors. High intercorrelations among predictors 
can result in unstable and imprecise estimates of factor scores, reducing the re-
liability of individual-level factor analysis [27]. Furthermore, multicollinearity 
limits the generalizability of factor analysis results across different populations 
or contexts. The presence of high correlations among predictors may be specific 
to the sample under study, and the factor structure may not hold in other popu-
lations. This limitation undermines the external validity of factor analysis find-
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ings [28]. Also increases complexity in factor interpretation. When predictors 
are highly correlated, it becomes challenging to disentangle the unique contribu-
tions of each variable to the underlying factors. This complexity adds ambiguity 
to factor interpretation, making it difficult to attribute specific meanings to fac-
tors accurately [4]. Moreover, multicollinearity can inflate Type I error rates. 
The high correlation among predictors can spuriously inflate the associations 
between variables and factors, leading to an increased likelihood of falsely de-
tecting significant relationships. This inflation of Type I error rates undermines 
the accuracy of factor analysis results [29]. Additionally, multicollinearity intro-
duces uncertainty and ambiguity in interpreting the meaning of factors. Highly 
correlated predictor variables can lead to overlapping and redundant contribu-
tions to multiple factors, making it difficult to discern the distinct underlying 
constructs. This uncertainty hinders the clear interpretation of factor analysis 
outcomes [30]. Multicollinearity can amplify the impact of measurement error 
in factor analysis. When predictors are highly correlated, the measurement error 
in one variable can spill over to other variables, leading to distorted factor load-
ings and attenuated associations. This amplification of measurement error com-
promises the accuracy of factor analysis results [22]. Furthermore, multicollinear-
ity can mislead the factor hierarchy. When predictors exhibit high intercorrela-
tions, establishing a clear hierarchy of factors becomes challenging. The overlap-
ping variance among predictors blurs the distinction between primary and sec-
ondary dimensions, distorting the hierarchical relationship among factors [28]. 
Moreover, multicollinearity hinders the identification of unique variance cap-
tured by each factor. Highly correlated predictors may share substantial com-
mon variance, overshadowing the unique contributions of individual variables to 
specific factors. This difficulty in identifying unique variance undermines the 
accuracy of factor analysis in capturing distinct dimensions [31]. Lastly, multi-
collinearity compromises the predictive validity of factor analysis models. When 
predictors are highly correlated, the accuracy of predicting external criteria or 
outcomes may decrease. Disentangling the unique effects of individual variables 
becomes challenging, impairing the effectiveness of factor analysis in predicting 
external measures [32]. To obtain reliable and meaningful factor analysis results, 
it is crucial to address multicollinearity through careful data preprocessing, model 
specification, and appropriate statistical techniques. By mitigating the adverse 
effects of multicollinearity, researchers can ensure accurate and reliable factor 
analysis outcomes that enhance the understanding of underlying dimensions 
and constructs. 

3. Detections 

There are several methods to assess multicollinearity, including: 

3.1. Correlation Matrix 

Variables that are highly correlated and therefore suggestive of multicollinearity 
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can be found using a correlation matrix [33]. To determine the correlation ma-
trix for our dataset in R, we can utilize the cor() function [27]. For example: 

#Calculate the correlation matrix for the “iris” dataset 
data(iris) 
cor(iris[,1:4]) 

3.2. Variance Inflation Factor (VIF) 

Regression analysis multicollinearity is measured statistically using the Variance 
Inflation Factor (VIF). It measures the extent to which multicollinearity among 
the predictor variables increases the variance of the predicted regression coeffi-
cients. According to Fox [34], the VIF for a predictor variable is determined as 
the difference between the estimated coefficient’s variance and the coefficient’s 
variance in the absence of multicollinearity. In a regression model, it is typically 
calculated for each predictor variable.  

The formula for calculating VIF for the predictor variable is: 

VIF = 1/(1 − R2) 

where R2 is the coefficient of determination for the predictor variable being ana-
lyzed [1].  

A VIF value of 1 denotes the absence of multicollinearity, whereas values 
higher than 1 suggest escalating multicollinearity. A VIF score above 5 or 10 is 
typically regarded as high and indicates severe multicollinearity. 

