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Abstract 
Regression models for survival time data involve estimation of the hazard rate 
as a function of predictor variables and associated slope parameters. An adap-
tive approach is formulated for such hazard regression modeling. The hazard 
rate is modeled using fractional polynomials, that is, linear combinations of 
products of power transforms of time together with other available predic-
tors. These fractional polynomial models are restricted to generating posi-
tive-valued hazard rates and decreasing survival times. Exponentially distri-
buted survival times are a special case. Parameters are estimated using maxi-
mum likelihood estimation allowing for right censored survival times. Models 
are evaluated and compared using likelihood cross-validation (LCV) scores. 
LCV scores and tolerance parameters are used to control an adaptive search 
through alternative fractional polynomial hazard rate models to identify ef-
fective models for the underlying survival time data. These methods are dem-
onstrated using two different survival time data sets including survival times 
for lung cancer patients and for multiple myeloma patients. For the lung cancer 
data, the hazard rate depends distinctly on time. However, controlling for cell 
type provides a distinct improvement while the hazard rate depends only on 
cell type and no longer on time. Furthermore, Cox regression is unable to 
identify a cell type effect. For the multiple myeloma data, the hazard rate also 
depends distinctly on time. Moreover, consideration of hemoglobin at diag-
nosis provides a distinct improvement, the hazard rate still depends distinctly 
on time, and hemoglobin distinctly moderates the effect of time on the hazard 
rate. These results indicate that adaptive hazard rate modeling can provide 
unique insights into survival time data. 
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1. Introduction 

Cox regression, also called proportional hazard regression, is the commonly 
used approach for modeling survival time or time-to-event data [1]. The hazard 
function is assumed to equal a product of an unspecified function of time and 
the exponent of a linear function of available predictors with estimation ad-
dressing only the slope parameters for the predictors while ignoring the under-
lying dependence of the hazard function on time. An important extension would 
be an approach that estimates the dependence on time as well as on the predic-
tors. Kooperberg, Stone, and Truong [2] provide such an extension that genera-
lizes standard proportional hazard regression by using splines to estimate the 
dependence on time. More recently, Qian and Peng [3] have proposed using 
quantile regression as an alternative for survival time modeling while Bouaziz 
and Nuel [4] have proposed the use of models based on piecewise constant ha-
zard rates. See [5] for an overview of hazard rate modeling.  

The objectives of this article are to formulate an adaptive approach for hazard 
regression modeling based on fractional polynomials [6] [7] and then to demon-
strate this approach using two survival time data sets, one for lung cancer pa-
tients and one for multiple myeloma patients. This is a novel, original approach 
accounting for the dependence of the hazard rate on time while allowing for 
non-proportionality of the hazard rate as well as for nonlinearity in time and in 
other available predictors. 

2. Methods 
2.1. Survival Times 

Let 0T >  denote a continuous random survival time variable with conditional 
cumulative distribution function ( ) ( ); |F t z P T t= ≤ =Z z  for time values 

0t >  where Z  is a random 1r ×  vector with vector value z  consisting of 
predictor variables iZ  with values iz  for 1 i r≤ ≤ . T has conditional density 
function  

( ) ( )d ;
; ,

d
F t

f t
t

=
z

z  

conditional survival function  

( ) ( ) ( ); 1 ; | ,S t F t P T t= − = > =z z Z z  

and conditional hazard function 
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Integration gives 

( ) ( ) ( )( )0
; ; d log ;

t
t w w S tλΛ = ⋅ = −∫z z z  

so that ( ) ( )( ); exp ;S t t= −Λz z  and ( ) ( ) ( )( ); ; exp ;f t t tλ= ⋅ −Λz z z . The expo-
nential distribution generates the special case with the hazard function constant 
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in time t so that ( ) ( );tλ λ=z z  and ( ) ( )( ); expS t tλ= − ⋅z z .  

2.2. Fractional Polynomial Hazard Rate Modeling 

Let u be a primary predictor and q a real-valued power. As in [7], define the as-
sociated general power transform ( );g u q  as 

( )
( )cos , 0

; 0, 0
, 0

q

q

q u u
g u q u

u u

 π ⋅ ⋅ <


= =
 >

 

where π is the usual constant. Note that when u t= , only the case 0u >  can 
hold. Predictors iz , for 1 i r≤ ≤ , are typically nonnegative, and so assume this 
holds so that the case 0u <  is not needed and ( );g u q  is always nonnegative. 
Indicator predictors u with values 0 or 1 are untransformed (i.e., 1q = ).  

