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Abstract 
The normal distribution, which has a symmetric and middle-tailed profile, is 
one of the most important distributions in probability theory, parametric in-
ference, and description of quantitative variables. However, there are many 
non-normal distributions and knowledge of a non-zero bias allows their 
identification and decision making regarding the use of techniques and cor-
rections. Pearson’s skewness coefficient defined as the standardized signed 
distance from the arithmetic mean to the median is very simple to calculate 
and clear to interpret from the normal distribution model, making it an ex-
cellent measure to evaluate this assumption, complemented with the visual 
inspection by means of a histogram and a box-and-whisker plot. From its va-
riant without tripling the numerator or Yule’s skewness coefficient, the objec-
tive of this methodological article is to facilitate the use of this latter measure, 
presenting how to obtain asymptotic and bootstrap confidence intervals for 
its interpretation. Not only are the formulas shown, but they are applied with 
an example using R program. A general rule of interpretation of ∓0.1 has 
been suggested, but this can only become relevant when contextualized in re-
lation to sample size and a measure of skewness with a population or para-
metric value of zero. For this purpose, intervals with confidence levels of 90%, 
95% and 99% were estimated with 10,000 draws at random with replacement 
from 57 normally distributed samples-population with different sample sizes. 
The article closes with suggestions for the use of this measure of skewness. 
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1. Introduction 

The skewness of the distribution of a random variable is an important property 
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for choosing the techniques for parameter estimation and hypothesis testing. 
Above all, it is of interest to check whether the distribution is symmetrical be-
cause of its possible deviation from the normality and the effect of skewness on 
the parametric tests, such as the t-test for difference of means or analysis of va-
riance [1]. Normality takes on special relevance because of its central role in proba-
bility theory, asymptotic estimation, and is the distribution model of many quan-
titative variables in different fields of science, such as measures of intelligence, 
temperament, and expressive attitudes in open societies within psychology. 

Many measures of skewness have been developed since the late 19th century, 
but one of the first measurement proposals, made by Karl Pearson [2], still con-
stitutes one of the best choices: the standardized signed distance from the arith-
metic mean to the median [3] [4] [5] [6]. Its interpretation is intuitive and clear, 
especially in comparison with the unimodal profile of a normal distribution. There 
are no general cut-off points to establish when the distribution is skewed and 
therefore not normal. Taking up the suggestion of Doane and Seward [4], this 
article aims to facilitate the implementation of this measure by showing opera-
tionally how to establish when there is deviation from a symmetric profile and 
estimating bootstrap confidence intervals using the program R. In addition, boot-
strap confidence intervals at 90%, 95% and 99% centered at 0 for normally dis-
tributed samples of different sizes are shown as interpretative guide of deviation 
from symmetry and in order to qualify the general interpretative rule of ∓0.1. It 
is worth noting that the normal distribution is characterized by its symmetry 
and middle tails, hence it is the best pattern for generating interpretive symme-
try guidelines for distributions with finite moments. 

The article begins by presenting the concept of skewness and its measurement 
to focus on Pearson’s [2] measure and its variant with −1 to 1 bounding, when 
the numerator is not multiplied by three, named Yule’s skewness coefficient [4] 
[7] [8] [9]. The formulas for calculating the asymptotic error and confidence in-
terval are shown [8] and scripts for computing bootstrap intervals using the pro-
gram R are provided. As interpretative guide, confidence intervals at 90%, 95% 
and 99% are estimated by bootstrap resampling for different sample sizes under 
the assumption of the mesokurtic symmetry of a normal distribution [10] [11], 
which makes it possible to calibrate the interpretive rule of ∓0.1. The manu-
script concludes by drawing some conclusions and making suggestions for the 
use of this measure of the shape of the distribution. It should be noted that the 
article has essentially a practical significance by showing the use of a skewness 
statistic with the application of a free software program and giving guidelines for 
interpretation based on the symmetrical pattern of the normal distribution. 

2. Concept of Skewness 

The concept of skewness was introduced at the beginning of scientific statistics 
at the end of the 19th century by the English biologist and mathematician Fran-
cis Galton [12] in the study of human faculties and by the English mathemati-
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cian and philosopher Karl Pearson [2] [13] [14] in the development of his sys-
tem of 12 continuous distributions [15]. Skewness and kurtosis as shape para-
meters together with a location parameter and a scale parameter allow defining 
the different distributions of the Pearsonian system. Since the influential work of 
this English mathematician, measures of skewness have been linked to continuous 
distributions, such as uniform, triangular, beta, exponential, gamma, Chi-squared, 
logistic, normal or lognormal and, in turn, applied to discrete distributions, such 
as Bernoulli, binomial, multinomial, geometric, hypergeometric or Poisson. Thus, 
the concept is not only used to specify continuous quantitative variables, such as 
reaction time or years of age, but also to describe discrete quantitative variables, 
such as the frequency of a behavior, number of successes on a test or number of 
children, and ordinal variables, such as the degree of agreement with an attitu-
dinal statement on a Likert-type scale or subjective socioeconomic stratum [16]. 
A measure of skewness has even been proposed to characterize qualitative va-
riables, such as categorical classifications [17]. 