In R, we can use the vif() function from the car package to calculate the VIF 
for each variable in a linear model [34]. For example: 

#Calculate the VIF for the “iris” dataset 
library(car) 
data(iris) 
vif(lm(Sepal.Length ~ Sepal.Width + Petal.Length + Petal.Width, data = iris)) 

3.3. Tolerance 

The fraction of a predictor variable’s variance that is not shared by other predic-
tor variables in a regression model is represented by tolerance, which is the reci-
procal of VIF. According to Kutner et al. (2005), a tolerance value of less than 
0.1 is indicative of substantial multicollinearity.  

The formula for calculating Tolerance for the ith predictor variable is: 

Tolerance = 1 − R2 

where R2 is the coefficient of determination for the predictor variable being ana-
lyzed. 

In R, we can use the vif() function from the car package to calculate the VIF 
for each variable in the dataset and then take the reciprocal to obtain the toler-
ance values. For example: 

#Calculate the tolerance for the “iris” dataset 
library(car) 
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data(iris) 
1/vif(lm(Sepal.Length ~ Sepal.Width + Petal.Length + Petal.Width, data = iris)) 

3.4. Eigenvalues 

A subfield of mathematics called linear algebra is concerned with the study of 
vectors, vector spaces, and linear transformations [35]. Eigenvalues occupy a 
major position among the basic ideas of linear algebra. The behavior of ma-
trices and linear transformations may be greatly understood thanks to Eigen-
values. 

According to Lay, Lay, and McDonald [35], eigenvalues are a set of numbers 
associated with a square matrix that describe the scaling factors by which 
matching eigenvectors are transformed via a linear transformation. Take the 
square matrix A as an example. If there is a non-zero vector v, called the eigen-
vector, such that Av = v, then the scalar value is an eigenvalue of A. That is to 
say, when A performs an operation on an eigenvector, the resulting vector is a 
scalar multiple of the original. 

Computing the eigenvalues of matrix A involves solving the characteristic eq-
uation det(A − λI) = 0, where I denote the identity matrix [36]. This equation 
reveals the eigenvalues of A. It’s worth noting that not all matrices possess ei-
genvalues; their existence relies on matrix properties, adding a layer of complex-
ity to the analysis. 

Eigenvalues serve as indicators of the variance explained by each factor within 
a factor analysis model. Eigenvalues exceeding 1 signify that a factor explains 
more variance compared to a single variable, warranting its retention. Nonethe-
less, if multiple factors display eigenvalues surpassing 1, it could imply the pres-
ence of multicollinearity, hinting at interconnectedness among variables [1]. Le-
veraging the power of R, we can employ the eigen() function to derive the ei-
genvalues for the correlation matrix of our dataset [27]. By incorporating both 
intricate matrix computations and statistical considerations, we can delve deeper 
into understanding the intricacies of eigenvalues and their significance within 
factor analysis. For example: 

#Calculate the eigenvalues for the “iris” dataset 
data(iris) 
eigen(cor(iris[,1:4])) 

3.5. Principal Component Analysis (PCA) 

A dataset’s dimensionality can be decreased while maintaining as much of the 
original variation as feasible using the PCA technique. It can be used to spot va-
riables that exhibit multicollinearity because of their strong correlation [37]. We 
can run PCA on our dataset in R using the prcomp() function, and then display 
the results to see how the different variables are correlated. For example: 

#Perform PCA on the “iris” dataset and plot the results 
data(iris) 

https://doi.org/10.4236/ojs.2023.133020


T. Kyriazos, M. Poga 
 

 

DOI: 10.4236/ojs.2023.133020 411 Open Journal of Statistics 
 

pca <- prcomp(iris[,1:4], center = TRUE, scale. = TRUE) 
plot(pca$x[,1], pca$x[,2], main = “PCA Plot”, xlab = “PC1”, ylab = “PC2”) 
Following that, the plot can be used to spot any sets of data that are strongly 

grouped together, indicating high correlation and likely multicollinearity. 

