
Open Journal of Statistics, 2023, 13, 264-284 
https://www.scirp.org/journal/ojs 

ISSN Online: 2161-7198 
ISSN Print: 2161-718X 

 

DOI: 10.4236/ojs.2023.132014  Apr. 27, 2023 264 Open Journal of Statistics 
 

 
 
 

Two-Stage Procrustes Rotation with Sparse 
Target Matrix and Least Squares Criterion with 
Regularization and Generalized Weighting 

Naoto Yamashita 

Department of Sociology, Kansai University, Osaka, Japan 

 
 
 

Abstract 
In factor analysis, a factor loading matrix is often rotated to a simple target 
matrix for its simplicity. For the purpose, Procrustes rotation minimizes the 
discrepancy between the target and rotated loadings using two types of ap-
proximation: 1) approximate the zeros in the target by the non-zeros in the 
loadings, and 2) approximate the non-zeros in the target by the non-zeros in 
the loadings. The central issue of Procrustes rotation considered in the article 
is that it equally treats the two types of approximation, while the former is 
more important for simplifying the loading matrix. Furthermore, a well-known 
issue of Simplimax is the computational inefficiency in estimating the sparse 
target matrix, which yields a considerable number of local minima. The re-
search proposes a new rotation procedure that consists of the following two 
stages. The first stage estimates sparse target matrix with lesser computational 
cost by regularization technique. In the second stage, a loading matrix is ro-
tated to the target, emphasizing on the approximation of non-zeros to zeros 
in the target by least squares criterion with generalized weighing that is newly 
proposed by the study. The simulation study and real data examples revealed 
that the proposed method surely simplifies loading matrices. 
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1. Introduction 

Exploratory factor analysis is a method of multivariate data analysis and a popu-
lar Psychometric tool that reconstructs the observed correlation structure by a 
reduced number of common factors behind the multiple variables [1] [2]. In 
factor analysis, factor rotation is widely used for transforming the initial loading 
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matrix to a simple and interpretable matrix, which facilitates to denominate the 
common factors by abstracting the names of variables. Namely, factor rotation 
is a post-hoc transformation of a factor loading matrix to simplifying the load-
ing matrix. Consider the situation where we have an N (objects) × P (variables) 
data matrix denoted as X, and wish to explain the variation of P variables by r 
(< P) latent variables called common factors. Hereafter, X is assumed to be 
column-wise centered. By using the sample covariance matrix S = N−1X'X, fac-
tor analysis is commonly formulated by maximizing the following log-likelihood 
function 

( ) ( ) ( )1 1, tr log− −′ ′= + − +S Sl Λ Ψ ΛΛ Ψ ΛΛ Ψ             (1) 

over Λ and Ψ subject to some constraints, where Λ (P × r) and Ψ (P × P) denote 
the loading matrix and covariance matrix of unique factors, respectively [1] [3]. 
A similar but different formulation of factor analysis was recently presented [4] 
[5], and the following indeterminacy on which the proposer procedure is based 
on also holds in another formulation.  

Factor analysis is said to have rotational indeterminacy with respect to the 
nonsingular transformation, and it is shown as follows by using an arbitrary r × 
r nonsingular square matrix U that satisfies diag(U'U) = Ir; 

( )1 1− − ∗ ∗′′ ′ = ′U U U UΛ Λ Λ ΦΛ .                    (2) 

We thus have l(Λ, Ψ) = l(Λ*, Ψ), where Λ* = ΛU'−1 and Φ = U'U expresses the 
correlation matrix of transformed factors. Factor rotation aims to transform the 
initial loading matrix Λ to the one with a simple structure [6] by right multiply-
ing Λ by U'−1. 

Various methods of factor rotation for obtaining U that simplifies Λ have 
been developed for decades [7]. Among them, the paper focuses on Procrustes 
rotation that rotates Λ to minimize the difference between ΛU'−1 and a prede-
termined target matrix T that has a simple structure. Procrustes rotation is a 
family of rotational procedures that rotates a loading matrix to approximate a 
specified target matrix, and it can consider various types of simple structures as a 
form of T, while the other rotational methods assume specific types of simplicity. 
For example, Varimax rotation [8] maximizes the sum of within-column va-
riances of the squared loading matrix as a measure of simplicity. The discrepan-
cy between ΛU'−1 and T is often defined in the least square sense, and the Pro-
crustes rotation of Λ toward T minimizes 

( )
21−= − ′U T UPRf Λ                       (3) 

over U [9] [10]. Zhang et al. [11] discussed another benefit of Procrustes rota-
tion; users can incorporate their prior knowledge on factor structure and corre-
lation and thus Procrustes rotation can be viewed as an intermediate between 
exploratory and confirmatory factor analysis. 

The minimization of (3) requires a fixed target matrix T, which manifests the 
prespecified simple structure to be attained by the rotated Λ. However, in many 
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practical cases, a suitable T is difficult to specify. One can set T by referring to 
the previous research or prior knowledge on the factor structure, but they are 
not available in many cases. Promax rotation [12], one of the most common ro-
tational procedures, overcomes the issue of specifying T by referring to the Va-
rimax-rotated loading matrix. Namely, Promax fixes T = {tjl} as  

( ) ( ){ }1α
λ λ

−
= ×V V

jl jl jlt                         (4) 

with α being a positive integer, and ( )λ V
jl  is the (j, l)-th element of the Vari-

max-rotated Λ. In other words, in Promax rotation, the simple structure ob-
tained by Varimax rotation is enhanced by exponentiation by α, keeping the 
signs of T’s elements, and Λ is rotated to approximate it. Table 1 shows an ex-
ample of Promax. An artificial factor loading matrix in Panel B is obtained as a 
random rotation of the true simple structure in Panel A. It is rotated by Promax, 
and the target matrix used in the Promax and its rotational results are shown in 
Panel C and D, respectively. The example indicates that Λ is successfully simpli-
fied by approximating the target matrix. 