Let the hazard function ( );tλ z  be a general fractional polynomial in the 
primary predictors t and the coordinates iz  of z , that is, a linear combination 
of products of power transforms of those primary predictors. Specifically, let 
( );tx z  be a 1p×  vector of power transforms ( ) ( ); ;j j jx t g u q=z  for  

1 j p≤ ≤  where ju  is either t, iz  for 1 i r≤ ≤ , or a geometric combination, 
that is, a product of power transforms of some subset of t and iz  for 1 i r≤ ≤ . 
Note that geometric combinations generalize standard interactions and so pro-
vide for a nonlinear assessment of the concept of moderation [8]. 

The fractional polynomial hazard rate is defined as  

( ) ( )T; ;t tλ = ⋅z x z β  

where Tx  denotes the transpose of x  while β  is a 1p×  vector of slope 
parameters jβ  for 1 j p≤ ≤ . An intercept parameter can be included in the 
model using the unit transform as a primary predictor. This definition requires 
that ( );tλ z  be constrained to take on positive values as addressed later. This 
restriction could be resolved by modeling instead the natural log of ( );tλ z  as a 
linear function in β  (as in [2] and [9]), but then the integral ( );tΛ z  cannot 
always be expressed in closed form. The advantage of the above definition is that 
power transforms ( );j jg u q  are simply integrated with respect to t, which can 
also speed up computation of estimates for the parameter vector β . The possi-
ble forms for ( );jx t z  are a power transform of t including the unit transform 
( );0 1g t ≡ , a power transform of iz  for 1 i r≤ ≤ , a power-transformed geo-

metric combination in t together with one or more iz  for 1 i r≤ ≤ , and a 
power-transformed geometric combination in two or more iz  for 1 i r≤ ≤  
not including t. Consequently, ( );jx t z  can be expressed as the product of a 
function of t and a function of z , that is, 

( ) ( ) ( ) ( ) ( ),1 ,2 ,2; ;j j j j jx t x t x g t q x= ⋅ = ⋅z z z  

where ( ),2jx z  is either the unit transform or depends on some subset of iz  
for 1 i r≤ ≤  but not on t. When for all j 0jq = , none of the ( ) ( );j jx t x=z z  
depend on t, and so the fractional polynomial model is the same as the model 
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generated by the exponential distribution with ( ) ( ) ( )T;tλ λ= = ⋅z z x z β . Also, 
( ),2jx z  equals the unit transform when ( ) ( ),1;j jx t x t=z  depends only on t. 

The power jq  is either the power for a single power transform of t or equals a 
product of a power q′  of t combined with a second power q′′  transforming a 
geometric combination containing the power q′  of t. In general, ( ),2jx z  can 
contain power transforms of iz  for 1 i r≤ ≤ . 

Integration gives 

( ) ( )T; ;t tΛ = ⋅z h z β  

where ( );th z  is the 1p×  vector with entries  

( ) ( ) ( )( ) ( ),20 0
; ; d ; d .j j j j

t t
h t x w w g w q w x= ⋅ = ⋅ ⋅∫ ∫z z z  

Assume that 1jq > − , so that 

( ) ( ) ( ),2

; 1
;
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j j
j

g t q
h t x

q
+

= ⋅
+

z z  

with 
( ); 1

1
j

j

g t q
q

+

+
 a positive function of time t. The second term ( ),2jx z  is  

nonnegative, but not identically 0, for example, when z  consists of a single in-
dicator predictor z. By definition, ( );S t z  is a decreasing function of t for each 
unique possible value of the vector z , and so ( )Λ ;t z  must be an increasing 
function of t for functions of z  determined by the fractional polynomial mod-
el. 