Skewness can be understood as a property of the shape of the empirical dis-
tribution when represented by a bar chart, in the case of an ordinal or discrete 
quantitative variable with few values, or by a histogram, in the case of a conti-
nuous or discrete quantitative variable with many values, as well as of the theo-
retical or probability distribution when represented by a diagram of the proba-
bility mass function (discrete variable) or density function (continuous variable). 
A measure of central tendency, such as the arithmetic mean, median, mode or 
mid-rank, is taken as an axis of symmetry to divide the distribution into two 
parts. If both parts of the distribution are equal, that is, one is the reflection of 
the other, and there is symmetry. If both parts are disparate, there is asymmetry. 
For example, if the arithmetic mean (μ) is taken as the axis of symmetry, a dis-
tribution would have symmetry if fX(x − μ) = fX(x + μ), where fX(x) is the proba-
bility mass function in a discrete distribution or the probability density function 
in a continuous distribution [18]. 

When describing the shape of a distribution from the diagram of a probability 
density or mass function, the following elements are distinguished: a peak, two 
(left and right) shoulders, and two (left and right) tails. The peak is the modal or 
most frequent value of the distribution [19]. It corresponds to the point on the 
abscissa axis (X values) where the curve reaches its maximum on the ordinate 
axis (point densities or probabilities). The left shoulder can be defined as the 
area between the 25th percentile and the 50th percentile or between the score at 
one standard deviation below the arithmetic mean and the arithmetic mean. The 
right shoulder, on the other hand, can be defined as the area between the 50th 
percentile and the 75th percentile or between the arithmetic mean and the score 
at one standard deviation above the arithmetic mean [20]. The left tail is the area 
between the left shoulder and the minimum value (threshold parameter a) or −∞; 
likewise, the right tail is the area between the right shoulder and the maximum 
value (threshold parameter b) or +∞. If the minimum value falls within the left 
shoulder area, there is no left tail; similarly, if the maximum value falls within 
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the right shoulder area, there is no right tail. These concepts would also apply to 
the histogram, including the bar chart. 

Relative skewness measures (free of unit of measurement or free of location 
and scale parameters) are defined as ratios, proportions or averages centered at 0 
[21]. A value of 0 indicates null skewness, i.e., symmetry. In a continuous un-
imodal distribution, it reveals that the two shoulders and the two tails on both 
sides of the symmetry axis are identical, that is, one side is the reflection of the 
other (Figure 1, narrower curve in both diagrams). A positive value in the skew-
ness measure usually indicates that the right tail is longer than the left, which 
causes the arithmetic mean to be shifted to the right and there are fewer values 
above the arithmetic mean than below. In continuous unimodal distributions 
with positive skewness, the mode (peak) falls below the median and the median 
below the arithmetic mean (Figure 1, wider curve in the right diagram). How-
ever, its generalization to other types of distribution depends on how heavy or 
light the tails are. Thus, a shortened tail at one end can compensate for a leng-
thened tail at the other end and give rise to symmetry (null value) when, in real-
ity, both parts of the distribution are disparate. In continuous unimodal distri-
butions, a negative value in the skewness measure shows that the left tail is long-
er than the right, which causes the arithmetic mean to be shifted to the left and 
there are fewer cases below the arithmetic mean than above (Figure 1, wider 
curve in the left diagram). In these distributions with negative skewness, the 
mode (peak) is above the median and the median is above the arithmetic mean 
[22]. This regularity holds well in continuous unimodal distributions, but in dis-
crete distributions it has many counterexamples [6], hence it is very important 
to represent the distribution by a bar chart or histogram when assessing symme-
try and interpreting its different measures [23]. 

There are several measures of skewness [20] [24]. Some are based on the 
standardized third central moment or the third standardized cumulant. Others 
are based on quantiles or expectiles. These latter can be considered a smoothed 
version of quantiles and, like the quantiles, also measure non-central location [7]. 
There are a third mixed measures that are based on moments and quantiles,  
 

 
Figure 1. Probability density functions showing two examples of asymmetric curves and the corresponding sym-
metric curves for four continuous random variables. 
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such as the and standardized signed distance from the arithmetic mean to the 
mode [13] or to the median [2] [25], the standardized signed distance from the 
semi-range to the mode, median or arithmetic mean [21] or the area of skewness 
[6]. Not to mention a fourth type of robust asymmetry measures [5] [26]. 

3. Skewness Coefficients Based on Pearson’s Standardized  
Distance 

Karl Pearson [13] took as a model the normal distribution, which is a unimodal, 
symmetric, and bell-shaped distribution. Being unimodal symmetric, the arith-
metic mean, median, and mode coincide, consequently, the difference between 
the arithmetic mean and mode or median is 0. If there is asymmetry due to 
elongation of the right tail due to atypical cases, the value of the arithmetic mean 
would be greater than that of the median and mode (unique), so the difference 
between the arithmetic mean and mode or median would be positive. Converse-
ly, if there were asymmetry due to left tail elongation due to outlier cases, the 
value of the arithmetic mean would be smaller than that of the median and 
mode, so the difference between the arithmetic mean and (single) mode or me-
dian would be negative. With the intention of standardizing this measure, Karl 
Pearson decided to divide the difference or distance between the arithmetic 
mean and mode, μX – Mo(X), or median, μX – Mdn(X), by the standard devia-
tion (σX), giving rise to the skewness coefficients based on the standardized dis-
tance of the arithmetic mean to the mode or median, which can be denoted by 
SkP1 and SkP2, respectively. 