The primary issue on Promax is that the suitability of a target matrix totally 
depends on the attained simple structure by Varimax. Thus, Λ can not be sim-
plified by Promax when Varimax fails to simplify Λ, as is often the case with prac-
tical cases. Further, as shown in Panel C in Table 1, the target matrix is often  
 

Table 1. Target matrices and rotational results of Promax and Simplimax (k = 7, 15, 11) rotation applied to an artificial loading 
matrix. Blank cells show elements equaling to zero. 

(A) true simple structure (B) initial loading matrix (C) Promax target (D) Promax 

F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3 

0.900 
  

−0.638 0.627 0.042 0.693 0.000 0.000 0.895 0.091 −0.189 

−0.800 
  

0.582 −0.567 −0.036 −0.690 0.000 0.000 −0.812 −0.087 0.173 

 
0.400 

 
−0.250 −0.254 −0.193 0.000 −0.594 −0.002 −0.027 0.398 −0.134 

 
0.600 

 
−0.368 −0.375 −0.248 0.000 −0.623 0.000 −0.038 0.574 −0.162 

0.500 0.500 
 

−0.667 0.025 −0.198 0.012 −0.342 −0.001 0.461 0.545 −0.251 

−0.500 
 

0.600 0.203 −0.564 0.514 −0.144 0.000 0.339 −0.511 0.007 0.667 

 
0.400 −0.700 −0.053 0.014 −0.814 0.000 −0.003 −0.801 −0.012 0.305 −0.786 

(E) Simplimax target (k = 11) (F) Simplimax (k = 11) (G) Simplimax (k = 15) (H) Simplimax (k = 7) 

F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3 

0.895 
  

0.896 −0.018 −0.020 0.889 0.158 −0.303 0.864 0.189 −0.622 

−0.813 
  

−0.813 0.012 0.019 −0.807 −0.147 0.277 −0.784 −0.170 0.568 

 
0.405 

 
−0.008 0.405 −0.018 −0.056 0.395 −0.133 −0.114 −0.129 −0.285 

 
0.581 

 
−0.011 0.581 0.007 −0.079 0.569 −0.162 −0.164 −0.155 −0.409 

0.493 0.500 
 

0.485 0.491 −0.013 0.422 0.578 −0.314 0.336 −0.037 −0.696 

−0.502 
 

0.598 −0.515 0.005 0.610 −0.485 −0.061 0.709 −0.499 0.453 0.357 

 
0.381 −0.719 0.010 0.385 −0.722 −0.066 0.338 −0.760 −0.088 −0.779 −0.278 
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filled with non-zero entries. Referring to Thurstone’s simple structure [6] [13], 
an ideal simple structure should possess several zero elements to emphasize the 
correspondence of factors and variables. Thus, T should be a sparse matrix. In 
general, a target matrix specified by (4) is not sparse; it contains the elements 
equaling to zero only when Varimax-rotated Λ contains exact zeros, which is 
quite rare in many cases. 

A possible strategy to solve the above problem of the target matrix is not to fix 
the target matrix, but to treat it as an unknown parameter and sequentially up-
date the optimal target matrix and rotation matrix. Kiers [14] proposed a rota-
tion procedure called Simplimax to estimate a sparse target matrix that is consi-
dered suitable for simplifying Λ. It is formulated by the minimization of 

( )
21, −= − ′U T T USIMPf Λ                     (5) 

over U and T subject to diag(U'U) = Ir. In Simplimax, to solve the trivial solu-
tion T = ΛU'−1 and to obtain a sparse T the following constraint is imposed on 
T; 

( )card = −T Pr k                          (6) 

where card(T) denotes the cardinality of T and k is a positive integer satisfying 0 
< k < Pr. In order words, T is constrained to have at least k zero elements, and 
thus Λ is rotated to a sparse target matrix. Further, in Simplimax, 1) the estima-
tion of U that minimizes fSIMP(U, T) with T kept fixed, and 2) the estimation of T 
that minimizes the same function with U kept fixed, are repeated until the de-
crease in the value of the objective function converges. Recently, Yamashita and 
Adachi [13] proposed a procedure for estimating the target matrix by modifying 
Thurstone’s simple structure by improving Simplimax. 

Table 1 also shows the target matrix in Simplimax with k = 11 (Panel E) and 
its rotational result (Panel F). It can be seen that T has 11 zero elements shown 
as blank cells because of the constraint. 

The well-known problem with Simplimax is its computational inefficiency: it 
is empirically known that the minimization of fSIMP(U, T) under the constraint (6) 
leads to a considerable number of local minima [15] [16]. Therefore, in the ap-
plication of Simplimax, we need to start Simplimax’s algorithm from many ini-
tial values to avoid local minima, which increases the computational load. For 
example, in the example shown above, the optimization algorithm was started 
from 100 random initial values, and the final solution was the one that minimiz-
es fSIMP(U, T) the most among the 100 solutions obtained. Among the 100 solu-
tions, none of them were equivalent to the final solution. In other words, the 
percentage of local minima in this application was 99%. Note that the equiva-
lence of the two different solutions is defined in the section Simulation Study. 

Further, Simplimax is said to be sensitive to specification of the cardinality of 
target matrix, the hyperparameter k. In the example in Table 1, the correct spe-
cification for k is 11, since the true simple structure has seven non-zero elements, 
and the loading matrix is simplified under the setting. However, when the car-
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dinality is misspecified, the attained simplicity is poor, in that Simplimax with k 
= 15 and k = 7 could not recover the true simple structure. Their rotational re-
sults are shown in the Panels G and H in Table 1, respectively. In practical cases, 
the true simple structure and its true cardinality is often unknown. Thus, miss-
pecification often occurs leading to poor performance in simplification of the 
loading matrix. 