Let { }:1J j j p= ≤ ≤ , { }1 :1 , 0jJ j j p q= ≤ ≤ ≠ , and 2 1\J J J= . Partition 
( );tx z  into ( )1 ;tx z  with entries ( );jx t z  for 1j J∈  and associated slope 

parameter vector 1β  as well as ( )2x z  with entries ( )jx z  for 2j J∈  de-
pending only on z  and not on t with associated slope parameter vector 2β . 
The hazard function ( );tλ z  then satisfies 

( ) ( ) ( ) ( )T T T
1 1 2 2; ; ;t t tλ = ⋅ = ⋅ + ⋅z x z x z x zβ β β  

so that 

( ) ( ) ( ) ( )
1 2,2 ,2; ; .j j j j jj J j Jt g t q x xλ β β

∈ ∈
= ⋅ ⋅ + ⋅∑ ∑z z z  

Assume for now that 2J  is empty. For models based on a single transform of t,  

( ) ( ) ( )1 1; ;t t g t qλ λ β= = ⋅z  

can be guaranteed to be positive by restricting the associated slope 1β  to be 
positive-valued. For models based on multiple transforms of t but not on z , 

( ) ( ) ( )
1

; ; j jj Jt t g t qλ λ β
∈

= = ⋅∑z  

can generate complicated integrals ( ) ( );t tΛ = Λz  that are not increasing in t in 
general. Restricting all the associated slopes jβ  for 1j J∈  to be positive-valued 
is a straight forward way to guarantee that ( )tΛ  is increasing in t. More gener-
al models with  
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( ) ( )
1 ,2; j j jj J g t q x β

∈
⋅ ⋅∑ z  

generate integrals ( );tΛ z  that need to be increasing in each unique choice for 
the terms ( ),2jx z . This can be guaranteed in a straight forward way once again 
by restricting all the associated slopes jβ  for 1j J∈  to be positive-valued. 

On the other hand, when 2J  is nonempty, the assumption of all positive- 
valued slope parameters would be too restrictive. For example, consider a model 
based on two primary predictors: t and an indicator variable z for membership 
in one of two groups of study participants with additive effects to t and z. The 
term  

( ) ( )T T
1 1 1 1;t t⋅ = ⋅x z xβ β  

models the dependence of the hazard function on t in terms of 1p −  parame-
ters while ( )T

2 2 pz β⋅ = ⋅x z β  provides for a shift in the hazard function for the 
group coded as a 1 compared to the hazard function for the group coded as a 0. 
In general, this shift can be in the negative or the positive direction, and so the 
slope of 2β  needs to be allowed to be negative. However, this means that  

( )T ;t ⋅x z β  and ( )T ;t ⋅h z β  can sometimes take on negative or zero values. 
See Section 2.3 for how to handle such cases. 

Hazard ratios are naturally generated for Cox regression models based on 
proportional hazard rates. Hazard ratios are not needed to assess a fractional 
polynomial model but can be generated if desired. For example, consider the 
simple fractional polynomial model ( );t zλ  based on time t and a single indi-
cator z for one of two groups. The associated hazard ratio is given by  
( ) ( );1 ;0t tλ λ , that is, the hazard rate for 1z =  divided by the hazard rate for 

0z = . Note that in general this is a function of time t.  

2.3. Maximum Likelihood Estimation 

Observed survival times can be of two types: an actual survival time or a right 
censored survival time with the actual survival time only known to be larger 
than the observed right censored time. Thus, the observations have the form 

{ }, ,s s s sO t c= z  for { }:1s S s s n∈ = ≤ ≤  where 0st >  is a time value, sc  is an 
indicator for whether st  is right censored (i.e., 1sc = ) or an actual, uncensored 
survival time (i.e., 0sc = ), and sz  is a possibly trivial 1r ×  predictor vector 
with values ,s iz  for 1 i r≤ ≤ . Note that all observations can be uncensored, but 
not all observations should be censored. 

Let ( );s stx z  be the associated observed vectors determined by some frac-
tional polynomial model. For each s S∈ , the likelihood term ( );sL O β  for 
observation sO  satisfies 

( ) ( )
( )

; , 0
;

; , 1
s s s

s
s s s

f t c
L O

S t c
 ==  =

z
z

β  

so that the associated log-likelihood term satisfies 

( ) ( )( ) ( ) ( )( ) ( ); log ; 1 log ; ; .s s s s s s sO L O c t tλ= = − ⋅ − Λz z� β β  
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The likelihood ( );L S β  equals the product over s S∈  of the likelihood terms 
( );sL O β  with associated log-likelihood  

( ) ( )( ) ( ); log ; ; .ss SS L S O
∈

= =∑� �β β β  

The maximum likelihood estimate ( )Sβ  of β  maximizes the log-likelihood 
( );S� β  over β , which is achieved by solving the estimating equations 

( );
0.

