
Open Journal of Statistics, 2023, 13, 285-299 
https://www.scirp.org/journal/ojs 

ISSN Online: 2161-7198 
ISSN Print: 2161-718X 

 

DOI: 10.4236/ojs.2023.133015  Jun. 16, 2023 285 Open Journal of Statistics 
 

 
 
 

Empirical Bayesian Approach to Testing 
Homogeneity of Several Means of Inflated 
Poisson Distributions (IPD) 

Mohamed M. Shoukri1*, Maha Aleid2 

1Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario,  
London, Canada 
2Knowledge Translation Department, Saudi National Institute of Health, Riyadh, Saudi Arabia 

 
 
 

Abstract 
Objectives: We introduce a special form of the Generalized Poisson Distribu-
tion. The distribution has one parameter, yet it has a variance that is larger 
than the mean a phenomenon known as “over dispersion”. We discuss poten-
tial applications of the distribution as a model of counts, and under the as-
sumption of independence we will perform statistical inference on the ratio of 
two means, with generalization to testing the homogeneity of several means. 
Methods: Bayesian methods depend on the choice of the prior distributions 
of the population parameters. In this paper, we describe a Bayesian approach 
for estimation and inference on the parameters of several independent Inflated 
Poisson (IPD) distributions with two possible priors, the first is the reciprocal 
of the square root of the Poisson parameter and the other is a conjugate Gam-
ma prior. The parameters of Gamma distribution are estimated in the empir-
ical Bayesian framework using the maximum likelihood (ML) solution using 
nonlinear mixed model (NLMIXED) in SAS. With these priors we construct 
the highest posterior confidence intervals on the ratio of two IPD parameters 
and test the homogeneity of several populations. Results: We encountered 
convergence problem in estimating the hyperparameters of the posterior dis-
tribution using the NLMIXED. However, direct maximization of the predic-
tive density produced solutions to the maximum likelihood equations. We 
apply the methodologies to RNA-SEQ read count data of gene expression 
values. 
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Transformation, RNA_SEQ Read Counts Data 

 

1. Introduction 

Bayesian methods are becoming a popular technique for estimating model pa-
rameters and hypothesis testing. Under certain conditions choosing the correct 
prior distribution is a critical step in Bayesian modeling. The traditional Baye-
sian approach assumes that all prior distribution parameters are known. Know-
ledge of these parameters may be based on observed data in similar studies with 
similar objectives. If such data are unavailable, a non-informative prior distribu-
tion may be used [1]. As a result, choosing an appropriate prior distribution is 
important. It is known that the Gamma distribution is used for the Poisson fam-
ily of distributions. This distribution is considered conjugate in the sense that 
the posterior probability belongs to the class of Gamma distributions. Similarly, 
we shall employ the Gamma distribution as an alternative prior for the IPD pa-
rameter. 

The method of maximum likelihood estimation of unknown prior distribution 
parameters can be used and in most situations, we need numerical algorithms to 
estimate the parameters of the prior distribution. In this paper we used NLMIXED 
procedure in SAS.  

In Section 2 we introduce the functional form of the IPD and discuss some of 
its interesting properties. In Section 3 we investigate the Bayesian inference on 
the ratio of IPD parameters based on samples drawn from independent popula-
tions. Both non-informative priors and conjugate gamma priors will be used to 
achieve the main objectives. In Section 4 we extend the methodology to test the 
homogeneity of the several population parameters, and in Section 5 we apply the 
methods to published genomics data. 

2. The Inflated Poisson Distribution (IPD) 

The Poisson distribution is commonly used to model count data. However, a re-
striction of this distribution is that the response variable must have a mean equal 
to the variance. This restriction does not often hold for many biological and ep-
idemiological data. The variance can be much larger than the mean, a pheno-
menon known as “overdispersion”. This overdispersion may occur due to popu-
lation heterogeneity, or the presence of outliers in the data [2]. An analysis of 
data with overly dispersed counts can lead to the underestimation of parameter 
standard error if overdispersion is ignored. A review of the issue of overdisper-
sion in both binary and count data was reviewed by Hinde and Demetrio [3], 
and in a more recent review by Hayat and Higgins [4]. Diagnosing and ac-
counting for overdispersion is not a simple issue and should be appropriately 
dealt with to avoid bias in interpreting the results.  