3.1. Distance from Arithmetic Mean to Median 

Pearson’s first proposal had a clear drawback, its dependence on mode. The es-
timation of this measure of central tendency can be problematic with samples of 
strictly continuous variables, in which the data are not repeated, so it is required 
to tabulate by class intervals and use the class mark (midpoint of class interval) 
or a linear interpolation formula; in addition, it is very unstable with small sam-
ples [27]. Although nowadays, this pitfall has been overcome from modal peak 
density estimators [28] and a robust skewness measure based on the estimation 
of the mode has been proposed [26]. On the other hand, the distribution needs 
to be unimodal for its calculation, as is the case for the normal distribution, but 
not for all distributions, such as the beta distribution with shape parameters α 
and β less than 1 or the arcsine distribution. Moreover, it is not a clearly bounded 
measure. 

To overcome these disadvantages, Karl Pearson [2] proposed a second formu-
la, replacing the mode by the median and multiplying the numerator by three. In 
this way, a more stable and robust measure of central tendency is used, which 
can be calculated with any type of distribution. Moreover, with this change, the 
measure of skewness is bounded between −3 and 3. Consequently, the numera-
tor of the new coefficient is three times the difference between the arithmetic 
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mean and the median and its denominator is the standard deviation. 
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E(X) = μX = arithmetic mean or mathematical expectation of X. 
Mdn(X) = QX(p = 0.5) = median or quantile of order 0.5 of X. 
If X is a continuous random variable with probability density function fX(x), 

its median is a value x within the support of X that satisfies the following condi-
tion: 

( ) ( ){ }| 0.5Mdn X x X P X x= ∈ ≤ =  

If X is a discrete random variable with probability mass function fX(x) = P(X = 
x), its median is a real value x (between the maximum and minimum of the 
support of X) that satisfies the following double condition: 
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In case more than one value of X meets the condition, the average of these 
values is taken as the median, which may result in a number with decimals out-
side the support of X. However, the median value will be greater than or equal to 
the minimum value of X and less than or equal to the maximum value of X. 
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when skewness is calculated on a sample of n data of X, the sample mean ( x ), 
sample median (mdn), and the sample standard deviation (sn−1) are used. 
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If the number of data is odd and the values are ordered in ascending order, x(i), 
the sample median is the value in the order i = n/2, that is, in the central posi-
tion. 
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If the number of data is even, the median is the average of the two values in 
the center. 
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In the first case, the median is an x-value belonging to the support of X. In the 
second case, being an average of two values, the median can be an integer or a 
number with decimal places; if X is an ordinal variable or a discrete quantitative 
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variable with support in the set of natural numbers N or integers Z, the median 
value would be a rational number (with 0.5 as decimal) outside the support of X. 

The median can also be defined as follows, using the indicator function (1X) 
or the ratio of the number of elements meeting a condition in the sample to the 
total number of elements in the sample. 
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# cardinality or number of elements in the sample that meet the condition. 
Statistical manuals point out that there is no rule of thumb or cut-off point for 

interpreting this coefficient [4]. However, it is suggested that values of 0 plus 
minus three tenths in SkP2 may reflect symmetry with medium sample sizes (100 
to 200). Values below −0.3 may indicate negative skewness and values greater 
than 0.3 may reflect positive skewness. With small sample sizes (n < 100), an es-
timation error greater than three tenths should be considered and, with large 
sample sizes (n > 200), a smaller estimation error should be contemplated, be-
cause the larger the sample size, the more accurate the estimate [29]. 

This measure of skewness is bounded between −3 and 3 at the population level, 
but can take values outside this interval with sample data [9]. Singh et al. [6] es-
timated the SkP2 statistic with bootstrap confidence intervals at 90%, 95%, and 
99%. They made 10,000 draws at random with replacement from a normal dis-
tribution for four different sample sizes: 25, 50, 75, and 100. Consequently, their 
estimates are valid for unimodal distributions, especially with a bell-shaped pro-
file in the histogram or bar chart. Table 1 shows their results. Values of SkP2 
within the interval reflect symmetry, below negative skewness, and above posi-
tive skewness. For its use, the enlisted n value closest to the empirical sample size 
should be sought or an approximation by linear interpolation should be made. 
Since the enlisted samples are less than or equal to 100, the interval should be  
 
Table 1. Bootstrap confidence intervals at 90%, 95% and 99% of SkP2 statistic for samples 
with four different sizes drawn from a normal distribution. 

n 
90% CI 95% CI 99% CI 

LL UL LL UL LL UL 

25 −0.746 0.750 −0.884 0.862 −1.131 1.093 

50 −0.522 0.506 −0.614 0.608 −0.784 0.792 

75 −0.433 0.427 −0.522 0.503 −0.678 0.661 

100 −0.373 0.365 −0.440 0.440 −0.569 0.573 

Note. n = sample size, LL = lower limit and UL = upper limit of the confidence interval 
(CI). Estimates based on quantiles of 10,000 samples of size n drawn with replacement 
from a normal distribution. Source: Singh et al. [6]. 
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used with a 90% confidence level to compensate for the conservative nature to-
wards the null hypothesis of non-significance of the bootstrap resampling me-
thod with small sample [30]. It should be noted that the width of these intervals 
is larger than six, which coincides with the previous statement that an estimation 
error larger than 0.3 should be considered with samples smaller than 100, that is, 
with small samples. 