The paper further addresses the issue on the use of target matrix that is com-
mon for the existing Procrustes rotation procedures. From the perspective of fa-
cilitating interpretation of factor loadings, it may not always be appropriate to 
minimize the difference between a target matrix and the rotated factor loading 
matrix by minimizing Equation (3). To illustrate this, given the target matrix T 
and the initial loading matrix Λ shown in Figure 1, consider estimating U that 
minimizes the objective function ||T − ΛU'−1||2. The initial loading matrix has 
the (2, 1)-th element equaling 0.5 and 0.0 as the (3, 3)-th element. U should be 
estimated so that the (2, 1)-th element in Λ is close enough to the corresponding 
element in T, equaling to 0.5, while the (3, 3)-th element of Λ is close enough to 
0.0 in T. In other words, the minimization considered here involves two types of 
approximations: approximations that bring non-zeros closer to zero, and ap-
proximations that bring non-zeros closer to non-zeros. The former approxima-
tion is noted as approximation A, and the latter is approximation B in the figure. 
Considering the ease of interpretation of the rotated factors, it is generally de-
sirable that the rotated Λ be closer to sparse. Therefore, with regard to the two 
types of approximation, more emphasis should be placed on the approximation 
B, that is the approximation that makes the non-zeros in Λ closer to zeros in T. 
However, in the objective function of (3), the two types of approximations are  
 

 
Figure 1. Examples of the ordinal least squares (upper panel) and the least squares with generalized weighting (lower 
panel) to an artificial rotation problem. 
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treated as equivalent. In the above example, whether we match (2, 1)-th elements 
in Λ to the corresponding elements in T, or (3, 3)-th element in Λ to the corres-
ponding element in T, both are evaluated equivalently in (3) as a reduction in 
the function value of (0.5 − 0.1)2 = 0.16 and (0.0 − 0.4)2 = 0.16, respectively. 

The problems of Procrustes rotation, including Promax and Simplimax, de-
scribed so far can be summarized into three points: first, it is difficult to estimate 
a sparse target matrix with computational efficiency; second, Simplimax works 
well only when the cardinality of the target matrix is correctly specified; third, 
the ordinal least squares criterion does not emphasize the approximation of 
non-zero elements to zero elements in the target. 

The article aims to propose a new factor rotation method to improve the Pro-
crustes rotation. It is called two-stage Procrustes rotation, which solves the above 
three problems. The proposed method consists of the following two stages. In 
the first stage, a sparse target matrix is estimated by minimizing the objective 
function of (3) with a regularization of T with respect to U and T, without using 
cardinality constraints such as Simplimax. In this study, the Lasso penalty is 
used as a regularization term; the first stage minimizes 

( )
21

1 ,, λ−= − ′ + ∑U T T USTG jlj lf tΛ                  (7) 

where λ > 0 is a tuning parameter that controls the strength of the regularization 
[17]. The regularization serves to shrink some elements towards zero, and 
therefore the estimated T is a sparse matrix. The minimization of (7) allows the 
sparse target matrix to be obtained more efficiently with lesser computational 
cost than Simplimax. In the subsequent stage, using the T estimated in the first 
stage, we estimate the rotation matrix V that minimizes 

( ) ( ) 21 1
2

− −= − ′ ′ ⋅V T U V WSTGf Λ                   (8) 

subject to the constraint that diag(V'V) = Ir, and rotate Λ as ΛU'−1V'−1. Here, W 
denotes a pre-specified weight matrix with the dimension of p × r, and ⋅  is a 
Hadamard product. The element-wise weights by W allow to control which ele-
ments in T should be emphasized in the approximation, as exemplified in the 
lower panel of Figure 1. The approximation B is emphasized by the weight ma-
trix W, while the approximation A does not contribute to the reduction of the 
function value because the corresponding weight in W is small. The elements of 
W are required to be non-negative and one can set the weight matrix as 

{ } ( ){ }exp= =W
m

jl jlw t                      (9) 

where m is a negative integer, and thus approximating the nonzero elements 
closer to the zero elements are emphasized in the rotation of Λ. The weight 
function attains its maximum 1 when |tjl| = 0 and wjl → 0 when |tjl| → ∞. The 
function sets the larger weight when |tjl| = 0 and the smaller weight when |tjl| is 
significantly large. Therefore, the approximation type B is emphasized, as shown 
in Figure 1. This is expected to lead to further simplification of Λ than the ex-
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isting rotational procedures. We set m = −5 in the simulation study and the real 
data examples. 

The novelty of the proposed method is that it consists of two stages, where the 
first stage uses penalized estimation in target specification and the second stage 
minimizes weighted least squares. To the best of the author’s knowledge, any 
similar procedure has not been proposed in the context of factor rotation. Fur-
ther, the proposed method can be seen as an integration of two distinct ap-
proaches for obtaining simple structure in factor analysis: sparse estimation in 
factor analysis [18] and factor rotation.  

The remainder of the paper is organized as follows. The next section formally 
introduces the proposed method and derives the optimization algorithm for 
both stages. Two simulation studies are reported in the third section, where the 
proposed procedure and other existing ones are applied to artificial factor load-
ing matrices. The fourth section illustrates the proposed procedure using the 
three real data problems. The fifth section summarizes the previous sections and 
concludes the paper. 

2. Proposed Method 

The aim of the proposed method is to estimate the target matrix that minimizes 
fSTG1(U, T) in (7), and then obtain the rotation matrix minimizing fSTG2(V), and 
its objective is to further simplify a loading matrix superior to other existing ro-
tational methods. The section formally defines the two-stage Procrustes rotation 
and proposes the optimization algorithm for each of the two stages.  

2.1. Stage 1: Estimation of Sparse Target Matrix by Least Squares  
with Regularization 

In the first stage, fSTG1(U, T) defined in (7) is minimized subject to diag(U'U) = Ir. 
It should be noted that no constraint is imposed on T, unlike Simplimax rota-
tion, where the cardinality constraint is imposed on the target matrix. However, 
a sparse target matrix is obtained because of the regularization term in (7). No 
closed-form solution is available in the minimization of (7), and therefore it is 
minimized by the following iterative algorithm: 

Step 1. Randomly Initialize U and T. 
Step 2. Minimize fSTG1(U, T) over U with fixed T and update the current U by 

the minimizer. 
Step 3. Minimize fSTG1(U, T) over T with fixed U and update the current T by 

the minimizer. 
Step 4. Finish if the decrement of fSTG1(U, T) is converged, otherwise go to 

Step 2. 
The iterative algorithm is called alternating least squares, in that it alternately 

minimizes a least squares function, and it guarantees that the function value 
monotonically decreases at Step 2 and 3. 