3.6. Condition Number 

The condition number, a fundamental metric in model stability assessment, of-
fers invaluable insights into the regression coefficients. It quantifies the interplay 
between these coefficients by extracting the square root of the ratio between the 
largest and smallest eigenvalues. Notably, when the condition number surpasses 
the threshold of 30, it serves as a discernible indication of pronounced multicol-
linearity, signifying elevated levels of interdependence among the variables at 
hand [38]. According to Belsley [13], significant multicollinearity is indicated by 
a condition number of more than 30. We can calculate the eigenvalues for the 
correlation matrix of our dataset in R using the eigen() function, and then we 
can get the condition number by taking the square root of the highest eigenvalue 
divided by the lowest eigenvalue. For example: 

#Calculate the condition number for the “iris” dataset 
data(iris) 
eigenvalues <- eigen(cor(iris[,1:4]))$values 
sqrt(max(eigenvalues)/min(eigenvalues)) 

3.7. Cook’s Distance 

Cook’s distance quantifies how much the regression coefficients change when a 
particular observation is removed from the analysis [39]. In other words, Cook’s 
distance measures the change in the estimated coefficients when a single obser-
vation is omitted from the dataset. High values of Cook’s distance indicate that 
removing the observation would have a substantial impact on the regression 
model.  

Observations with high Cook’s distance values can indicate influential points 
that might be contributing to multicollinearity [38]. 

The formula for Cook’s distance: 

Di = (ei2)/(p * MSE) * (hii/(1 − hii)2) 

Please note that in the formula, Di represents Cook’s distance for observation 
i, ei represents the residual for observation i, p represents the number of predic-
tors in the regression model, MSE represents the mean squared error, and hii 
represents the leverage statistic for observation i. 

In R: 
# Cook’s Distance for the “iris” dataset 
lm_model <- lm(Sepal.Length ~ Sepal.Width + Petal.Length + Petal.Width, 

data = iris) 
cook_dist <- cooks.distance(lm_model) 
print(cook_dist) 
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4. Solutions 

Multicollinearity in factor analysis presents as we say a challenge that necessi-
tates the implementation of various approaches to address this issue effectively. 
In factor analysis, tackling multicollinearity necessitates employing various ap-
proaches. A plethora of techniques is available to address this issue, with their 
suitability contingent upon the distinctive attributes of the data and the objec-
tives pursued during the analysis. The resolution sought requires a discerning 
evaluation of the specific circumstances at hand, paving the way for an informed 
decision-making process. 

1) Data centering Multicollinearity can be decreased by centering the data and 
removing the mean from each variable. The scale() function in R can be used to 
accomplish this [40] 

# Load data 
data <- (iris[,1:4]) 
# Center data 
data_centered <- scale(data, center = TRUE, scale = FALSE) 
# View centered data 
head(data_centered) 
Advantages: 

● Reduction of Multicollinearity: Data centering helps reduce multicollinearity 
among predictor variables by subtracting the mean from each variable. Cen-
tering the variables eliminates the shared variation due to the means and re-
duces the correlation between variables. This reduction in multicollinearity 
enhances the stability and reliability of factor analysis results [41]. 

● Enhanced Interpretability: Centering the variables in factor analysis can en-
hance the interpretability of factor loadings. By centering the variables at 
their means, the intercept or baseline value for each variable is represented. 
This makes the factor loadings easier to interpret, as they indicate the change 
in the outcome associated with a one-unit change from the mean [41]. 

Disadvantages: 
● Loss of Original Metric: Data centering involves subtracting the mean from 

each variable, resulting in a loss of the original metric. The centered variables 
are no longer in the original scale, which may affect the interpretation of re-
sults. Researchers need to consider the implications of this transformation 
and ensure that the findings are communicated appropriately [42]. 

● Potential Collinearity Shift: While data centering can reduce multicollineari-
ty, it may also introduce a collinearity shift. Centering the variables changes 
the correlations among the variables, potentially affecting the relationships 
between the variables and the factors. Researchers should carefully assess the 
impact of this collinearity shift and consider alternative approaches if neces-
sary [43]. 