One can always opt for interval estimation using the programming of the R 
package for bootstrapping [10] [11]. It is recommended to specify a confidence 
level of 90% with small and medium empirical data samples, and 95% with large 
samples, use a large number of draws with replacement, such as 1000, and apply 
nonparametric methods, such as bias-corrected accelerated bootstrap (type = 
"bca"), when the distribution of the variable is unknown or non-normal. In case 
of normality, a more efficient option is the parametric normal method: type = 
"norm" [31]. Furthermore, it is suggested to complement the evaluation of the 
symmetry of the sample data with graphical representations by means of a fre-
quency histogram and a box-and-whisker plot [23] [32]). In case the bootstrap 
confidence interval includes 0, it could be affirmed that the distribution is sym-
metric with an alpha level of significance (0.1 or 0.05). 
 

library(modeest) 
x<-c(numeric sample data separated by commas) 
boxplot(x, horizontal = TRUE, col = " lightgrey") 
hist(x, breaks = "freedman-diaconis", col = " lightgrey", border = "black") 
m = mean(x) 
mdn = median(x) 
s = sd(x) 
skpII = 3*(m-mdn)/s 
cat("Pearson's skewness coefficient II = ",skpII,"\n") 
library(boot) 
b<-boot(data = x, function(x, i) {3*(mean(x[i])-median(x[i]))/sd(x[i])}, R = 1000) 
b 
plot(b) 
boot.ci(b, conf = 0.90, type = c("bca", "norm"), digits = 4) 

3.2. Yule’s Skewness Coefficient 

There is a version of this measure without multiplying the numerator by three 
that is usually named Yule’s skewness coefficient. Although Pearson justified 
tripling the numerator to have a population-level bounded measure, the only 
thing this factor does is to generate a change of scale. At the population level, the 
range of Yule’s measure is −1 to 1 [9], like the interquartile and percentile skew-
ness coefficients, which is a more convenient range than −3 to 3. From this new 
bounding, without multiplying the numerator by three, the suggested interpreta-
tion for symmetry would be a value in the interval [−0, 1, 0.1] with intermediate 
samples [4]. 

Cabilio and Masaro [8] showed that the asymptotic distribution of the SkY sta-
tistic under the null hypothesis of symmetry is a normal distribution when the 

https://doi.org/10.4236/ojs.2023.133018


J. Moral de la Rubia 
 

 

DOI: 10.4236/ojs.2023.133018 367 Open Journal of Statistics 
 

variable X has a known distribution with finite means and variances. 
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In the case of a standard normal distribution, the asymptotic error is approx-
imately 0.5708 n . 
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In the case of a non-standard normal distribution, the asymptotic error and 
interval can be calculated using the following formulas: 
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For any type of finite moment distribution, the asymptotic error estimator is 
given by the following mathematical expression: 
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fn = Kernel density estimator from the n sample data. Cabilio and Masaro [8] 
recommend using a uniform Kernel function and a bandwidth equal to n−0.2: 
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The script for calculating this asymptotic confidence interval with the R pro-
gram is as follows with a concrete example: 

library("kdensity") 
 

x<- c(93, 60, 55, 91, 107, 86, 113, 90, 97, 92, 74, 144, 93, 116, 90, 87, 125, 89, 84, 104, 92, 
109, 77, 77, 81, 124, 112, 125, 105, 128, 103, 96, 98, 91) 
length(x) 
mean(x) 
median(x) 
sd(x) 
library("DescTools") 
MeanAD(x, center = median) 
bw <-(34**-0.2) 
bw 
kde = kdensity(x, bw, kernel = "uniform", normalized = FALSE) 
kde(93) 

 
Output in the order given by the instructions in the script: n = 34, m = 

97.2941, mdn = 93, sn−1 = 19.1684, mad_mdn = 14.4118, h = 0.4940, and fn(mdn) 
= 0.0344. The Yule’s skewness measure is computed with Equation (2), its 
asymptotic standard error with Equation (3), and the asymptotic confidence in-
terval with Equation (4). 

97.2941 93 4.2941mdx n− = − =  

1

97.2941 93 4.2941 0.2240
19.1684 19.1684Y

n

mdx nSk
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Due to the small sample size, an alpha value of 0.1 is used for the asymptotic 
confidence interval. It is assumed that the sample was drawn randomly from a 
probability distribution with finite moments. 