When overdispersion is suspected, the Negative-Binomial (NB) distribution 
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has been adopted as a common alternative to the Poisson distribution. The NB 
has two parameters and a variance that is a quadratic function of the mean and 
has therefore been the model of choice to model count data that exhibit overdis-
persion. Since accounting for measured covariates is one of the methods used to 
address the issue of over dispersion by including them in a regression model, 
Hinde [5] reviewed the methodologies of NB regression. Joe and Zhu [6] drew a 
comparison between the NB and a mixture-based generalization of the Poisson 
distribution. 

In this paper, we discuss several inferential statistical issues related to a mod-
ified form of the Generalized Poisson Distribution (GPD). The GPD distribution 
was introduced to the statistical literature by Consul and Jain [7] and a detailed 
account of its properties was given by Consul [8]. The distribution has two pa-
rameters and has variance larger than the mean. This makes the GPD an attrac-
tive competitor of the Negative Binomial Distribution (NBD). The distribution 
has been used to analyze data in the fields of genetics [9] as a queuing model [10] 
[11] [12] and genomics [13]. The Bayesian statistical inference on the proposed 
form of the GPD, which we shall call “Inflated Poisson Distribution” (IPD) is the 
subject of this research paper.  

We introduce three random mechanisms by which the IPD is generated and 
discuss some of its properties. In Section 3 we consider the Bayesian inference 
on the parameter of the distribution and construct the exact posterior density of 
the ratio of two parameters for independent populations. In Section 4 we apply 
the Wilson-Hilferty (WH) [14] to the posterior distribution in order to test the 
homogeneity of parameters of several populations. We analyze published data 
sets related to the read counts of RNA-SEQ.  

2.1. The IPD and Its Moments 

A random variable x is said to have IPD if the probability function is given by: 

( ) ( ) ( )
1

11
!

x
xxx

P ex x
x

λλ
−

++
= =                       (1) 

This distribution is a special case of the Generalized Poisson Distribution 
(GPD). We review the literature on the derivation of the probability function 
given in (1). 

1) Consul and Shenton [15] showed that the Lagrange expansion of implicit 
Probability Generating Function. If ( )g t  and ( )f t  are two probability gene-
rating functions, then under the transformation: 

( )t u g t= ⋅  

and within the circle of convergence, ( )f t  can be expanded in powers of u by 
the Lagrange expansion, then the coefficient of xu , produces a probability dis-
tribution given as:  
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making the substitutions: 

( ) ( )1e tg t λ −=  and ( ) ( )1e tf t λ −=  

in Equation (2) we get the probability distribution (1). 
2) Consul and Shoukri [15] showed that in the special case of a Borel-Tanner 

distribution [16] conditional on a parameter η  

( ) ( )
1| , 1,

!
,x x xP x x e x

x
η η ληη λ η η

η
− − −= = +

−
�           (3) 

If η  has a Poisson distribution (4) 

( ) !x jP j e jλη λ= = ,          (4) 

then the unconditional distribution of x is 
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3) The IPD arises as a limiting form of the quasi-generalized negative distri-
bution (see: Shoukri and Aleid [17]): 

( ) ( )
( ) ( )

( )

111
1 !

x xxx
Px P X x

x x x x

β ββ β θ θβ
β β β β

+ − −Γ + −−
= = = ⋅

− + Γ + −
        (5) 

As , 0β θ→∞ → , so that βθ α= , the limiting distribution (5) becomes (1). 

2.2. Moments and Variance Stabilizing Transformation 

From [6], the mean and variance of the distribution are given respectively by: 

1µ λ λ= − , 0 1λ< <  

( )32 1σ λ λ= −  

In terms of the mean μ, the parameter λ is given by: 

1
µλ
µ

=
+

                           (6) 

Therefore the variance is given in (7) 

( ) ( )22 1σ µ µ µ= +                        (7) 

Shoukri and Mian [10] established a recurrence relation among the r-th non- 
central moments rµ′  so that: 

( )2
1

r
r r

µµ σ µ µµ
µ+

′∂′ ′= +
∂

                     (8) 

From (8) we get: 