First, consider minimizing fSTG1(U, T) over T with fixed U. Jennrich [19] pro-
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posed a general algorithm that minimizes a least squares criterion over a non- 
singular matrix under the constraint that it has unit-column length, which is 
called Gradient Projection (GP) algorithm. GP algorithm is applicable or the 
problem considered in Step 2, and the U minimizing fSTG1(U, T) subject to di-
ag(U'U) = Ir with given T is obtained. 

Next, in Step 3, fSTG1(U, T) is minimized over T with given U. By using the 
subdifferential of fSTG1(U, T), the (j, l)-th element of the optimal T noted as tjl is 
obtained by 

( )1 1sign
2
λ− −

+

    = ′ ′ −     
U Ujl jl jl

t Λ Λ             (10) 

where [ΛU'−1]jl denotes the (j, l)-th element of ΛU'−1 and 

( )
( )
( )

0

0 0+

≥= 
<

a a
a

a
                      (11) 

∈a   [17]. After the convergence of the above algorithm, Λ is rotated by U 
and a sparse target matrix T is obtained. 

2.2. Stage 2: Estimation of Rotation Matrix by Least Squares with  
Generalized Weighting 

In the second stage, the rotated matrix ΛU'−1 is further rotated toward T. As 
mentioned above, the non-zero elements in Λ should be approached to the zeros 
in T with greater importance than the approximation of the non-zeros in T. This 
is accomplished by the weight matrix W in ( ) ( ) 21 1

2
− −= − ′ ′ ⋅V T U V WSTGf Λ  

we newly introduced, and we call it least squares criterion with generalized 
weighting. In the minimization (8), the two types approximation noted in the 
section Introduction are asymmetrically treated; the approximation A that the 
non-zero elements in Λ is closer to the zero element in T is emphasized. A simi-
lar criterion is considered in Gower & Dijksterhuis [10] as a generalized form of 
weighting in the Procrustes problem. 

fSTG2(V) is minimized over V subject to diag(V'V) = Ir. Similar to Step 2 in the 
first stage, it can be accomplished by the GP algorithm. After the convergence in 
the second stage, ΛU'−1 is further rotated by V; that is, Λ is rotated by U'−1V'−1 = 
(UV)−1'. The whole rotation matrix is thus expressed as UV, which should have 
unit-column length, but it does not hold in general. The column length of UV is 
adjusted so as to satisfy diag((UV)'(UV)) = Ir by 

→UV UVD                            (12) 

with D = diag((UV)'(UV))−1/2. It should be noted that the simplicity of Λ(UV)−1' 
remains unchanged after the adjustment because it indicates that the columns of 
the rotated loading matrix are scaled by the diagonal matrix D. 

Before applying the proposed procedure to a factor loading matrix, the value 
of λ which controls the strength of regularization on T has to be specified. Un-
like the tuning parameter k in Simplimax, the true value for λ used in the first 
stage of the proposed procedure does not exist. For example, if the true simple 
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structure that should be recovered by rotation has 10 zero elements, the value for 
k should be set at 10, but λ cannot be specified in the same way. Thus, it is re-
quired to try the several values for λ and compare the rotated loading matrices in 
terms of their simplicity. Fortunately, as empirically shown in the section Simu-
lation Study, the rotational result of the proposed procedure is robust to the set-
ting for λ. Further, the proposed procedure yields fewer local minima compared 
with the existing procedure; the exploratory search for λ within a specific range 
can be accomplished with a reasonable computational cost. 

The simplicity attained by the proposed method can be evaluated by the fol-
lowing two indices. The first is the LS index proposed by Lorenzo-Seva [20], 
which measures a matrix’s simplicity from 0 (lowest simplicity) to 1 (highest 
simplicity). The second index is the number of close-to-zero elements in the 
target matrix estimated in the first stage, which is defined as the number of ele-
ments in the target matrix satisfying the condition 

0 τ< <jlt                             (13) 

with τ = 0.1 hereafter. The number of close-to-zero elements is regarded as a 
measure of the unsuitability of the target matrix in simplifying the loading ma-
trix by the following reason. Close-to-zero elements cannot be ignored in inter-
pretation since they are not equal to zero but smaller than the threshold τ, thus 
confusing the interpretation of the factors. In other words, the close-to-zero 
elements worsen the clear contrast of the zeros and non-zeros with higher load-
ings in absolute in the target and the correspondence of the variables and factors, 
which makes the rotational results unsatisfactory. As demonstrated in the simu-
lation studies in the section Simulation Study and Real Data Examples, in many 
cases, the value of two indices suddenly decreases as λ increases. Based on the 
observation, the article recommends determining the value of λ at the point 
where the LS index is reasonably high, and, at the same time, the number of 
close-to-zero elements is small. The real data examples specified the best λ in 
such a way, and we confirmed that the proposed procedure performs fairly well 
compared with the existing procedures. 

3. Simulation Study 

Two simulation studies were conducted to examine the performance of the pro-
posed rotational procedure. In the first experiment, how the second stage in 
two-stage Procrustes rotation, the major novelty of the method, works in sim-
plifying a loading matrix is evaluated. How the value of λ affects the resulting 
simplicity is also examined. In the second experiment, the two-stage Procrustes 
rotation was compared with the existing rotational procedures in terms of their 
performance in simplifying artificial loading matrices. 