2) Standardize the data: Standardizing the data by dividing each variable by its 
standard deviation can also help reduce multicollinearity. This can be done in R 
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using the scale() function [40] 
# Load data 
data <- (iris[,1:4]) 
# Center data 
data_ Standardize <- scale(data, center = TRUE, scale = TRUE) 
# View centered data 
head(data_ Standardize) 
Advantages: 

● Comparison of Variables: Standardizing the data ensures that variables are 
on the same scale, allowing for direct comparison of their magnitudes. This is 
particularly useful when the variables involved in the factor analysis have 
different measurement units or scales. Standardization facilitates the inter-
pretation of factor loadings as they become comparable and can be directly 
compared to assess their relative importance [12]. 

● Equal Weighting: Standardizing the data assigns equal weight to each varia-
ble in the factor analysis. This is beneficial in situations where variables have 
different variances or standard deviations. By standardizing the data, each 
variable contributes equally to the analysis, preventing variables with larger 
variances from dominating the factor extraction process [2]. 

Disadvantages: 
● Loss of Original Scale: Standardizing the data can result in a loss of the orig-

inal scale and interpretation of variables. While standardization facilitates 
comparisons and equal weighting, it can make the interpretation of factor 
loadings more challenging for researchers and practitioners who are accus-
tomed to interpreting variables in their original metric [12]. 

● Potential Information Loss: Standardizing the data may lead to the loss of 
valuable information embedded in the original metric of the variables. The 
transformation of the variables to a common scale can eliminate meaningful 
differences in variances or distributions, potentially obscuring important 
nuances and patterns in the data [21]. 

3) Use variable filtering: Variable filtering can be used to remove highly cor-
related variables and can help reduce multicollinearity. This can be done in R 
using the caret package [44]. 

# Load the caret package 
library(caret) 
data <- (iris[,1:4]) 
# Calculate the correlation matrix 
cor_matrix <- cor(data) 
# Find highly correlated variables 
highly_correlated_vars <- findCorrelation(cor_matrix, cutoff = 0.8) 
# Remove highly correlated variables 
data_filtered <- data[, -highly_correlated_vars] 
In this example, we are removing variables that have a correlation coefficient 

greater than 0.8. We use the findCorrelation function to find these variables and 
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store their indices in the highly_correlated_vars variable. Then, we use the nega-
tive index operator—to remove these variables from the mtcars dataset and store 
the filtered dataset in the mtcars_filtered variable. 

Advantages: 
● Reduced Multicollinearity: Variable filtering allows researchers to identify 

and remove highly correlated variables, reducing the level of multicollinearity 
in the factor analysis model. By eliminating redundant or highly intercorre-
lated variables, the remaining variables are less likely to be affected by multi-
collinearity, leading to more reliable factor analysis results [45]. 

● Improved Interpretability: By selecting a subset of variables based on specific 
criteria, variable filtering can enhance the interpretability of the factor analy-
sis results. It helps focus on the most relevant and meaningful variables, faci-
litating clearer and more precise interpretations of the underlying constructs 
[5]. 

Disadvantages: 
● Potential Information Loss: Variable filtering may lead to information loss if 

important variables are excluded from the analysis. Removing variables based 
solely on their correlation with other variables may overlook valuable infor-
mation and potentially limit the understanding of the underlying factors 
[19]. 

● Subjectivity in Variable Selection: The process of variable filtering involves 
making subjective decisions regarding which variables to retain and which to 
exclude. Different researchers may apply different criteria or judgment, po-
tentially leading to inconsistent results and interpretations [46]. 

● Sensitivity to Filtering Criteria: The choice of filtering criteria can signifi-
cantly impact the results. Different criteria, such as correlation thresholds or 
statistical measures, may yield different subsets of variables, potentially in-
fluencing the factor structure and conclusions drawn from the analysis [21]. 

4) Use principal component analysis (PCA or robust PCA or Bayesian PCA) 
instead of factor analysis. Principal Component Analysis (PCA) is a remarkably 
powerful technique in data analysis, facilitating the creation of a reduced set of 
variables that exhibit no correlation amongst themselves. By elegantly extracting 
essential patterns from an initially interconnected set of variables, PCA offers a 
compelling solution. Notably, when confronted with the challenge of multicolli-
nearity, PCA emerges as a commendable alternative to factor analysis, as eluci-
dated by Abdi and Williams in their seminal work [47]. This methodology 
enables a comprehensive exploration of the intricate relationships underlying 
the data, fostering a deeper understanding of its latent structure. Through the 
artistry of PCA, intricate webs of interdependence unravel, giving way to a con-
cise and coherent representation, which, in turn, paves the path for invaluable 
insights and informed decision-making. 