( )0 11, E yµ µ µ′ ′≡ = =  

The third and fourth central moments are given respectively by 

( ) ( ) ( )3 3
3 1 1 3E yµ µ µ µ µ= − = + +                (9) 

( ) ( ) ( )4 4 2
4 1 1 13 15E yµ µ µ µ µ µ= − = + + +            (10) 

https://doi.org/10.4236/ojs.2023.133015


M. M. Shoukri, M. Aleid 
 

 

DOI: 10.4236/ojs.2023.133015 289 Open Journal of Statistics 
 

For discrete random variables such as binomial negative binomial, and Pois-
son distributions a variance stabilizing transformation can be developed if the 
relationship between the mean and variance is known. From the definition of 
skewness and on using (9) and (10) we have: 

skewness (sk) is: 

( )21 3 1 3sk
µ µ

µ µ
+ +

= =  

Or 

( ) 11 2sk λλ
λ
−

= +                       (11) 

Clearly for 0 1λ< <  the distribution is positively skewed. From (11) clearly the 
degree of skewness is inversely related to the values of λ . 

The distribution has an interesting property in that, within the class of dis-
crete distributions defined on ( )0,1,2, ,R = ∞� , the IPD has a single parameter 
and yet it possess the property of overdispersion. 

Akin to the Poisson distribution we may develop a variance stabilizing trans-
formation. We would like to find a variance stabilizing transformation  

( )Z x= Ψ  such that ( ) 2var z c= , which does not depend on the population 
parameter. We employ the Taylor series expansion so that: 

( ) ( ) ( ) ( )0x x xµ µ µ
µ

∂Ψ
Ψ = Ψ + − + −

∂
            (12) 

Solving (12) then  

( )( )1 2
1

var
c

xµ
∂Ψ

∝
∂

                      (13) 

Solution of the differential Equation (13) is: ( )1tanz y−=  which has variance 
= 1/4, similar to the variance stabilizing transformation pz y=  of the Pois-
son distribution. 

This variance stabilizing transformation may be used to derive an approx-
imate expression for the sample size needed to test the equality of two IPD 
means. 

To test the null hypothesis 0 1 2:H µ µ=  versus 1 1 2:H µ µ≠  at type I error 
rate 5%, and power 80%, the approximate sample size drawn from each of two 
inflated Poisson populations is: 

2 22.48 4N ∆=                       (14) 

where 1 1
1 2tan tanµ µ− −∆ = − . 

In Table 1 values of N in equation (14) for selected values of the population 
parameters. 

3. Bayesian Analysis 

Bayesian methods are becoming a popular technique for estimating model pa-
rameters and hypothesis testing. Under certain conditions choosing the correct  
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Table 1. Selected values of the sample sizes.  

1µ  2µ  ∆ N 

1 
1 
1 
2 
2 
2 
5 
5 
5 

2 
3 
5 
7 
10 
15 
10 
15 
20 

−0.17 
−0.26 
−0.36 
−0.25 
−0.31 
−0.36 
−0.11 
−0.17 
−0.20 

53 
23 
12 
24 
16 
12 

118 
55 
38 

 
prior distribution is a critical step in Bayesian modeling. The traditional Baye-
sian approach assumes that all prior distribution parameters are known. Know-
ledge of these parameters may be based on observed data in similar studies with 
similar objectives. If such data are unavailable, a non-informative prior distribu-
tion may be used [1]. As a result, choosing an appropriate prior distribution is 
important. It is known that the Gamma distribution is used for the Poisson fam-
ily of distributions. This distribution is considered conjugate in the sense that 
the posterior probability belongs to the class of Gamma distributions. Similarly, 
we shall use the Gamma distribution as an alternative prior for the IPD parame-
ter. 

The method of maximum likelihood estimation of unknown prior distribu-
tion parameters can be used and in most situation we need numerical algorithms 
to estimate the parameters of the prior distribution. In this paper we used 
NLMIXED in SAS.  

Let ( )1 2, , ,
ii i nx x x�  denotes k random samples of size in  from the jth IPD. 