3.1. Experiment 1 

The first experiment was designed as follows. Given a randomly generated true 
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simple structure ΛT (P × r), an artificial factor loading matrix Λ was generated 
by 

1−= ′PTΛ Λ                              (14) 

where P (r × r) is a randomly generated non-singular matrix satisfying diag(P'P) 
= Ir, and Λ was thus generated as a result of random transformation of ΛT by U. 
The true simple structure ΛT was constructed by 

1 0 0
1 0 0

1 0 0
1 0 0

1 1 0
1 1 0

0 1 0
0 1 0
0 1 0
0 1 0
0 1 1
0 1 1
0 0 1
0 0 1
0 0 1
0 0 1

 
 − 
 
 
− 
 −
 
− 
 − 
 

= ⋅ − 
 
 

− 
 −
 
 
 − 
 
 − 

ETΛ                        (15) 

where E is a P × r matrix whose elements were randomly generated from the 
uniform distribution U(0.5, 1.0). (15) indicates that the true simple structure 
considered in the experiment has several cross loadings, which commonly oc-
curs in the applications of factor analysis. 

Next, 1) two-stage Procrustes rotation with only the first stage and 2) the one 
with both stages were applied to Λ. There, λ was varied from 0 to 1 in 0.05 in-
crements to investigate how the λ values affect the rotational performance in 
simplifying Λ. The rotational algorithm was started from 100 random initial 
starts. The rotational results were evaluated with respect to the following two in-
dices. The first index is the LS index, which is used as a measure of simplicity of 
a matrix. The second index is the number of elements less than 0.1 in absolute in 
rotated Λ, and it evaluates how many elements the rotated factor loading matrix 
has that are close to zero and thus ignorable in interpretation. We call the second 
index the number of ignorable elements. 

In Figure 2(a), the average, 25, and 75 percentile values of the LS index for 
the rotated loading matrices are plotted against the values of λ. The figure shows 
that the proposed method with the second stage, where the least squares crite-
rion with generalized weighting is minimized with the fixed target matrix, im-
proves the attained simplicity, in that LS values are higher in the second stage. 
Importantly, as the value of λ increases, the resulting simplicity attained in the  
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Figure 2. (a) Average, 25, and 75 percentile values of LS index in the first and second stages of the proposed 
method. (b) Average, 25, and 75 percentile numbers of the elements less than 0.1 in absolute in the first and 
second stages of the proposed method. Average, 25, and 75 percentile numbers of the zero elements in the 
target matrix is also plotted. 

 
first stage gradually decreases. However, the simplicity in the second stage re-
mains high until λ reaches about 0.6. The same tendency is also observed in 
Figure 2(b), in which average, 25, and 75 percentiles of the numbers of ignora-
ble elements in the rotated matrix are plotted against λs. The number of ignora-
ble elements in the second stage is always larger than in the first stage. The above 
results suggest that the second stage effectively serves to simplify Λ. The attained 
simplicity measured by the above two indices indicate that the proposed me-
thod’s performance is considered robust when a smaller value of λ is selected. By 
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contrast, Simplimax’s performance is said to be sensitive to whether the number 
of zero element in the target matrix is correctly specified, as demonstrated in the 
section Introduction and investigated in the next experiment. In Figure 2(b), 
the number of zeros in the target matrix is also displayed, and the target is said 
to become sparser as λ gets larger, indicating that the regularization used in the 
first stage servers to make the target sparse. The resulting sparseness is con-
trolled by λ. 

3.2. Experiment 2 

The objective of the second experiment was to compare the performance in sim-
plifying artificial loading matrices and show that the proposed procedure is su-
perior to other existing Procrustes rotational procedures. The design of the 
second experiment was the same as the first experiment. An artificial loading 
matrix was generated based on (14) and (15), and it was rotated by the following 
four rotational procedures; two-stage Procrustes rotation with both stages, Sim-
plimax, Promax, and Geomin [21]. Among the existing rotational procedures, 
Simplimax and Promax were selected as well-known Procrustes rotation proce-
dures, and Geomin was also applied in that it is known to produce satisfactory 
results in many cases [22]. The value of λ was fixed at 0.4, referring to Figure 2(a) 
and Figure 2(b), in that the attained simplicity was stable, and the number of 
zero elements in the target matrix is constant within the range λ < 0.6. For the 
number of zero elements in the target matrix in Simplimax, the experiment con-
sidered the following three cases; equal to the true number of zero elements (k = 
28), approximately 20% fewer than true k (k = 22), and approximately 20% more 
than true k (k = 34). The above cases were used to examine Simplimax’s perfor-
mance when the number of zero elements in the target was misspecified. Promax 
was applied with Kaiser’s normalization [8], and thus the length of the row vec-
tors of Λ was adjusted by left-multiplying 

( ) 1 2diag −′ΛΛ                            (16) 

to Λ before rotation. 
For two-stage Procrustes, Simplimax, and Geomin, the optimization algorithms 

were started from 100 different initial values as in the first experiment. In order 
to evaluate the computational efficiency of the two procedures, the rate of local 
minima was computed. For both Simplimax and two-stage Procrustes rotation, a 
final rotation matrix R is said to be a local minimum when it satisfies 

2 4ˆ 10−− >R RP                          (17) 

where R̂  the solution that minimizes the rotational criterion the most within 
100 solutions, and P is a permutation matrix with a suitable dimension which 
minimizes the left side of (17). 

Figure 3(a) and Figure 3(b) show the resulting simplicity attained by the 
proposed method, Simplimax with three different settings, Promax, Geomin. In 
both figures, the two-stage Procrustes rotation attains the highest simplicity in  
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Figure 3. Boxplots of (a) LS index of rotated loading matrices by two-stage Procrustes, Simplimax (k = 28, 22, 34), Promax, and 
Geomin, (b) the number of the elements less than 0.1 in absolute in rotated loading matrices, and (c) percent of local minima in 
two-stage Procrustes, Simplimax (k = 28, 22, 34), and Geomin. 

 
terms of LS index and the number of ignorable elements. Importantly, the sim-
plicity attained by the proposed method is higher than the one by Geomin; the 
averages (s.d.) of LS index were 0.835 (0.001) and 0.812 (0.007) in the proposed 
method and Geomin, respectively. The Simplimax with k = 28 is also compara-
ble to the proposed method. 

By the Simplimax with k = 22 and 34, the cases with the true cardinality of the 
target matrix were misspecified, and Λ was not simplified, indicating that Sim-
plimax is sensitive to the misspecification of k and only works well when k is 
correctly set. Further, Figure 3(c) shows the frequency of local minima that oc-
curred in the rotational procedures within 100 different random starts. Two-stage 
Procrustes rotation yields any local minimum in any cases except for some out-
liers, although Simplimax yields approximately 70% to 100% of local minima. 