S∂
=

∂
� β

β
 

For simplicity of notation, parameter estimates ( )Sβ  are denoted as functions 
of the index set S for the observed data used in their computation without hat (^) 
symbols. 

The gradient vector has entries satisfying  

( ) ( ) ( ) ( )
( ) ( )T

;;;
1 ;

;
j s ss

s j s ss S s S
j j s s

x tOS
c h t

tβ β∈ ∈

 ∂∂
= = − ⋅ −  ∂ ∂ ⋅ 
∑ ∑

z
z

x z
�� ββ

β
 

for j J∈ . The Hessian matrix has entries satisfying 

( ) ( ) ( ) ( ) ( )
( )( )

22

2T'

; ;;;
1

;
j s s j s ss

ss S s S
j j j j s s

x t x tOS
c

tβ β β β
′

∈ ∈
′

 ⋅∂∂  = = − − ⋅ ∂ ∂ ∂ ∂  ⋅ 
∑ ∑

�� z z

x z

ββ

β
 

for ,j j J′∈ . The gradient vector and Hessian matrix can be used in a New-
ton-Raphson algorithm to compute the maximum likelihood estimate ( )Sβ .  

When ( )T ; 0s st ⋅ ≤x z β  or ( )T ; 0s st ⋅ ≤h z β  for some s, set ( );s stλ δ=z  for 
some small positive value δ like 0.00001. Also, set ( )Λ ;s st tδ= ⋅z . However, leave 
the gradient vector and Hessian matrix unchanged so that maximum likelihood 
estimation uses actual derivatives with respect to the parameter vector β . 

The estimated covariance matrix for the parameter estimate vector ( )Sβ   

equals the matrix with entries 
( )( ) 12 ;

j j

S S
β β

−

′

 ∂
− 
 ∂ ∂ 

� β
. Variances for the model  

parameters are given by the diagonal entries of this covariance matrix. These can 
be used to compute z tests for zero individual model parameters for assessing 
specific theoretically important models. However, tests for parameters of adap-
tively generated models are typically significant as a consequence of the adaptive 
modeling process (as summarized in Section 2.5). Consequently, results for such 
tests are not reported for models generated in example analyses. 

Models based on a single transform with 1p =  can be computed directly. In 
these cases, ( )1β=β  and the gradient is a scalar value satisfying 

( ) ( )1
1 1

; 1 ;s
s ss S

S c h t
β β∈

∂  −
= − ∂  
∑ z

� β
 

so that 

( ) ( )1
1

.
;

ss S

s ss S

n c
S

h t
β ∈

∈

−
= ∑
∑ z

 

https://doi.org/10.4236/ojs.2023.133016


G. J. Knafl 
 

 

DOI: 10.4236/ojs.2023.133016 306 Open Journal of Statistics 
 

2.4. Likelihood Cross-Validation 

Partition the index set S into 1k >  disjoint sets ( )S h , called folds, for  
{ }:1h H h h k∈ = ≤ ≤ . The LCV score for a given model is defined as 

( ) ( )( )( )( )1LCV ; \ .
n

h H L S h S S h
∈

=∏ β  

In other words, evaluate the likelihood for each fold ( )S h  using the parameter 
vector ( )( )\S S hβ  computed by maximizing the likelihood for the comple-
ment ( )\S S h  of the fold, normalize it by the sample size n, and multiply these 
normalized deleted fold likelihoods together to get the LCV score.  

When one or more slopes 0jβ ≤  for some 1j J∈  are generated as part of 
the estimation computations, reset ( );S = −∆� β  for some large value ∆  such 
as 700 unless ( );S� β  is already smaller than −∆ . For a model with parameter 
vector estimate ( )Sβ  having one or more slopes ( ) 0j Sβ ≤  for some 1j J∈ , 
reset the LCV score to a very small value δ ′  such as 10−12. These adjustments 
guarantee that the adaptive modeling process of Section 2.5 generates models 
with acceptable parameter vector estimates ( )Sβ .  