The likelihood is given in (15): 

( ) ( )1 1

1 1
!
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x
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i

L x e
x

λλ− +

=
= +∏                 (15) 

Clearly  

1
in

i ijjy x
=

= ∑  

is the sufficient statistic for iλ . The probability distribution of iy  is given in 
(16) as: 

( ) ( ) ( )
1

| ex ,p 1,2, ,
!

ii yy
i i i i

i i i i i i
i

n n y
P Y y n y i k

y
λ

λ λ
−

 = =
+

= − + �   (16) 

To achieve the main objective of this paper, we shall consider a prior distribu-
tion with a conjugacy-like distribution. Here we consider two prior specifica-
tions: the first being the vague prior and the second is the conjugate gamma 
prior distribution for the parameter iλ . 

Hierarchical Bayes and Empirical Bayes are related by their goals, but quite 
different by the methods of how these goals are achieved. The attribute hierar-

https://doi.org/10.4236/ojs.2023.133015


M. M. Shoukri, M. Aleid 
 

 

DOI: 10.4236/ojs.2023.133015 291 Open Journal of Statistics 
 

chical refers mostly to the modeling strategy, while empirical is referring to the 
methodology. Both methods are concerned in specifying the distribution at prior 
level, hierarchical via Bayes inference involving additional degrees of hierarchy 
(hyperpriors and hyperparameters), while empirical Bayes is using data more 
directly. 

3.1. Vague Prior 

We start by using the vague prior specification for iλ  given in (17) 

( ) 1i iπ λ λ∝                          (17) 

The posterior density of iλ  is therefore given by (18): 

( ) ( )
( ) ( )

1 2
1 2| exp

1 2

i

i

y
yi i

i i i i i i
i

y n
y y n

y
π λ λ λ

+
−+

= − +
Γ +

             (18)   

This means that the posterior density of iλ  is such that ( )2 i i iy nλ +  has a 
Chi-square distribution with ( )2 1 2i iv y= +  degrees of freedom. Therefore, the 
posterior mean and variance of iλ  are given respectively as ( ) ( )1 2i i iy y n+ +  
and ( ) ( )21 2i i iy y n+ + .  

( ) ( ) ( )
0

| | di i i i i iM y P y yλ π λ λ
∞

= ∫                (19) 

It can be easily shown that (19) has the closed form given in (20):  

( ) ( )
( ) ( )

2 1 2
1 2 1

ii
i

i i i i

ynM y
n y y y

Γ +
=

+ Γ + Γ +
             (20) 

We can construct an HPD confidence interval on the ratio 1

2

R λ
λ

= . Since,  

( ) ( )
( ) ( )

1 2 21
1 2

2 2 1 1

2 1
,

2 1
y y n

Fv v
y y n

λ
λ

+ +
= ⋅

+ +
 

Therefore, the exact posterior distribution of the ratio is that of a weighted 
F-distribution. We can directly construct HPD limits on the ratio using the 
F-distribution tables after substituting the estimated values of the hyperparame-
ters as shown below.  

An ( )1 100%α−  confidence interval on 1

2

R λ
λ

=  is such that: 

( ) ( )
( ) ( ) /2

1 2 2
1 1 2

2 1 1

2 1
UL , ,

2 1
y y n

F v v
y y n α−
+ +

=
+ +

, 

( ) ( )
( ) ( ) /2

1 2 2
1 2

2 1 1

2 1
LL , ,

2 1
y y n

F v v
y y n α

+ +
=

+ +
 

/21 1 2, ,F v vα−  
/2 1 2, ,F v vα  are respectively the upper and lower quantiles of the 

F-distribution with ( 1v  and 2v ) degrees of freedom. 

3.2. Gamma Prior 

We consider the two parameters gamma distribution as a prior for the IPD pa-
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rameter. The suggested prior density is given by: 

( ) ( )
1| ,

i
i i i

a
a bi

i i i i
i

ba b
a

e λπ λ λ −=
Γ

                   (21)   

where 0 iλ< < ∞  and 0,i ia b > . The prior mean and variance are easily ob-
tained from (21) and are given respectively as i ia b , and 2

i ia b . The posterior 
distribution of iλ  is therefore given by: 

( ) ( )1| , , expi iy a
i i i i i i i i iy a b y n bπ λ λ λ+ −∝ − + +               (22)  

The exact posterior density of iλ  is thus given by (23): 

( ) ( )
( ) ( )1| , , exp

i i

i i

y a
y ai i i

i i i i i i i i i
i i

y n b
y a b y n b

y a
π λ λ λ

+
+ −+ +

= − + +  Γ +
    (23) 

This means that the posterior density of iλ  is such that, ( )2 i i i iX y n bλ= + +  
has a Chi-square distribution with ( )2i i id y a= +  degrees of freedom. Hence,  

the posterior distribution of 
( )2i

i i i

X
y n b

λ
+ +

=  is that of a weighted Chi-square 

variable with ( )2 i iy a+  degrees of freedom. 