# Load the psych package 
library(psych) 
data <- (iris[,1:4]) 

https://doi.org/10.4236/ojs.2023.133020


T. Kyriazos, M. Poga 
 

 

DOI: 10.4236/ojs.2023.133020 415 Open Journal of Statistics 
 

# Conduct PCA 
pca_model <- principal(data) 
# Get the principal components 
principal_components <- pca_model$loadings 
Advantages of PCA in Solving Multicollinearity: 

● Principle component analysis (PCA), which divides the original collection of 
correlated variables into a new set of uncorrelated variables known as prin-
ciple components, is a strong approach for minimizing multicollinearity. 
These components are linear combinations of the starting variables and are 
orthogonal to one another. By capturing the majority of the data’s volatility 
with the first few main components, PCA helps overcome multicollinearity 
[37]. 

● Dimensionality Reduction: PCA enables dimensionality reduction by retain-
ing a subset of the principal components that explain the majority of the va-
riance in the data. This reduction simplifies the analysis and interpretation of 
results, as the focus is shifted to a smaller number of uncorrelated compo-
nents [48]. 

Disadvantages of PCA in Solving Multicollinearity: 
● Loss of Interpretability: While PCA reduces multicollinearity, it may lead to a 

loss of interpretability. The principal components derived through PCA are 
linear combinations of the original variables, and their interpretation in terms 
of the underlying constructs may not be straightforward [1]. Consequently, 
the transformed components may lack direct meaning or theoretical relev-
ance. 

● Potential Information Loss: PCA involves a dimensionality reduction process, 
which can lead to information loss. By selecting a subset of principal compo-
nents, there is a possibility of discarding variance or information that might 
be relevant to the analysis. This information loss may impact the accuracy 
and completeness of the findings [49]. 

5) Another strategy is to use factor scores instead of the original variables to 
avoid multicollinearity. Factor scores are the estimated values of the latent fac-
tors for each individual based on their responses to the observed variables [40]. 

# Load the iris dataset 
data <- (iris[,1:4]) 
# Perform factor analysis with principal axis factoring 
fa_result <- princomp(iris[,1:4], scores = TRUE) 
# Compute factor scores for each individual 
factor_scores <- predict(fa_result, newdata = iris[,1:4]) 
# Perform linear regression analysis with factor scores 
lm_model <- lm(Petal.Width ~ factor_scores, data = iris) 
summary(lm_model) 
Advantages: 

● Reduction of Multicollinearity: By using factor scores, which are derived from 
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the underlying latent factors, multicollinearity among the original variables 
can be reduced. Since the factor scores are uncorrelated or have low inter-
correlations, they provide a way to overcome the issue of high correlations 
among the original variables [21]. 

● Improved Model Stability: Factor scores contribute to increased model sta-
bility by removing the problem of multicollinearity. When multicollinearity 
exists, small changes in the data or sample composition can lead to unstable 
factor loadings and structure. By using factor scores, the stability of the mod-
el can be enhanced, allowing for more consistent results across different 
samples or contexts [1]. 

Disadvantages: 
● Loss of Variable-Level Information: When using factor scores, the original 

variables’ individual-level information is lost. Factor scores are composite 
scores representing the overall position of an individual on each latent factor. 
This loss of variable-level information may limit the ability to examine spe-
cific relationships or analyze individual variables independently [50]. 

● Reduced Interpretability: Factor scores may lack interpretability compared to 
the original variables. The factor scores represent a combination of the origi-
nal variables and can be challenging to interpret in terms of their specific 
meaning or contribution. This reduces the direct interpretability of the anal-
ysis, especially when communicating the results to a broader audience [2]. 

6) Merge highly correlated variables into a single variable. If two variables are 
highly correlated, they may be measuring the same underlying construct. In this 
case, we can create a new variable that combines the information from both va-
riables [51]. 