The second experiment showed that the proposed method is superior to the 
existing procedures as summarized in the following. First, the attained simplicity 
attained by the proposed method is better than Geomin and Promax, as shown 
in Figure 3(a) and Figure 3(b). The value of LS index attained by Simplimax is 
as high as the one by the proposed method, only when the cardinality of the true 
simple structure is correctly specified. Simplimax is thus sensitive to misspecifi-
cation of cardinality, while the proposed procedure is relatively stable to the choice 
of λ as shown in the first experiment. Further, the proposed method yields fewer 
local minimum, while they frequently occur in Simplimax. 
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4. Real Data Examples 

The section exemplifies that the proposed procedure works fairly well in simpli-
fying the factor loading matrix by comparing the resulting simplicity obtained 
by the proposed procedure and other existing procedures. 

4.1. Thurstone’s Box Problem 

The first example is Thurstone’s box problem, where the 26 (variables) × 3 (fac-
tors) loading matrix is obtained by Cureton and Mulaik [23], which is often used 
as a benchmark in evaluating the performance of rotational procedures. Two-stage 
Procrustes rotation was applied to the loading matrix in the following manner. 
First, to set the best λ for specifying an appropriate target matrix, two-stage Pro-
crustes rotation was parallelly applied to the loading matrix for λ = 0.01, 0.02, …, 
0.50. LS index as a measure of the simplicity of the rotated loading matrix and 
number of close-to-zero elements which is defined in the section Proposed Me-
thod were plotted against λs in Figure 4. Around λ = 0.26, the number of close- 
to-zero elements attains its minimum 0, which stands for the estimated target 
matrix in the first stage that only contains zeros and non-zeros that are suffi-
ciently large in absolute. The target matrix is considered to be suitable for simpli-
fying Λ. Therefore, the value of the LS index for the rotated loading matrix in 
the second stage is high, around λ = 0.26. The value of λ was thus set at 0.26 
based on the above observation. 

For comparison, Simplimax with k = 27, which was derived from the true 
simple structure, Promax with Kaiser’s normalization, and Geomin were also 
applied. 

Table 2 shows the rotated loading matrices by the four rotational procedures 
and their simplicity measured by the LS index. The proposed procedure attained  
 

 
Figure 4. Values of LS index of the rotated loading matrix and the number of close-to-zero elements of the estimated target matrix 
for λ = 0.01, 0.02, …, 0.50 in Thurstone’s box problem. 
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Table 2. Rotated loading matrices of Thurstone’s box dataset. Elements less than 0.1 in absolute are shaded, and those more than 
0.3 in absolute are bolded. 

 
(A) Two stage Procrustes (B) Simplimax (C) Promax (D) Geomin 

 
F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3 

x2 0.973 −0.095 0.025 0.986 0.173 0.093 1.092 −0.208 −0.068 1.020 −0.134 0.000 

y2 −0.052 0.925 −0.026 0.207 0.975 0.244 −0.177 1.092 −0.096 −0.035 0.991 −0.021 

z2 0.005 0.002 0.926 0.095 0.272 0.967 −0.090 −0.133 1.050 −0.007 −0.006 0.969 

xy 0.428 0.693 0.007 0.643 0.866 0.257 0.384 0.769 −0.092 0.464 0.727 0.000 

xz 0.353 −0.008 0.828 0.444 0.329 0.896 0.308 −0.163 0.904 0.360 −0.027 0.858 

yz −0.062 0.419 0.719 0.124 0.643 0.869 −0.199 0.392 0.790 −0.067 0.444 0.757 

(x2 + y2)1/2 0.655 0.495 −0.026 0.820 0.707 0.185 0.666 0.522 −0.139 0.700 0.509 −0.042 

(x2 + z2)1/2 0.800 0.071 0.344 0.885 0.396 0.458 0.845 −0.043 0.299 0.838 0.047 0.339 

(y2 + z2)1/2 −0.044 0.667 0.483 0.191 0.847 0.698 −0.187 0.715 0.500 −0.039 0.711 0.510 

2x + 2y 0.561 0.592 0.010 0.753 0.795 0.242 0.545 0.639 −0.095 0.602 0.615 −0.002 

2x + 2z 0.641 0.008 0.615 0.728 0.363 0.706 0.648 −0.141 0.629 0.666 −0.018 0.627 

2y + 2z −0.003 0.501 0.651 0.203 0.728 0.828 −0.137 0.493 0.700 −0.001 0.531 0.684 

log x 0.930 0.025 −0.059 0.967 0.266 0.036 1.036 −0.050 −0.169 0.979 −0.003 −0.087 

log y 0.007 0.863 0.047 0.258 0.945 0.307 −0.112 1.003 −0.016 0.024 0.923 0.053 

log z 0.049 −0.047 0.897 0.124 0.223 0.926 −0.033 −0.189 1.017 0.039 −0.059 0.938 

xyz 0.256 0.372 0.636 0.434 0.656 0.799 0.170 0.319 0.665 0.269 0.384 0.661 

(x2 + y2 + z2)1/2 0.649 0.409 0.239 0.814 0.689 0.435 0.642 0.383 0.170 0.687 0.415 0.235 

ex 0.897 0.006 −0.006 0.933 0.252 0.084 0.997 −0.077 −0.103 0.944 −0.022 −0.030 

ey 0.093 0.865 −0.040 0.339 0.946 0.226 −0.007 1.010 −0.123 0.116 0.923 −0.039 

ez −0.022 0.010 0.913 0.068 0.270 0.953 −0.120 −0.119 1.038 −0.034 0.004 0.957 

LS index 0.564 0.210 0.400 0.559 

 
the highest LS index, and recovered the true simple structure; the three rotated 
factors corresponds to x, y, and z, respectively. The rotational result is compara-
ble to the one by Geomin, while Simplimax and Promax both failed to recover 
the true simple structure. The first example empirically shows that the proposed 
procedure satisfactorily works in simplifying the loading matrix, and its perfor-
mance is comparable to Geomin. 