A larger LCV score indicates a better model, but not necessarily a distinctly 
(substantially, significantly) better model. A 2χ -based LCV ratio test, analog-
ous to a likelihood ratio test, can be used to decide if there is a distinct im-
provement or not in the LCV score. Following [7], these tests are expressed in 
terms of the percent decrease (PD) in the LCV score for the model with the 
smaller score compared to the model with the larger score and a cutoff for a dis-
tinct PD, changing with the sample size. A PD larger than the cutoff indicates 
that the model with the larger score distinctly (substantially, significantly) im-
proves on the model with the smaller score. Otherwise, the model with the 
smaller score is a competitive alternative and, if also simpler, it is a parsimonious, 
competitive alternative and so a preferable choice. Examples of LCV ratio tests 
are provided in Section 3. 

2.5. Adaptive Model Selection 

An effective choice of a fractional polynomial hazard rate model based on a sub-
set of the primary predictors t and the coordinates of z , is identified adaptively 
using a heuristic search process controlled by tolerance parameters indicating 
how much of a change in the LCV score is allowable at each stage of the process. 
Starting from a base hazard rate model, which is usually the constant model, 
power transforms and also geometric combinations if requested are systemati-
cally added to the model. Then, the expanded model is contracted, removing 
extraneous transforms if any and adjusting the powers of the remaining trans-
forms. LCV ratio tests are used to decide whether to stop the contraction or con-
tinue removing transforms. Only a brief overview of the adaptive modeling 
process is provided here; details are provided in [10]. Adaptive modeling applies 
to both independent and correlated outcomes in a variety of regression contexts 
such as linear regression [7], logistic regression [11], Poisson regression [12] 
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[13], and discrete regression [14]. 
Power transforms of general time variables T can cause computational prob-

lems for the adaptive modeling process when some time values are large. For this 
reason, fractional polynomial hazard rate models are computed using the nor-
malized survival time variable T ′  with observed values *

s st t t′ =  where  

{ }* max : .st t s S= ∈  

This generates estimates ( );tλ′ ′ z  and ( );S t′ ′ z  of the hazard rate and survival 
function, respectively. Then, define the estimated hazard rate and survival func-
tion for the original survival time variable T as  

( ) ( )*; ;t t tλ λ′=z z  and ( ) ( )*; ;S t S t t′=z z  

for any t and z . This adjustment guarantees that power transforms are com-
puted using bounded time values within the interval (0, 1]. It is not needed when 

* 1t ≤  to start with, but that is unlikely to hold. 

2.6. Modeling Constraints 

A variety of constraints are needed so that a fractional polynomial provides an 
appropriate hazard rate model. Specifically, predictors iz  for 1 i r≤ ≤  are re-
stricted to be nonnegative. Power transforms ( );g t q  have powers restricted to 
satisfy 1q > − . Estimates of hazard rates ( );tλ z  and their integrals ( );tΛ z  
are adjusted to be positive-valued (as addressed in Section 2.3). Slope parameters 

jβ  for 1j J∈  corresponding to predictors depending on time t are restricted 
to be positive-valued (as addressed in Section 2.4). Also, fractional polynomial 
hazard rate models are computed using the normalized survival times (as ad-
dressed in Section 2.5). 

3. Example Analyses 

Example analyses are presented in this section demonstrating the use and appli-
cability of adaptive hazard regression modeling based on factional polynomials. 
Two survival time data sets are used in these analyses including survival times 
for lung cancer patients in Section 3.1 and for multiple myeloma patients in Sec-
tion 3.2. 

All analyses are conducted using SAS® Version 9.4. A SAS macro for con-
ducting adaptive modeling in a variety of regression contexts including hazard 
regression is available on request from the author. 

3.1. Example Analyses of Survival Times for Lung Cancer Patients 

Data are provided in [15] consisting of 137n =  survival times for lung cancer 
patients, ranging from 1 to 999 days with 6 (6.6%) right censored. The two larg-
est survival times of 991 and 999 days are much larger than the next largest sur-
vival time of 587 days and so have the potential for being highly influential. Note 
that since * 999t =  is of the order of 103, even moderate-sized powers can gen-
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erate very large transformed time values. For example, the power 4q =  gene-
rates some transformed time values of the order of 1012, indicating the need for 
analyzing normalized time values. There are several available predictors other 
than time, but the example analyses only address cancer cell type with 27 
(19.7%), 27 (19.7%), 48 (35.0%), and 35 (25.6%) patients having adeno, large, 
small, and squamous cell types, respectively. 