Example in R: 
# create a data frame with reading_score and writing_score variables 
df <- data.frame(reading_score = c(85, 92, 78, 90), 
              writing_score = c(80, 94, 75, 88)) 
# calculate the correlation matrix 
cor_mat <- cor(df) 
# print the correlation matrix 
print(cor_mat) 
# create a new variable called academic_score that combines reading_score 

and writing_score 
df$academic_score <- (df$reading_score + df$writing_score)/2 
# print the new data frame with the academic_score variable 
print(df) 
cor_mat_2 <- cor(df) 
In this instance, we start by establishing a data frame with the two variables. 

The information from both “math_score” and “science_score” is combined into 
a new variable named “academic_performance” when we use the rowMeans() 
function to get the mean of each row. Finally, we view the new data frame with 
the merged variable. 
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Advantages: 
● Simplicity and Interpretability: Merging highly correlated variables into a 

single variable simplifies the factor analysis model by reducing the number of 
variables involved. This simplification enhances the interpretability of the 
factor structure as it focuses on a smaller set of variables. It becomes easier to 
understand and communicate the relationships between the latent factors 
and the combined variable [20]. 

● Enhanced Stability and Reliability: Merging highly correlated variables helps 
improve the stability and reliability of the factor analysis results. By combin-
ing the information from correlated variables into a single variable, the im-
pact of multicollinearity is reduced. This can lead to more stable factor load-
ings and a more robust estimation of the factor structure, increasing the re-
liability of the analysis [19]. 

Disadvantages: 
● Loss of Granularity: Merging highly correlated variables into a single variable 

may result in a loss of granularity or detail. When variables are combined, 
the unique information captured by each variable may be compromised, 
making it more challenging to understand the specific aspects or dimensions 
related to the latent factors. This loss of granularity can limit the richness of 
the factor analysis results [1]. 

● Potential Information Loss: Merging highly correlated variables runs the risk 
of losing important information contained within the individual variables. By 
combining variables, some nuances or specific characteristics captured by 
each variable may be overshadowed or diluted, leading to a loss of valuable 
insights. This information loss can impact the accuracy and depth of the fac-
tor analysis results [21]. 

7) Use types of clustering: Hierarchical clustering can be used in this case to 
find clusters of variables that are highly correlated and can lessen multicollinear-
ity. R’s hclust() function can be used for this [52] 

set.seed(123) 
var1 <- rnorm(50) 
var2 <- rnorm(50) 
var3 <- rnorm(50) 
var4 <- rnorm(50) 
var5 <- rnorm(50) 
df <- data.frame(var1, var2, var3, var4, var5) 
hc <- hclust(dist(df), method = “ward.D2”) 
plot(hc) 
fa <- factanal(df, factors = 2) 
print(fa$loadings) 
By combining hierarchical clustering and factor analysis, we can identify groups 

of highly correlated variables and reduce multicollinearity in our data. 
Advantages: 
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a) Variable Grouping: Clustering techniques allow for the grouping of highly 
correlated variables into clusters. This helps in identifying subsets of variables 
that exhibit strong relationships, reducing the multicollinearity within each cluster 
[1]. 

b) Simplified Interpretation: Clustering facilitates the interpretation of results 
by creating distinct groups of variables with similar patterns. Researchers can 
focus on the clusters as separate constructs or factors, which may aid in under-
standing the underlying structure of the data [52]. 

c) Enhanced Stability: Clustering can improve the stability of factor analysis 
results by reducing the impact of multicollinearity. By clustering highly corre-
lated variables, the factors derived from the analysis become less sensitive to 
small changes in the data or sample composition [1]. 

Disadvantages: 
a) Subjectivity in Clustering: Clustering involves making decisions about 

grouping variables based on similarity or dissimilarity measures. This introduces 
subjectivity into the analysis, as different clustering algorithms or criteria may 
yield different results. The choice of clustering method and the determination of 
the optimal number of clusters can be challenging [52]. 

b) Loss of Information: Clustering may result in a loss of information as it 
combines variables into subsets. This reduction in dimensionality can simplify 
the analysis but may also discard valuable information contained in the individ-
ual variables [1]. 

c) Potential Oversimplification: Clustering can oversimplify the relationships 
among variables by grouping them into clusters. While this aids in reducing 
multicollinearity, it may overlook more complex associations and nuances 
present in the data [52]. 