4.2. Car Purchase Data 

The second example is about the questionnaire on the purchase of a car. Ninety 
consumers responded to the fourteen questions listed in Table 3 about what is 
important to him/her when purchasing a car. They answered the questions using 
a five-point Likert scale from 1 (not at all) to 5 (very important). The full dataset 
is available online [24]. The parallel analysis of the sample correlation matrix 
suggested the five common factors, and therefore the five-factors solution was 
obtained by maximum likelihood method. 
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Table 3. Rotated loading matrices of car purchase dataset. Elements less than 0.1 in absolute are shaded, and those more than 0.3 
in absolute are bolded. 

  
Two stage Procrustes Simplimax 

  
F1 F2 F3 F4 F5 F1 F2 F3 F4 F5 

maintenance 
 

0.679 0.377 −0.151 0.030 0.015 0.811 0.319 0.245 0.135 0.082 

resale value 
 

0.563 −0.001 0.145 −0.088 −0.282 0.607 0.051 0.338 −0.152 −0.239 

price 
 

0.404 −0.038 0.102 0.001 0.012 0.463 −0.039 0.280 0.013 0.087 

color 
 

0.007 0.703 0.045 0.010 −0.023 0.292 0.758 0.270 0.244 −0.070 

exteriot looks 
 

0.038 −0.443 −0.089 0.329 −0.027 −0.036 −0.496 −0.105 0.198 0.108 

fuel efficiency 
 

0.015 0.022 0.829 0.068 −0.004 0.423 0.234 0.990 0.241 0.111 

after sales service 
 

−0.001 0.035 0.335 −0.102 0.374 0.152 0.066 0.406 0.074 0.411 

testmonials 
 

−0.406 0.032 −0.026 0.629 −0.041 −0.185 0.044 0.033 0.695 0.098 

product reviews 
 

0.153 0.057 0.083 0.356 0.042 0.367 0.059 0.314 0.446 0.191 

test drive 
 

−0.053 −0.056 0.162 0.323 0.035 0.127 −0.027 0.270 0.384 0.160 

space comfort 
 

−0.024 −0.104 0.013 0.099 0.737 0.041 −0.224 0.104 0.298 0.847 

fuel type 
 

0.002 −0.025 0.103 −0.106 0.519 0.039 −0.080 0.140 0.048 0.548 

safety 
 

−0.196 0.089 −0.036 −0.287 0.436 −0.271 0.033 −0.146 −0.169 0.344 

technology 
 

0.101 0.135 −0.117 0.019 0.330 0.140 0.055 −0.001 0.142 0.360 

factor correlation 

F1 1.000 
    

1.000 
    

F2 0.034 1.000 
   

0.156 1.000 
   

F3 −0.311 −0.295 1.000 
  

0.392 0.138 1.000 
  

F4 −0.148 −0.261 −0.113 1.000 
 

0.098 0.034 0.183 1.000 
 

F5 −0.089 0.211 −0.058 −0.357 1.000 0.019 −0.105 0.076 0.208 1.000 

LS index 
 

0.483 0.290 

  
Promax Geomin 

  
F1 F2 F3 F4 F5 F1 F2 F3 F4 F5 

maintenance 
 

0.809 0.250 0.225 0.129 0.096 0.714 0.445 −0.070 −0.054 0.019 

resale value 
 

0.600 0.031 0.311 −0.162 −0.232 0.587 0.014 0.193 0.068 −0.303 

price 
 

0.453 −0.061 0.287 −0.013 0.085 0.427 −0.023 0.145 −0.039 0.017 

color 
 

0.283 0.699 0.211 0.310 −0.047 −0.001 0.760 0.133 −0.002 −0.040 

exteriot looks 
 

−0.015 −0.526 −0.068 0.146 0.077 0.029 −0.450 −0.127 −0.369 0.001 

fuel efficiency 
 

0.375 0.195 0.979 0.244 0.096 0.013 0.018 0.951 −0.167 −0.006 

after sales service 
 

0.115 0.077 0.439 0.055 0.410 0.020 0.029 0.393 0.052 0.392 

testmonials 
 

−0.160 −0.060 0.027 0.705 0.064 −0.459 0.065 −0.015 −0.676 −0.011 

product reviews 
 

0.369 −0.026 0.317 0.429 0.172 0.147 0.097 0.141 −0.421 0.066 

test drive 
 

0.127 −0.087 0.278 0.371 0.137 −0.068 −0.039 0.198 −0.381 0.057 

space comfort 
 

0.018 −0.228 0.191 0.236 0.832 0.003 −0.097 0.036 −0.165 0.800 

fuel type 
 

0.011 −0.056 0.195 0.013 0.547 0.029 −0.031 0.127 0.070 0.551 

safety 
 

−0.291 0.099 −0.111 −0.171 0.359 −0.176 0.070 −0.050 0.310 0.447 

technology 
 

0.133 0.041 0.025 0.125 0.362 0.119 0.159 −0.096 −0.036 0.355 
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Continued 

factor correlation 

F1 1.000 
    

1.000 
    

F2 0.054 1.000 
   

0.024 1.000 
   

F3 0.323 0.044 1.000 
  

0.269 0.251 1.000 
  

F4 0.105 −0.037 0.165 1.000 
 

−0.217 −0.219 −0.142 1.000 
 

F5 −0.013 −0.028 0.152 0.106 1.000 0.103 −0.102 0.050 −0.250 1.000 

LS index 
 

0.306 0.463 

 
In line with the first example, the initial factor loading matrix was rotated by 

the two-stage Procrustes rotation for λ = 0.01, 0.02, …, 0.50, and the values of LS 
index for the rotated matrices and the numbers of a close-to-zero elements in 
the target matrices are plotted in Figure 5. The figure suggests that λ = 0.31 is 
the best, in that the number of close-to-zero element is low with the higher val-
ues of LS index than in λ > 0.37. The other procedures, Simplimax, Promax with 
Kaiser’s normalization, and Geomin were also applied to the initial loading ma-
trix. Note that, for Simplimax, the number of zero elements in the target matrix 
was set at 56, indicating that each row should have only one non-zero element 
because the true simple structure for the example is unknown. 