( )( )4.2941 1.6449 2.1676 4.2941 1.6449 2.1676 0.90XP Mdn Xµ− × < − < − × =  

( ) ( )0.0458,8.5425 0.90XP Mdn Xµ − ∈ =   

( ) ( )0 0.7288,7.8595 with 0.1X Mdn Xµ α∉ ⇒ ≠ =  

( ) ( )0.7288 7.8595, 0.0380,0.4100 0.90
19.1684 19.1684

X
Y

Mdn X
P Sk

µ
σ

 −  = ∈ = =  
  

 

( )0 0.0380,0.4100 0 with 0.1YSk α∉ ⇒ ≠ =  

The asymptotic confidence interval requires a large sample. Another option to 
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interpret whether or not there is symmetry is to generate a bootstrap confidence 
interval at 90% (with small and medium samples) or 95% (with large samples) 
with 1000 draws with replacement by the bias-corrected and accelerated percen-
tile method. Even the normal method is more appropriate and efficient if the 
sample data are normally distributed. The instructions for the R program are the 
following, in which the evaluation with graphs is added [10] [33]. If the boot-
strap confidence interval includes 0 and the plots show symmetric shoulders and 
tails, the null hypothesis of symmetry would hold with a significance level of al-
pha (0.1 or 0.05). This is not the case for the sample in this example, which show 
positive skewness with an outlier in the right tail, as the box-and-whisker plot 
reveals (Figure 2). 

 

library(modeest) 
x<- c(93, 60, 55, 91, 107, 86, 113, 90, 97, 92, 74, 144, 93, 116, 90, 87, 125, 89, 84, 104, 92, 
109, 77, 77, 81, 124, 112, 125, 105, 128, 103, 96, 98, 91) 
boxplot(x, horizontal = TRUE, col = "lightgrey") 
hist(x, breaks = "freedman-diaconis", col = "lightgrey", border = "black") 
m = mean(x) 
mdn = median(x) 
s = sd(x) 
skY = (m-mdn)/s 
cat("Yule's skewness coefficient = ",skY,"\n") 
library(boot) 
b<-boot(data = x, function(x, i) { (mean(x[i])-median(x[i]))/sd(x[i])}, R = 1000) 
b 
plot(b) 
boot.ci(b, conf = 0.90, type = c("bca", "norm"), digits = 4) 

 

 
Figure 2. Box-plot and histogram of frequencies of the sample of 34 data. 
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Output in the order given by the instructions in the script: 
Yule’s skewness coefficient = 0.2240. 
Bootstrap statistics: bias = −0.0647 and standard error = 0.1266. 
Bootstrap confidence interval at 90% using bias-corrected and accelerated 

percentile method: (0.0651, 0.4699). 
Bootstrap confidence interval at 90% using normal method: (0.0806, 0.4970). 

4. Bootstrap Confidence Intervals for the SkY Statistic from  
Normally Distributed Samples-Population of Different  
Sizes 

As reiterated in various scientific publications, there are no general cut-off 
points to establish whether symmetry is present when using this measure [3] [4]. 
Bootstrap confidence intervals at 90%, 95% and 99% using normal method are 
shown in Table 2. Fifty-seven normally distributed samples-population were 
generated with finite sizes and a range from z = −3.5 (FZ[z = −3.5] = Φ(−3.5) = 
0.000232629), to 3.5 (FZ[z = 3.5] = Φ(3.5) = 0.999767371). This range was cho-
sen to ensure mesokurtosis and increase the efficiency of the bootstrap confi-
dence intervals, since it is rare for data to appear more than three standard devi-
ations away from the mean in a normal distribution [27]. The range corresponds  
 
Table 2. Parametric bootstrap confidence intervals for the SkY statistics. 

N SkY Bias SE 
90% CI 95% CI 99% CI 

LL UL LL UL LL UL 

10 0 −0.0035 0.2180 −0.3551 0.3622 −0.4238 0.4309 −0.5581 0.5652 

15 0 0.0005 0.1902 −0.3134 0.3124 −0.3734 0.3723 −0.4905 0.4895 

20 0 0.0019 0.1556 −0.2578 0.2540 −0.3069 0.3031 −0.4027 0.3989 

25 0 −0.0016 0.1481 −0.2420 0.2452 −0.2886 0.2919 −0.3798 0.3831 

30 0 −0.0008 0.1297 −0.2125 0.2140 −0.2534 0.2549 −0.3332 0.3347 

35 0 0.0009 0.1255 −0.2072 0.2055 −0.2468 0.2450 −0.3240 0.3223 

40 0 0.0000 0.1136 −0.1868 0.1869 −0.2226 0.2227 −0.2926 0.2926 

45 0 0.0002 0.1122 −0.1848 0.1843 −0.2201 0.2197 −0.2892 0.2888 

50 0 −0.0025 0.1033 −0.1674 0.1725 −0.2000 0.2050 −0.2636 0.2687 

55 0 0.0003 0.1011 −0.1665 0.1660 −0.1983 0.1978 −0.2606 0.2600 

60 0 0.0003 0.0943 −0.1554 0.1547 −0.1851 0.1844 −0.2431 0.2425 

65 0 −0.0012 0.0921 −0.1503 0.1528 −0.1794 0.1818 −0.2361 0.2386 

70 0 −0.0001 0.0876 −0.1439 0.1442 −0.1715 0.1718 −0.2254 0.2257 

75 0 −0.0004 0.0857 −0.1407 0.1414 −0.1677 0.1685 −0.2205 0.2213 

80 0 −0.0002 0.0820 −0.1347 0.1350 −0.1605 0.1608 −0.2110 0.2113 

85 0 −0.0006 0.0812 −0.1330 0.1342 −0.1586 0.1598 −0.2086 0.2099 

90 0 −0.0004 0.0775 −0.1270 0.1278 −0.1514 0.1522 −0.1991 0.1999 

95 0 0.0000 0.0765 −0.1258 0.1258 −0.1499 0.1499 −0.1970 0.1970 

100 0 −0.0006 0.0739 −0.1210 0.1222 −0.1443 0.1454 −0.1898 0.1910 
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Continued 