Therefore, the posterior mean and variance of iλ  are given respectively as  

( ) ( )i i i i iy a y n b+ + +  and ( ) ( )2
i i i i iy a y n b+ + + . 

We conclude that the ratio 1

2

R λ
λ

=  has a weighted F distribution with 1v  and 

2v  degrees of freedom, or 

( ) ( )
( ) ( )

1 1 2 2 21
1 2

2 2 2 1 1 1

,
y b y n b

R Fd d
y b y n b

λ
λ

+ + +
= = ⋅

+ + +
 

Therefore on ( )1 100%α−  posterior confidence (24) interval on R is such that: 

[ ]1 21 rP c R cα− = < <                    (24) 

where 

( ) ( )
( ) ( ) 1/2

1 1 2 2 2
1 1 1 2

2 2 1 1 1

, ,
y a y n b

c F d d
y a y n b α−
+ + +

= ⋅
+ + +

 

( ) ( )
( ) ( ) 1/2

1 1 2 2 2
2 1 2

2 2 1 1 1
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y a y n b α

+ + +
= ⋅

+ + +
 

The confidence limits in (24) depend on ( ),i ia b  and their estimates are ob-
tained by maximizing the marginal predictive density given in (25) with respect 
to the target parameters. The marginal predictive density is given by: 

( ) ( ) ( )

( )
( ) ( )

( )
( )

( )
( )

( ) ( )
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1

| , | | , d
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Γ +    +
=    + Γ + Γ + + + +   

∫

  (25) 
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The maximum likelihood estimates of the hyperparameters ( ),i ia b  are ob-
tained by maximizing the log-likelihood ( ),i il a b  given by: 

( ) ( )1, log | ,i i i i ii
kl a b M y a b
=

=   ∑                 (26)  

Therefore, the maximum likelihood estimators are ( ) ( ){ }ˆˆ , arg max ,i i i ia b l a b= . 
Thus, the empirical Bayes method may be interpreted as a mixed model, and 

mixed model software may be used (proc NLMIXED) In the marginal likelihood 
function, the unknown IPD parameter is integrated out. The resulting marginal 
distribution is not a negative binomial (NB) distribution. The marginal predic-
tive density is, however, a difficult vehicle for parameter estimation. As will be 
shown below, the convergence of the SAS optimization procedures is not always 
guarantied, and the solution is not necessarily a global maximum of the likelih-
ood function even when we have large samples. 

4. Application: Data Analysis: RNA_SEQ Data: Modeling the  
Distribution of Read Counts 

Over the past decade, various statistical analysis tools have been developed to 
analyze expression profiling data generated by microarrays (Reviewed in [20] 
[21] [22]). Before these tools can be applied to RNA-Seq data, it is worth noting 
that microarray data and RNA-Seq data are inherently different [20]. Microarray 
data is “analog” since expression levels are represented as continuous hybridiza-
tion signal intensities. In contrast, RNA-Seq data is “digital”, representing ex-
pression levels as discrete counts. This inherent difference leads to the difference 
in the parametric statistical methods that are used since they often depend on 
the assumptions of the random mechanism that generates the data. The Poisson, 
Binomial and Negative binomial distributions are more suitable for modeling 
discrete data in an RNA-Seq experiment. Therefore, a statistical method devel-
oped for microarray data analysis cannot be directly applied to RNA-Seq data 
analysis without first examining the underlying distributions. Recently several 
statistical methods have been developed to deal specifically with RNA-Seq count 
data [17]. In an RNA-Seq dataset, the expression levels of a specific gene were 
modeled using the Poisson distribution. This Poisson model is verified in the 
case where there are only technical replicates using a single source of RNA [15]. 
In the Poisson model, over-dispersion occurs if the sample variance is greater 
than the sample mean. There could be several sources that cause over-dispersion 
in RNA-Seq data, including the variability in biological replicates due to hetero-
geneity within a population of cells, possible correlation between gene expres-
sions due to regulation, and other uncontrolled variations [18]. The existence of 
over-dispersion in real data was observed in several previous studies [19]. Popu-
lar models to safeguard against over-dispersion include the negative binomial 
distribution, or two-stage Poisson distribution [20], as discussed below. 