Table 3 shows that the proposed procedure yielded the simplest loading ma-
trix, while Simplimax and Promax totally failed to simplify the loading matrix. 
The rotated loadings by the proposed procedure attained the highest LS index 
value. Although the rotational result of the proposed procedure is comparable to 
the one by Geomin, a distinct feature of the proposed method is that the esti-
mated target matrix would help interpret the rotated factors. Table 4 shows the 
target matrix, which contains exact zero elements because of the L1 penalty em-
ployed in the first stage. The averaged difference between the rotated loadings 
and the target matrix computed as 

21 1− −− ′ ′T AU V

Pr
                        (17) 

was 0.054, which indicates that the difference of the two matrices is considerably 
small, and their interpretation is mutually consistent. In other words, one can 
refer to the estimated target matrix as an archetype of the simple structure ex-
tracted by the proposed procedure. The estimated target shown in Table 4 con-
tains forty-six zero elements, which is approximately 65.7% of the all elements, 
and they emphasize the correspondence between the variables in row and the 
factors in columns. The first factor positively and highly loads on maintenance, 
resale value, and price, which can be interpreted as cost-oriented motivation. 
The second factor expresses the contrast between color and exterior looks. The 
third factor positively loads on fuel efficiency and after sales service, which ex-
presses the cost after purchase. The fourth and fifth factors are interpreted as re-
views by other customers and functionality, respectively. A similar interpretation 
is also possible in the Geomin rotated loading matrix, but it is much easier by  
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Figure 5. Values of LS index of the rotated loading matrix and the number of close-to-zero elements of the estimated target 
matrix for λ = 0.01, 0.02, …, 0.50 in car purchase data. 

 
Table 4. The estimated target matrix in car purchase data. The blank cells show the ele-
ments that is equal to zero. 

 
F1 F2 F3 F4 F5 

maintenance 0.597 0.184 
   

resale value 0.424 
 

0.040 
 

−0.100 

price 0.281 
    

color 
 

0.601 
   

exterior looks 
 

−0.313 
 

0.141 
 

fuel efficiency 
  

0.787 
  

after sales service 
  

0.222 
 

0.230 

testimonials −0.166 
  

0.530 
 

product reviews 0.083 
  

0.238 
 

test drive 
  

0.047 0.191 
 

space comfort 
    

0.656 

fuel type 
    

0.391 

safety −0.084 
  

−0.105 0.251 

technology 
    

0.209 

 
the proposed method in that its resulting simplicity is better than the one by 
Geomin, and it yields the target matrix that helps the interpretation. 

5. Conclusions 

The article dealt with the problem of Procrustes rotation, used as Promax and 
Simplimax, that the approximation of non-zero elements in the initial loading 
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matrix to zero elements in the target matrix is prioritized over the other type of 
approximation. The problem results in an unsatisfactory result of rotation even 
if the target matrix is estimated to be sparse. In addition, Simplimax’s computa-
tional inefficiency in estimating the optimal target matrix under the cardinality 
constraint is also considered. The article proposed the two-stage Procrustes rota-
tion to modify the existing Procrustes rotation procedures, consisting of the fol-
lowing two stages. The first stage aims to estimate a target matrix under the con-
straint that it possesses several elements equaling to zero. The novelty of the first 
stage is that L1 regularization is used in the optimization. Therefore, the cardi-
nality constraint as used in Simplimax, which is a cause of severe local minima, 
is unnecessary. Therefore, the first stage enables obtaining a sparse target matrix 
with fewer computational costs than Simplimax. The second stage further ro-
tates the loading matrix rotated in the first stage given the estimated sparse tar-
get matrix by minimizing the least squares criterion with generalized weighting. 
The criterion newly introduced in the article emphasizes the aforementioned 
type of approximation, which should be prioritized in simplifying the loading 
matrix. 

The first simulation study revealed that the second stage boosts the attained 
simplicity. In the second simulation study, the resulting simplicity and the 
computational efficiency are superior to the one attained by the existing pro-
cedures, including Simplimax and Geomin, and the latter is known to works 
well in many situations. The two real data examples showed the similar results; 
that proposed procedure is better than other procedures in terms of simplicity, 
and it provides useful insights on the factor structure that other procedures do 
not provide. 

Recent studies have revealed that rotational procedure is useful in other mul-
tivariate analysis techniques as well as factor analysis, such as correspondence 
analysis [25] [26], canonical correlation analysis [27] [28] [29], and principal 
component analysis [2], for example. The proposed procedure would be a help 
for the potential users of those techniques in facilitating interpretation. 

There still remain topics to be discussed in future studies. First, a more de-
tailed procedure that determines the optimal λ, the tuning parameter in the first 
stage, is desired. The setting for λ would be a troublesome step for the users, 
which is a potential limitation of the proposed method. Even if the performance 
proposed procedure is relatively robust to the choice of λ compared with k in 
Simplimax, as shown in the section Simulation Study, the incorrect setting for λ 
could slightly degenerate the rotational performance. Second, the penalized es-
timation in the first stage would not work properly when the loading matrix 
cannot be simplified by rotation. In such case, the existing rotational procedure 
would also fail to simplify the matrix. Third, the two stages in the proposed pro-
cedure should be merged into a single step in order to simplify the whole pro-
cedure. For example, one might consider minimizing the criterion 

( ) ( ) 21
2

,
, λ−= − ′ ⋅ + ∑U T T U W

STG jl
j l

f tΛ              (19) 
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under the suitable constraints over U and T simultaneously. The paper did not 
consider the problem and utilized the two stages because the minimization over 
T is difficult in that W is a function of T. Even though the two-staged procedure 
works fairly well, and the feasibility and performance of the rotation procedure 
based on the minimization (19) should be investigated. The above three topics 
are the future direction for the research in rotational procedures. 
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