The cutoff for a distinct percent decrease (PD) in the LCV score for data with 
137n =  observations is 1.39%. All analyses use 5k =  folds with fold sizes 

ranging from 19 (13.9%) to 32 (23.4%) patients so that both fold sizes and fold 
complement sizes are not proportionately sparse. 

The adaptively generated hazard rate model in time alone is based on the sin-
gle time transform 0.16t −′  without an intercept and with LCV score 2.68420. In 
contrast, the constant hazard rate model has LCV score 2.61568 with distinct PD 
2.55% (i.e., greater than the cutoff of 1.39% for a distinct PD). Consequently, the 
hazard rate is distinctly nonconstant in time. Figure 1 provides the plot for the 
estimated hazard rate as a function of time. The hazard rate decreases nonli-
nearly from 15.1 at 1 day to 5.0 at 999 days. 

The impact of cell type on the hazard rate is assessed using the adaptive model 
based on time, indicators for each of the four cell types, and geometric combina-
tions in these five primary predictors. The generated model is based on indica-
tors for having the squamous and large cell types with an intercept and no 
transforms of time. The LCV score is 2.92430. In contrast, the LCV score of 
2.68420 for the model based on time alone generates a distinct PD of 8.21%. 
Consequently, consideration of cell type provides a distinct improvement. 

Furthermore, the hazard rate is reasonably considered to no longer depend on 
 

 
Figure 1. The estimated hazard rate as a function of time for lung cancer patients. 
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time after controlling for cell type and so supports the use of the exponential 
distribution for modeling lung cancer survival times. Under the cell type model, 
the estimated hazard rate is 13.7 for patients with adeno or small cell types, de-
creases to 5.8 for patients with large cell type, and then decreases further to 4.4 
for patients with squamous cell type. Figure 2 provides the plot of the estimated 
survival probability as a function of time. The estimated probability of survival 
decreases over time with the value at any given time smallest (worst) for patients 
with adeno or small cell type, larger for patient with large cell type, and largest 
for patients with squamous cell type. 

The standard Cox regression model for survival as a one-way analysis of va-
riance factor based on cell type has non-significant F test with 0.57p = . Under 
the reduced model based on effects to large and squamous cell types as generated 
adaptively, both effects are nonsignificant ( 0.17p =  for large and 0.71p =  for 
squamous cell types). These results indicate that Cox regression can in some 
cases be unable to identify effects on survival identifiable with adaptive hazard 
regression modeling and in this case using the special case based on the expo-
nential distribution. 

3.2. Example Analyses of Survival Times for Multiple Myeloma  
Patients 

Data are provided in [16] of 65n =  survival times for multiple myeloma pa-
tients, ranging from 1.25 to 92 days with 17 (26.2%) right censored. There are 
several available predictors other than time, but the example analyses only ad-
dress hemoglobin at diagnosis. Hemoglobin values range from 4.9 to 14.6 g/dL. 

 

 
Figure 2. The estimated probability of survival as a function of time by cell type for lung 
cancer patients. 
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The cutoff for a distinct percent decrease (PD) in the LCV score for data with 
65n =  observations is 2.91%. All analyses use 5k =  folds with fold sizes 

ranging from 8 (12.3%) to 16 (24.6%) patients so that both fold sizes and fold 
complement sizes are not proportionately sparse. 

The adaptively generated hazard rate model in time alone is based on the sin-
gle time transform 26t′  with an intercept and with LCV score 1.07551. In con-
trast, the constant hazard rate model has LCV score 1.02430 with distinct PD 
4.76% (i.e., greater than the cutoff of 2.91% for a distinct PD). Consequently, the 
hazard rate is distinctly nonconstant in time. Figure 3 provides the plot for the 
estimated hazard rate as a function of time. The hazard rate is essentially con-
stant at 2.7 for 1.25 to 67 days and then increases very quickly to 44.2 at 92 days. 

The adaptively generated model additive in time and hemoglobin (i.e., not 
considering geometric combinations) is based on 26t′  and hemoglobin−0.9 with-
out an intercept. The LCV score is 1.11557. In contrast, the LCV score of 1.07551 
for the time alone model generates a distinct PD 3.59%. Consequently, consider-
ation of hemoglobin provides a distinct improvement. Furthermore, the adap-
tively generated model in time, hemoglobin, and geometric combinations is based 
on hemoglobin−0.9 and  

( )3.426 3 88.4 10.2hemoglobin hemoglobint t′ ⋅ = ⋅  

without an intercept. The LCV score is 1.14286. In contrast, the LCV score for 
the additive model generates a distinct PD 2.39%. Consequently, hemoglobin 
distinctly moderates (or modifies) the effect of time on the hazard rate. 