When over-dispersion is observed across the samples, the gene counts cannot 
be estimated accurately by a simple Poisson model [21]. One way to handle this 
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problem is to allow the Poisson mean to be a random variable and then model 
the gene counts by the marginal distribution of the mean count. Specifically, as-
sume that the Poisson mean follows a Gamma distribution then the marginal 
distribution of the gene count has a Negative Binomial distribution with mean 

iµ  and variance = ( )1i iµ εµ+ , where ε  is the dispersion parameter [22]. 
Whenever multiple samples are available and instead of modeling the raw ex-

pression, we model the gene counts as a function of the experimental sample and 
gene dispersion as covariates. For highly expressed genes we used the IPD for 
published data that we downloaded from http://woldlab.caltech.edu/rnaseq/. 

The published data were downloaded from http://www.ncbi.nlm.nih.gov/sra/ 
as the fastq files: SRA010153 for the MAQC data, SRP000727 for the human data 
(the two low-coverage MAQC samples were excluded), SRX000559-SRX000564 
for the yeast data.  

Data Analysis Results 

For highly expressed genes we used the QNB regression model for published 
data that we downloaded from http://woldlab.caltech.edu/rnaseq/. 

The published data were downloaded from http://www.ncbi.nlm.nih.gov/sra/ 
as the fastq files: SRA010153 for the MAQC data, SRP000727 for the human data 
(the two low-coverage MAQC samples were excluded), SRX000559-SRX000564 
for the yeast data.  

We analyzed the read count of the Mice-Brain tissue data under four experi-
mental conditions: 

Chrom_chr11, Chrom chr9_ra, and Chrom chrUn_ra.  
For the two samples case we analyzed the read count of the Mice-Brain tissue 

data first using the two experimental conditions: Chrom_ chr11, Chrom chr9_ra. 
The data analyses were done in three steps. In the first step we apply the 
Chi-square test if goodness of fit where the null hypothesis is that the data is 
drawn from and IDP. In the second step explain the approach to estimating the 
problem of estimating the hyperparameters (ai, bi). The results based on the va-
gue prior are not presented as they are similar to the more general gamma prior 
specifications.  

The histogram of the read counts data show severe skewness to the right as 
shown in Figure 1 & Figure 2. 

The Chi-square goodness of fit on the hypothesis that the random mechanism 
generating the data is the IPD with moment estimator of λ = 0.886, has a p-value 
= 0.245. 

The Chi-square goodness of fit on the hypothesis that the random mechanism 
generating the data is the IPD with moment estimator of λ = 0.670, has a p-value 
= 0.242. 

Therefore, we conclude that the two data sets support the IPD hypothesis 
against a general alternative. We present the summary statistics in Table 2. 

The problem of estimating the hyperparameters 
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Table 2. Summary statistics of the first two read counts experiments. 

Chrom_chr11 Chrom chr9_ra 

sample size = 37623 
Mean = 7.84 

SD = 8.85 
a1 = 1.00003 
b1 = 1.127 

Sample size = 698 
Mean = 3.03 

SD = 2.37 
a2 = 1.00004 

b2 = 1.33 

 

 
Figure 1. Histogram of the Chrom_ chr11 read data. 

 

 
Figure 2. Histogram of the Chrom chr9_ra.  
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The 95% highest posterior Bayesian interval on the ratio 1

2

λ
λ

 is given by: 

1

2

0.95 Probability 0.391 0.473λ
λ

 
= < < 

 
 

We conclude that there is no significant difference between the read counts 
means in the two sample. 