5. Discussion  
5.1. Summary and Conclusions 

Multicollinearity in factor analysis has several detrimental effects, including an 
unreliable factor structure with inconsistent loadings, inflated standard errors, 
reduced discriminant validity, and difficulty in interpreting factors. It also leads 
to reduced stability, hindered factor replication, misinterpretation of factor im-
portance, increased parameter estimation instability, reduced power to detect the 
true factor structure, compromised model fit indices, and biased factor loadings. 
Multicollinearity hampers factor analysis by introducing uncertainty, complexi-
ty, and limited generalizability. Addressing multicollinearity through careful da-
ta preprocessing and appropriate techniques is crucial for obtaining reliable and 
meaningful factor analysis results [1] [16] [17] [21].  

Multicollinearity, the presence of high correlation among predictor variables, 
can impact the accuracy and interpretation of regression analysis [27]. To assess 
multicollinearity, several methods are available. One approach is to examine the 
correlation matrix, which shows the pairwise correlations between variables. Va-
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riables with high correlation coefficients indicate a strong linear relationship, 
suggesting multicollinearity [27]. Another method is the Variance Inflation Fac-
tor (VIF), which measures how much the variance of estimated regression coef-
ficients is inflated due to multicollinearity. VIF values greater than 1 indicate in-
creasing levels of multicollinearity. The “vif()” function in R, available in the 
“car” package, can be used to calculate VIF for each predictor variable in a linear 
model [34]. Tolerance, the reciprocal of VIF, represents the proportion of va-
riance in a predictor variable that is not shared with other predictors. Tolerance 
values less than 0.1 indicate significant multicollinearity. In R, tolerance values 
can be obtained by taking the reciprocal of the VIF values calculated using the 
“vif()” function. Eigenvalues, derived from linear algebra, can also be used to as-
sess multicollinearity. Eigenvalues represent the scaling factors by which corres-
ponding eigenvectors are transformed. In factor analysis, eigenvalues greater 
than 1 indicate that a factor explains more variance than a single variable and 
should be retained. The “eigen()” function in R can be used to calculate eigen-
values for the correlation matrix [37]. Principal Component Analysis (PCA) is a 
technique that reduces the dimensionality of a dataset while retaining the origi-
nal variation. It can help identify variables that are highly correlated and poten-
tially multicollinear. The “prcomp()” function in R performs PCA on a dataset 
[27] [37]. The condition number, obtained by calculating the eigenvalues of the 
correlation matrix, measures the stability of regression coefficients. A condition 
number greater than 30 is considered indicative of significant multicollinearity 
[38]. Cook’s distance is a diagnostic measure that quantifies the influence of in-
dividual observations on regression coefficients. High Cook’s distance values sug-
gest influential points that may contribute to multicollinearity [39]. By applying 
these methods, researchers can detect and evaluate multicollinearity, enabling 
more accurate and reliable regression analysis. 

Several methods can be employed to address multicollinearity in factor analy-
sis. Firstly, centering the data by subtracting the mean from each variable can 
help reduce multicollinearity [40]. This can be achieved in R using the scale() 
function. Standardizing the data by dividing each variable by its standard devia-
tion is another approach to mitigate multicollinearity. The scale() function in R 
can also be used for this purpose. Another method involves variable filtering, 
where highly correlated variables are removed to reduce multicollinearity. The 
caret package in R provides useful functions, such as findCorrelation(), to iden-
tify and eliminate such variables [44]. Principal component analysis (PCA) can 
serve as an alternative to factor analysis when multicollinearity is a concern [47]. 
PCA creates a smaller set of uncorrelated variables from a larger set of correlated 
variables. In R, the psych package offers the principal() function to conduct 
PCA. Using factor scores instead of the original variables is another strategy to 
avoid multicollinearity. Factor scores estimate the values of latent factors for 
each individual based on their responses to observed variables [40]. In R, the 
princomp() function from the stats package can be used to perform factor analy-
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sis with principal axis factoring, and the predict() function can compute factor 
scores for each individual (lm_model <- lm(Petal.Width ~ factor_scores, data = 
iris)). Merging highly correlated variables into a single variable is a technique to 
address multicollinearity when two variables measure the same underlying con-
struct [51]. In the realm of data analysis, a fascinating approach emerges: the 
creation of a novel variable that unites the rich information from multiple va-
riables. To tackle the challenge of multicollinearity, a condition where variables 
become overly interrelated, researchers can venture into the realm of clustering 
techniques. Among these techniques, the illustrious hierarchical clustering 
stands out. With its aid, one can unearth clusters of variables that possess strong 
correlations, thereby mitigating multicollinearity’s pernicious effects [52]. 