Interpretation of the model based on hemoglobin can be complicated. A more 
readily interpretable adaptive model is the one with the continuous hemoglobin 
predictor replaced by the ordinal hemoglobin quintile predictor (with values 1 - 5 
 

 
Figure 3. The estimated hazard rate as a function of time for multiple myeloma patients. 
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corresponding to consecutive quintiles). The adaptively generated moderation 
model using hemoglobin quintile (HG_quintile) instead of hemoglobin is based 
on HG_quintile2.5,  

( )3.226 7 83.2 22.4HG_quintile HG_quintile ,t t− −′ ⋅ = ⋅  

( )611 66 6HG_quintile HG_quintile ,t t′ ⋅ = ⋅  

and an intercept. The LCV score is 1.21511. In contrast, the LCV score of 
1.14286 for the moderation model in unadjusted hemoglobin generates a distinct 
PD 5.95%. Consequently, consideration of hemoglobin quintiles not only pro-
vides a more interpretable model but also provides a distinct improvement.  

Table 1 contains ranges for exact quintiles, each consisting of 13 (20%) pa-
tients, as well as estimated hazard rates within these quintiles. For larger quin-
tiles, the estimated hazard rate is a decreasing value, constant in time except for 
the largest time value in four of the five quintiles (all but quintile 2). Figure 4 
contains the plot of the survival function by quintile. The estimated probability 
of survival decreases over time with the value at any given time increasing (bet-
ter) for patients within quintiles 1 - 5, but more so for quintiles 4 - 5.  

Figure 5 contains the plot of the hazard ratio for quintile 5 compared to quin-
tile 1 as a function of time. The hazard ratio is constant at 0.31 up to about day 
58 then decreases quickly to 0 by about day 68 and stays there to day 92. However, 
patients in quintile 1 have observed survival times of at most 66 days (Table 1), 
and so hazard rates based on quintile 1 after that day and associated hazard ra-
tios may be of questionable value. 
 

 
Figure 4. The estimated probability of survival as a function of time by quintiles 1 - 5 for 
hemoglobin at diagnosis for multiple myeloma patients. 
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Table 1. Estimated hazard rates over time by hemoglobin quintiles for multiple myeloma 
patients. 

HG quinitile1 HG range (g/dL) Time (days) Hazard rate Time (days) Hazard rate 

1 4.9 - 7.5 2 - 41 3.9 66 137.5 

2 7.7 - 9.9 1.25 - 54 3.7   

3 10.0 - 10.8 4 - 52 3.2 88 72.1 

4 11.0 - 12.4 1.25 - 58 2.4 92 96.8 

5 12.5 - 14.6 11 - 77 1.2 89 39.7 

HG-hemoglobin; 1All quintiles contain exactly 13 (20%) of the 65 patients. 
 

 
Figure 5. The estimated hazard ratio as a function of time for the fifth quintile of he-
moglobin at diagnosis compared to the first quintile for multiple myeloma patients. 

4. Discussion 

An adaptive approach is formulated for hazard regression modeling. Hazard 
rates are based on fractional polynomials, that is, linear combinations of prod-
ucts of powers of time and other available predictors. Models are restricted so 
that hazard rate estimates are positive-valued and so that estimated survival func-
tions are decreasing in time for appropriate functions of the non-time predictors. 
Models are estimated using maximum likelihood estimation accounting for the 
possibility of right censored survival times.  