105 0 0.0000 0.0732 −0.1204 0.1204 −0.1435 0.1434 −0.1885 0.1885 

110 0 −0.0002 0.0717 −0.1177 0.1181 −0.1403 0.1407) −0.1844 0.1848 

115 0 0.0001 0.0703 −0.1157 0.1154 −0.1378 0.1376 −0.1811 0.1808 

120 0 −0.0008 0.0679 −0.1109 0.1125 −0.1323 0.1339 −0.1742 0.1758 

125 0 0.0006 0.0668 −0.1105 0.1092 −0.1315 0.1303 −0.1727 0.1714 

130 0 0.0006 0.0650 −0.1076 0.1063 −0.1281 0.1268 −0.1681 0.1668 

135 0 −0.0006 0.0647 −0.1059 0.1071 −0.1263 0.1275 −0.1662 0.1674 

140 0 0.0010 0.0619 −0.1028 0.1008 −0.1223 0.1203 −0.1604 0.1584 

145 0 −0.0003 0.0633 −0.1038 0.1044 −0.1237 0.1243 −0.1627 0.163 

150 0 −0.0002 0.0606 −0.0994 0.0998 −0.1185 0.1189 −0.1558 0.1562 

155 0 −0.0009 0.0600 −0.0978 0.0995 −0.1167 0.1185 −0.1537 0.1550 

160 0 0.0004 0.0585 −0.0966 0.0958 −0.1150 0.1142 −0.151 0.1502 

165 0 −0.0008 0.0591 −0.0963 0.098 −0.1149 0.1166 −0.1513 0.1529 

170 0 −0.0006 0.0577 −0.0943 0.0955 −0.1124 0.1136 −0.1479 0.1491 

175 0 0.0003 0.0566 −0.0933 0.0927 −0.1111 0.1106 −0.1459 0.1454 

180 0 0.0002 0.0559 −0.0922 0.0917 −0.1098 0.1093 −0.1442 0.1438 

185 0 −0.0004 0.0553 −0.0906 0.0914 −0.1080 0.1088 −0.1421 0.1429 

190 0 0.0002 0.0541 −0.0892 0.0888 −0.1062 0.1059 −0.1395 0.1392 

195 0 0.0008 0.0540 −0.0897 0.0881 −0.1067 0.1051 −0.14 0.1384 

200 0 −0.0007 0.0528 −0.0862 0.0875 −0.1028 0.1042 −0.1353 0.1367 

210 0 0.0004 0.0517 −0.0854 0.0845 −0.1017 0.1008 −0.1335 0.1326 

220 0 0.0007 0.0501 −0.083 0.0817 −0.0988 0.0975 −0.1297 0.1283 

230 0 0.0006 0.0496 −0.0822 0.0810 −0.0978 0.0966 −0.1284 0.1272 

240 0 −0.0004 0.0484 −0.0792 0.0800 −0.0944 0.0952 −0.1242 0.1250 

250 0 0.0008 0.0477 −0.0794 0.0777 −0.0944 0.0928 −0.1238 0.1222 

260 0 −0.0007 0.0466 −0.0760 0.0774 −0.0906 0.0921 −0.1194 0.1208 

270 0 0.0002 0.0458 −0.0755 0.0751 −0.0899 0.0895 −0.1181 0.1177 

280 0 <0.0001 0.0443 −0.0729 0.0730 −0.0869 0.087 −0.1142 0.1143 

290 0 −0.0001 0.0440 −0.0723 0.0724 −0.0861 0.0862 −0.1132 0.1133 

300 0 0.0004 0.0430 −0.0711 0.0703 −0.0846 0.0838 −0.1111 0.1103 

320 0 <0.0001 0.0419 −0.0689 0.0689 −0.0821 0.0821 −0.1079 0.1079 

340 0 0.0005 0.0404 −0.0669 0.0659 −0.0796 0.0786 −0.1045 0.1034 

360 0 −0.0002 0.0394 −0.0646 0.0650 −0.0770 0.0774 −0.1012 0.1017 

380 0 0.0001 0.0388 −0.0640 0.0638 −0.0762 0.076 −0.1001 0.0999 

400 0 −0.0006 0.0370 −0.0603 0.0614 −0.0720 0.0731 −0.0947 0.0959 

450 0 0.0007 0.0355 −0.0591 0.0577 −0.0703 0.0689 −0.0922 0.0908 

500 0 −0.0002 0.0334 −0.0547 0.0551 −0.0652 0.0656 −0.0858 0.0862 

1000 0 0.0001 0.0238 −0.0392 0.0390 −0.0467 0.0465 −0.0613 0.0611 

Note. N = population size, SkY = Yule’s skewness coefficient, SE = standard error, CI = 
confidence interval, LL = lower limit and UL = upper limit of the bootstrap confidence 
interval using normal method. 
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to eight times the interquartile range and about seven times the standard devia-
tion, as considered by the Rice University rule [34] for determining the number 
of class interval in the histogram (k = ⌈2 × n1/3⌉) in relation to the Freed-
man-Diaconis and Scott rules. This approach is especially relevant for a variable 
with normal distribution: 