In the vast landscape of statistical tools, the formidable R programming lan-
guage offers an invaluable ally: the esteemed hclust() function. Armed with this 
function, researchers gain the power to unleash the potential of hierarchical 
clustering, unraveling intricate patterns in the data. This newfound capability 
enables them to triumphantly confront the specter of multicollinearity in factor 
analysis, ultimately paving the way for results that are both trustworthy and il-
luminating. Brace yourself for a captivating journey into the depths of data 
analysis, where perplexity and burstiness reign supreme. 

5.2. The Unresolved Problems of Multicollinearity in Factor  
Analysis 

Quantifying the severity of multicollinearity in factor analysis remains an unre-
solved problem [20]. While measures such as variance inflation factor (VIF) and 
condition number provide indications of multicollinearity, determining a un-
iversally agreed-upon threshold for when multicollinearity becomes problematic 
remains elusive. Researchers often rely on subjective judgment and context-specific 
considerations to assess the severity of multicollinearity. 

High-dimensional data present another unresolved problem in dealing with 
multicollinearity in factor analysis. Dealing with multicollinearity becomes par-
ticularly challenging in high-dimensional factor analysis scenarios, where the 
number of observed variables surpasses the sample size, leading to a substantial 
increase in the occurrence of multicollinearity. Hair et al. [1] highlight this as an 
open research challenge, emphasizing the need to develop effective strategies for 
managing multicollinearity in such high-dimensional factor analysis settings. 

Addressing nonlinear relationships poses a challenge in the presence of mul-
ticollinearity. While traditional measures of multicollinearity assume linear rela-
tionships among predictor variables, variables in factor analysis may exhibit 
nonlinear associations. Developing techniques to address multicollinearity in the 
context of nonlinear relationships remains an unresolved problem [16]. 

Another unsolved issue in component analysis is determining how multicol-
linearity affects model fit and interpretability. While some scholars contend that 
multicollinearity can cause skewed factor loadings and unreliable model fit in-
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dices, others contend that the effect may be insignificant in other circumstances. 
In order to assess the effects of multicollinearity on model fit and interpretabili-
ty, it is necessary to do additional research [21]. 

In conclusion, multicollinearity poses difficulties for factor analysis, although 
unresolved issues continue. Active study areas include determining the cause of 
multicollinearity, judging how severe it is, handling high-dimensional data, deal-
ing with nonlinear interactions, and analysing how it affects model fit and inter-
pretability. The best ways to tackle multicollinearity in factor analysis are still 
being investigated by researchers, who are also working to create more thorough 
strategies. 

5.3. Implications 

Extensive research has delved into the intricate realm of multicollinearity in fac-
tor analysis, yet intriguing gaps persist within the literature. This intellectual 
terrain beckons for a deeper exploration, yearning to uncover the intricate im-
plications of diverse multicollinearity types on factor analysis outcomes. The ef-
ficacy of various methodologies to tackle this quandary in distinct contexts re-
mains a fertile ground, awaiting scholarly scrutiny and insight [53]. Moreover, a 
captivating nexus awaits between multicollinearity and other venerated predi-
caments within factor analysis, such as the tantalizing allure of model misspeci-
fication and the enigmatic dance of measurement error [54]. In essence, while 
the multifaceted conundrum of multicollinearity in factor analysis has garnered 
copious scholarly attention, a realm ripe with opportunities still unfolds for fur-
ther inquiry, offering glimpses into its profound reverberations on factor analy-
sis outcomes and the nuanced efficacy of diverse problem-solving methodologies 
within distinct contexts. 
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