Models are compared and evaluated using k-fold likelihood cross-validation 
(LCV) scores, that is, normalized products of deleted likelihoods for k subsets of 
the data, called folds, computed using parameters estimated using the comple-
ments of those folds. Larger LCV scores indicate better models, but not neces-
sarily distinctly better models. Distinct differences in LCV scores are assessed 
using LCV ratio tests generalizing standard likelihood ratio tests expressed in 
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terms of a cutoff for a distinct percent decrease in the LCV score.  
Effective models of a specific type (e.g., time alone, additive, or moderation) 

for analyzing a given survival time data set are generated using adaptive searches 
through alternate models of that specific type. The search first expands the mod-
el in terms of power transforms of time and other available predictors. The ex-
pansion can optionally generate geometric combinations of available predictors, 
that is, products of powers of multiple predictors generalizing standard interac-
tions and providing for a nonlinear extension to standard linear moderation. 
The expanded model is then contracted by removing extraneous transforms and 
adjusting the powers for the remaining transforms to improve the LCV score. 
An LCV ratio test is used to decide whether to stop the contraction. This guar-
antees that the generated model is effective in the sense that the removal of each 
of its transforms generates a distinct percent decrease in the LCV score. 

Adaptive hazard rate modeling using fractional polynomials is demonstrated 
using two different survival time data sets. The first data set consists of survival 
times for patients with lung cancer of differing cell types (adeno, large, small, or 
squamous). The second data set consists of survival times for multiple myeloma 
patients with varying values for hemoglobin at diagnosis.  

For the lung cancer patients, the hazard rate depends distinctly nonlinearly on 
time (Figure 1). However, cell type provides a distinct improvement. The hazard 
rate no longer depends on time after accounting for cell type and so supports the 
use of the exponentially distributed survival times for lung cancer patients. The 
estimated hazard rate is a decreasing constant for patients having lung cancer 
with the following three sets of cell types: adeno or small, large, and squamous. 
The associated estimated survival function decreases over time but more slowly 
as cell type changes from adeno or small to large and then to squamous (Figure 
2). Moreover, Cox regression is unable to identify a cell type effect.  

For the multiple myeloma data, the hazard rate also depends distinctly on time 
(Figure 3). Consideration of hemoglobin at diagnosis provides a distinct im-
provement with the hazard rate still depending distinctly on time so that the ex-
ponential distribution is not an appropriate choice for modeling these data. Fur-
thermore, hemoglobin at diagnosis distinctly moderates the effect of time on the 
hazard rate so that an assumption of proportional hazards is not applicable for 
these data. Consideration of quintiles for hemoglobin at diagnosis provides for a 
readily interpretable effect of hemoglobin on the hazard rate (Table 1) and on 
the associated survival function (Figure 4). While the hazard ratio need not be 
considered to understand adaptive hazard regression models, it can be generated 
if desired and can be a function of time. For example, Figure 5 displays the ha-
zard ratio for the fifth hemoglobin quintile versus the first quintile as a function 
of time. 

Adaptive hazard rate modeling is not restricted to proportional hazard rates as 
for Cox regression. It also accounts for the dependence of the hazard rate on 
time. In contrast to the approach of [2], the dependence on time is based on 
fractional polynomials rather than on splines and so generates smoother nonli-
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near curves. Moreover, it models the hazard rate directly rather than modeling 
the log of the hazard rate so that the integral of the hazard rate can be computed 
in closed form resulting in reduced times to compute parameter estimates. In 
contrast to [3], it addresses the full distribution of survival times as opposed to 
selected quantiles. In contrast to [4], hazard rate models based on fractional po-
lynomials are more extensive than models based on piecewise constant hazard 
rates. Also, consideration of geometric combinations accounts for varying depen-
dence of the hazard rate on time for differing sets of predictor values. 

In summary, adaptive hazard regression modeling has been formulated to ge-
neralize exponential distribution modeling to account for nonlinearity of the 
hazard rate as well as additive and moderation effects due to other available pre-
dictors. It has also been demonstrated using analyses of survival times for lung 
cancer patients and for multiple myeloma patients. Results of these analyses in-
dicate that adaptive hazard rate modeling can provide unique insights into sur-
vival time data. For example, it is possible to assess whether there is a distinct 
dependence of the hazard rate on time (as held for both the lung cancer data and 
the multiple myeloma data), whether consideration of another available predic-
tor can provide distinct additive effects (as for lung cancer cell types), and whether 
another available predictor can moderate the effect of time on the hazard rate (as 
for hemoglobin at diagnosis for multiple myeloma patients). However, adaptive 
hazard rate modeling is limited to modeling independent times to the occur-
rence of a single event, for example, times to death. Future research is needed to 
address modeling of correlated times to recurrent events, for example, times to 
multiple hospitalizations for cancer patients. An extension is also needed to ad-
dress discrete survival times. 
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