If there is symmetry, the interquartile range is twice the semi-interquartile 
range: RIQ = P75 − P25 = 2 × RSIQ = (P75 − P25)/2. The number of class intervals (k) 
is obtained by dividing the range or difference of the maximum and minimum 
(R = max − min) by the width of the intervals (h). Here the widths are obtained 
using the Freedman-Diaconis (hFD) and Scott (hScott) rules: 

{ } { }1 21
, , ,n

i ni
x x x x x

=
= = �  

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )

( ) ( )

75 25

75 25 75 25
3 3

75 25

3

75 25
3

4max min
2 2

8
2

2
2

FD

P x P xR x x x
k

h P x P x P x P x
n n

P x P x

n
P x P x

n

 −−  = = ≈
   − −   

 −
 
 = =
 − 

 

( ) ( ) ( )
( )

( )
( )

1 3

1 1
3 3

max min 6.98
2

3.49 3.49
n

n nSCott

R x x x s x
k n

s x s xh
n n

−

− −

− ×
= = ≈ =

× ×
 

The population sizes N ranged from 10 to 200 in 5-data increments, from 210 
to 300 in 10-data increments, from 320 to 400 in 20-data increments, from 450 
to 500 in 50-data increments, and ending with a size of 1000. Population data were 
obtained with the probit function: ( )( )1 0.000232629 1k kz P k P−= Φ = + − ×∆ , 
where 1,2, ,k N= �  and ( ) ( )0.999767371 0.000232629 1P N∆ = − − . For 
example, for population size 10: ΔP = 0.999534742/9 = 0.111059416. 

( ) ( ){
( )
( )
( )

1
1 1

1
2 2

1
3 3

1
4 4

10 0.000232629 3.5,

0.000232629 0.111059416 0.111292045 1.219685581,

0.000232629 2 0.111059416 0.222351461 0.76427577,

0.000232629 3 0.111059416 0.333410876 0.4

Z N z P

z P

z P

z P

−

−

−

−

= = = Φ = = −

= Φ = + = = −

= Φ = + × = = −

= Φ = + × = = −

( )1
5 5

30514044,

0.000232629 4 0.111059416 0.444470292 0.139644873,z P−= Φ = + × = = −
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1
6 6

1
7 7

1
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1
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0.000232629 5 0.111059416 0.555529708 0.139644873,

0.000232629 6 0.111059416 0.666589124 0.430514044,

0.000232629 7 0.111059416 0.777648539 0.76427577,

0.000232629 8 0

z P

z P

z P

z P

−

−

−

−

= Φ = + × = =

= Φ = + × = =

= Φ = + × = =

= Φ = + ×( )
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10 10

.111059416 0.888707955 1.219685581,

0.000232629 9 0.111059416 0.999767371 3.5 .z P−

= =

= Φ = + × = =

 

From these 57 samples-population, 10,000 bootstrap samples were drawn with 
replacement to calculate the Yule’s skewness coefficient, and under a model of a 
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normal distribution were computed confidence intervals at 90%, 95%, and 99%. 
The instructions for the R program are as follows and the result is shown in Ta-
ble 2. As an example, Figure 3 shows that the fit to normality of the distribution 
of the SkY statistics calculated in 10,000 different random samples drawn from 
the 10-data population-sample is good. Its histogram has the expected symme-
tric, mesokurtic, bell-shaped profile and the coordinate points are aligned at 45 
degrees on the normal Q-Q plot. 

 
x10<-c(−3.5, −1.219685581, −0.76427577, −0.430514044, −0.139644873, 0.139644873, 
0.430514044, 0.76427577, 1.219685581, 3.5) 
m = mean(x10) 
mdn = median(x10) 
s = sd(x10) 
AY = (m-mdn)/s 
cat("Coefficient de Yule = ",AY,"\n") 
length(x10) 
library(boot) 
b<-boot(data = x10, function(x10, i) {(mean(x10[i])-median(x10[i]))/sd(x10[i])}, R = 
10000) 
b 
boot.ci(b, conf = c(0.90, 0.95, 0.99), type = "norm", digits = 4) 
plot(b) 

 

 
Figure 3. Histogram and normal Q-Q plot of SkY statistics in the 10,000 different random 
samples drawn from the sample-population of 10 normally distributed data. 

https://doi.org/10.4236/ojs.2023.133018


J. Moral de la Rubia 
 

 

DOI: 10.4236/ojs.2023.133018 374 Open Journal of Statistics 
 

Table 3. Comparison of the widths of the 90% confidence intervals between Singh et al.’s 
study and the present study. 

n 
Singh et al.’s study [6] Present study 

hP − hY 
LLP ULP LLP/3 ULP/3 hP LLY ULY hY 

25 −0.746 0.75 −0.249 0.250 0.499 −0.242 0.245 0.487 0.011 

50 −0.522 0.506 −0.174 0.169 0.343 −0.167 0.173 0.340 0.003 

75 −0.433 0.427 −0.144 0.142 0.287 −0.141 0.141 0.282 0.005 

100 −0.373 0.365 −0.124 0.122 0.246 −0.121 0.122 0.243 0.003 

Note. n = sample size, LIP and ULP = lower and upper limit of the 90% confidence inter-
val for SkP2 from the study of Singh et al. (2019), hP = LLP/3 − ULP/3, LLY and ULY = lower 
and upper limit of the 90% confidence interval for SkY from the present study hY = LLY − 
ULY. 