5. Approximate Bayesian Test of Homogeneity of IPD  
Parameters 

We shall apply the Wilson-Hilferty transformation of a Chi-square distribution 
with v degrees of freedom. The W-H is given by: 

( ) ( )
1 32 2 21 ~ 0,1

9 9
x v N

v v
  − −    

               (27) 

Applying the transformation to the random variables: 

( )2 i i i iy n bλ + +  which has a Chi-square distribution with ( )2i i iv y a= +  
degrees of freedom we have:  

( )
( )

1 3
2

2
i i i i

i i

y n b
y a

λ + +
 

−  
                     (28) 

is approximately distributed as: 

1 1~ 1 ,
9 9i i

N
v v

 
− 

 
 

Accordingly, the random variables 1 3
i iξ λ= , are approximately distribution as 

normal with mean im , and variance 1
iw− , where 

1 3
11

9
i i

i
i i i i

y am
y n b v

   +
= −  + +   

 

2 3
1 1

9
i i

i
i i i i

y aw
y n b v

−    +
=   + +   

 

Assuming that the data are available from independent random samples can 
construct a test statistic based on the Chi-square test of homogeneity of several 
parameters. 

Thus  

( ) ( )
2

1 1i i i ii
k k

i iiQ w m w m wξ ξ
= =

 = − − − ∑ ∑           (29) 

where 

1 ii
kw w
=

= ∑  

Has approximately a Chi-square distribution with k − 1 degrees of freedom. 
Under the null hypothesis 0 1 2: kH λ λ λ= = =� . 
Q in (29) reduces to: 
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[ ]20 1
k

i iiQ w m m
=

= −∑                     (30) 

where 

1 i
k

ii wm w m
=

= ∑  

Therefore, a Bayes test of equality of quasi-generalized Poisson distribution 
means is thus provided by treating Q0 (30) as Chi-square with k − 1 degrees of 
freedom. 

6. Application 

We added the data from the third experiment of 98 read counts data points from 
the same data source. The added read count data together with Chrom_chr11, 
Chrom chr9_ra will give three groups of read counts. The estimated hyperpara-
meters are 3 1.006a = , and 3 1.648b = . The objective here is to test the hypo-
thesis: 

0 1 2 3:H λ λ λ= = . Direct computations give 0 0.0009Q = . From the tables of 
Chi-square with 2 degrees of freedom we have p-value = 0.9999. We therefore 
conclude that there is no enough evidence in the data to reject the homogeneity 
hypothesis. 

7. Discussion 

Knowledge translation is an approach to increase the use of evidence within pol-
icy and practice decision-making contexts. When information is available from 
previous experiments or accumulated data, transfer of Bayesian methods re-
search into practice is a challenge; academic articles are not always the best 
enabler for mathematical adoption of research. Furthermore, synthesis of know-
ledge from multiple research studies is needed to provide evidence-based deci-
sion-support for research [23]. 

The estimation of the ratio of Poisson rates is a problem of interest and arises 
in medical investigations. The frequentist approach does not provide an exact 
solution either to the problem estimation or to the hypothesis testing. The Baye-
sian methodology provides exact solutions to both problems. When samples are 
available from multiple sources, we proposed an approximate solution to the 
problem of testing homogeneity from multiple samples. An approximation based 
of the precise WH of the Chi-square solution was developed to address this prob-
lem. 

It is important to note that the IPD which is the subject of the current investi-
gation is the only discrete distribution defined on the set of non-negative integ-
ers with one parameter and exhibits the overdispersion property. Consul and 
Shenton [15] defined a wide class of discrete probability distributions in terms of 
Lagrange’s expansion. It is of interest to note that this class of distributions coin-
cides with that of the distributions of tree sizes in the Benaim-Galton Watson 
process. By this means the branching or cascade process with discrete time and 
where the probability generating function for the number of children of each in-
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dividual is the same, for every individual. Since the IPD is a member of the La-
grange family of distributions it will have direct applicability in the study of 
branching processes as pointed out by I.J. Good [24]. Consul and Shenton ([2]: p. 
239) state that the Lagrange expansion seems to be associated with queuing 
processes; and such an association is in fact spelled-out by Good ([24]: p. 376) 
with references to some 1951 literature.  

There has been a growing interest among bioinformaticians and statisticians 
in constructing flexible distributions for counts that exhibit overdispersion to 
improve the modeling of count data. As a result, significant progress has been 
made towards generalizing some well-known discrete models, which have been 
successfully applied to problems arising in several areas of research. The pro-
posed distribution was utilized to model three data sets; it was shown to provide 
a better fit than several other related models. 
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