 
Returning to the previous example with the sample of 34 data, the value of 

Yule’s skewness coefficient (SkY = 0.2240) falls outside the 90% bootstrap confi-
dence interval (−0.2083, 0.2072) corresponding to 34 data. This confidence in-
terval is obtained by linear interpolation between the 90% bootstrap confidence 
interval (−0.2125, 0.2140) corresponding to 30 data and the 90% bootstrap con-
fidence interval (−0.2072, 0.2055) corresponding to 35 data shown in Table 2. 
Therefore, the skewness coefficient is significantly greater than 0 at the 10% sig-
nificance level, indicating a right-skewed distribution. 

( )( )34 300.2125 0.2072 0.2125 0.2083
35 30

LI −
= − + − − − = −

−
 

( )34 300.2140 0.2055 0.2140 0.2072
35 30

LS −
= + − =

−
 

( )0.2240 0.2083,0.2072 0Y YSk Sk= ∉ − ⇒ >  

If the confidence intervals reported by Singh et al. [6] for the SkP2 statistic 
were divided by three, their estimates could be compared with those of the 
present study for the SkY statistic. Table 3 shows the difference in width for the 
90% bootstrap confidence intervals between the two studies. It is observed that 
they are very similar, although the width is slightly smaller in the present study. 

5. Conclusions 

Interval estimation methods can be classified into three categories [35]: exact 
methods are used when the sampling distribution of the statistic can be deter-
mined; asymptotic methods require large samples and are based on certain theo-
rems, such as the additive or multiplicative Central Limit Theorem; and boot-
strap methods are nonparametric approaches that do not rely on specific as-
sumptions about the population distribution. They are suitable for small sample 
sizes or when population distributions are unknown. The key idea is to resample 
the original data with replacement to create multiple bootstrap samples. Confi-
dence intervals are then estimated from the distribution of statistics calculated 
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from these samples. Bootstrap methods allow more flexibility, but require more 
computational power. They are often used in situations where other methods 
may be unreliable or when assessing the stability and variability of the estimates. 
The latter two methods have been seen in this article for estimating the SkY sta-
tistic, but the study is based on the latter. It ensures that bootstrap confidence 
intervals are centered at 0 and serve as an interpretive guide to symmetry, as 
each bootstrap sample is generated from a strictly symmetric sample-population 
with a characteristically normal range (−3.5 to 3.5), which may be the most in-
novative aspect of the work. 

There are many types of continuous distributions. One subtype is symmetric; 
within these, another subtype is unimodal with its axis of symmetry at the mode 
or peak. A specific case of this last subtype is the family of normal distributions, 
which is characterized not only by symmetry, but also by mesokurtosis or mean 
tails [36]. From the computed bootstrap confidence intervals, it can be seen that 
the ∓0.1 rule as an interval for null skewness (SkY = 0) applies for samples of at 
least 150 data with a significance level of 10% and at least 220 data with a signi-
ficance level of 5%. With a sample size as small as 10, the confidence interval at 
90% is (−0.355, 0.362) and at 95% is (−0.424, 0.431), and the interval at 95% is 
less than ∓0.05 with a large sample of 1000. It is important to remark that these 
intervals complemented by the histogram allow us to assess whether the data are 
symmetrical compared to a normal distribution. They can be extended by linear 
interpolation for intermediate sizes or better run the confidence interval calcula-
tion using bootstrap sampling with the R program, which is a freely available 
program that has been developed by the mathematical community since 1997 
[37]. This program is available for online calculations at https://rdrr.io/snippets 
or can be downloaded for installation on a personal computer at  
https://cran.r-project.org. It should also be noted that, with the samples-popula- 
tion generated with data n normally distributed and range −3 to 3, all bootstrap 
confidence intervals of the SkY are perfectly centered at 0, and the estimation ef-
ficiency seems to be slightly better than without this constraint. 

The Yule’s coefficient is very simple to calculate and applies to any type of 
quantitative data, with which normality can be assessed. In addition, it is a clear 
measure of asymmetry to interpret in relation to the proximity to normality or 
deviation from normality by asymmetry. We speak of quantitative data and not 
of any type of distribution, since there is the case of the Cauchy’s distribution 
which is symmetrical, but with very heavy tails and without finite moments, that 
is, without arithmetic mean and moments of higher order. For this distribution, 
which is clearly far from normality, the Yule’s skewness coefficient is inadequate, 
and the interquartile coefficient would be the alternative. With ordinal data, if 
they are assumed to be points of a continuous bipolar distribution, as is done in 
the polychoric correlation, especially if they have a wide range, this assessment 
of normality would also be possible [38]. With qualitative data, another approach 
is applied to assess skewness and kurtosis [17]. 
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