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Abstract 

The aim of this paper is to present a generalization of the Shapiro-Wilk 
W-test or Shapiro-Francia W'-test for application to two or more variables. It 
consists of calculating all the unweighted linear combinations of the variables 
and their W- or W'-statistics with the Royston’s log-transformation and 
standardization, zln(1−W) or zln(1−W'). Because the calculation of the probability 
of zln(1−W) or zln(1−W') is to the right tail, negative values are truncated to 0 be-
fore doing their sum of squares. Independence in the sequence of these 
half-normally distributed values is required for the test statistic to follow a 
chi-square distribution. This assumption is checked using the robust Ljung- 
Box test. One degree of freedom is lost for each cancelled value. Defined the 
new test with its two variants (Q-test or Q'-test), 50 random samples with 4 
variables and 20 participants were generated, 20% following a multivariate 
normal distribution and 80% deviating from this distribution. The new test 
was compared with Mardia’s, runs, and Royston’s tests. Central tendency dif-
ferences in type II error and statistical power were tested using the Fried-
man’s test and pairwise comparisons using the Wilcoxon’s test. Differences in 
the frequency of successes in statistical decision making were compared using 
the Cochran’s Q test and pairwise comparisons using the McNemar’s test. 
Sensitivity, specificity and efficiency proportions were compared using the 
McNemar’s Z test. The generated 50 samples were classified into five ordered 
categories of deviation from multivariate normality, the correlation between 
this variable and p-value of each test was calculated using the Spearman’s 
coefficient and these correlations were compared. Family-wise error rate cor-
rections were applied. The new test and the Royston’s test were the best 
choices, with a very slight advantage Q-test over Q'-test. Based on these 
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promising results, further study and use of this new sensitive, specific and ef-
fective test are suggested.  
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Multivariate Normality, Statistical Power, Type II Error, Specificity,  
Efficiency 

 

1. Introduction 

The present article aims to: 1) to present a new multivariate normality test as a 
generalization through a sum of squares of the Shapiro-Wilk W statistic [1] or 
the Shapiro-Francia W' statistic [2] with the Royston’s log-transformations and 
standardizations [3] [4]; as well as 2) to compare the central tendency of type II 
error or statistical power; 3) the frequency of successes and errors in making the 
decision on the null hypothesis, 4) the sensitivity (proportion of detection of 
multivariate normality cases), specificity (proportion of rejection of non-cases) 
and efficiency (proportion of correctness in classifying), and 5) the correlation 
between the critical level or probability value and the deviation from multiva-
riate normality (variable of five ordered categories defined when classifying the 
generated samples). The two versions of the new test are compared with the 
Mardia’s K2-test based on multivariate skewness and kurtosis [5] [6] [7], the 
Friedman-Rafsky multivariate runs test [8] applied to the multivariate normality 
test by Smith and Jain [9] and the Royston’s H-test [10], either from the 
W-statistics [3] or W'-statistics [4]. It is a very simple test both in its rationale 
and application, which is very easy to learn and teach. It can be run with the Ex-
cel program and could be included in the multivariate normality library of the R 
program, making it accessible to undergraduate students of social sciences, bios-
ciences, and other empirical sciences with a stronger mathematical emphasis. 

Why a new statistical test when there are already several for this purpose? Be-
cause it constitutes a good option despite the simplicity of its rationale, being a 
Q-type test of sum of variables with standard half-normal distribution (standard 
normal truncated from quantile 0.5 to quantile 1) that assumes independence in 
the sequence of summed values to use the approximation to the chi-squared dis-
tribution in the calculation of the critical level or probability value [11] [12] [13], 
and checks this assumption of independency in a specified sequence that allows 
estimating autocorrelation in case of non-compliance for use in the calculation 
of bootstrap-based critical values. 

2. The Proposed Q Test from the W Statistics or Q' Test from  
the W' Statistics 

The test is based on the lemma or proven proposition that, if a set of k variables 
comes from a multivariate normal distribution, any linear combination among 
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the variables follows a univariate normal distribution [14]. The lemma that the 
sum of squares of k independent variables with standard normal distribution 
follows a chi-square distribution with k degrees of freedom was initially consi-
dered [15]. In addition, a random sample of size k is defined as a succession of k 
random, independent and identically distributed variables [11]. 

2.1. Formulation of Statistical Hypotheses 

Let there be a random sample of n participants or elements to whom k mea-
surements have been made with the same variable X or with k different va-
riables. It is assumed that the variables are continuous quantitative or admit a 
continuous generalization so that they can fit a normal distribution model. 

The null hypothesis (H0) states that the random vector x  composed of k 
random variables follows a multivariate normal distribution of unknown para-
meters: µ  (vector of population means) and Σ (population covariance matrix). 

( )0H : ~ ,x N µ Σ
   

, kx µ ∈ 


 y k k×Σ∈  

The alternative hypothesis (H1) posits that the random vector x  does not 
follow a multivariate normal distribution of unknown parameters µ  and Σ. 

( )1H : ,x N µ Σ
 

  

2.2. Assumptions 

 n independent samples of k tuples, that is, a random sample of n participants 
with scores on k continuous quantitative variables that may be correlated or 
independent. 

 Large sample size n, at least 20 participants. 
 Serial independence between the 2k − 1 values of the log-transformed, stan-

dardized and truncated W or W' statistics, considered as a succession of 
identically distributed random variables. The sequence is specified by the 
subscript of the variable (X1, X2, …, Xk) and the increasing complexity of the 
unweighted linear combination (one variable, two variables, … k variables). 

2.3. Test Statistic 

To obtain the test statistic Q (from the Shapiro-Wilk W statistics) or Q' (from 
the Shapiro-Francia W' statistics), the following steps are followed: 

1) All unweighted linear combinations (by simple summation) among the k 
variables are obtained and the variables of each combination are summed, which 
results in k combinations of one variable, k(k − 1)/2 sums of combinations of 
two variables, kC3 (non-repeating combination of k variables taken in groups of 
three) sums of combinations of three variables, …, and a sum of the k variables, 
that is, 2k − 1 sums of linear combinations of k variables. 

1
2 1

1 2

k
k

j

k k k k
j k=

       
= + + + = −       

       
∑   
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2) A first alternative is to calculate the Q-statistic that starts from the standar-
dized values of the log-transformed W-statistics [3] of each of the 2k − 1 sums of 
linear combinations of the k variables. The Shapiro-Wilk W statistic is the 
square of the correlation between the empirical quantiles x (i) and the standar-
dized and normalized theoretical quantiles ai. 

( )

( )( )( )

( )( ) ( )
( )( )
( )( )

2 2

1 12
, 2 22

1 1 1

i l

n n
l i l ii l i li i

l x a n n n
l i li l i li i i

x x a a x x a
W r

x x a a x x

= =

= = =

   − − −   = = =
− − −

∑ ∑

∑ ∑ ∑
 

1,2, ,i n=   y 1,2, , 2 1kl = −  

x(i)l = empirical quantiles or scores of the variable Xl (l = 1, 2, …, 2k−1) sorted in 
ascending order, from 1 to n. 

x (i)l: x(1)l x(2)l … x(n)l 
(i): 1 2 … n 

1l lii
nx x n
=

= ∑  = the arithmetic mean of variable Xl. 
The n expected values under a standard normal distribution, denoted by mi, 

are common for the 2k−1 sums of the linear combinations of the k variables, as 
are the n standardized and normalized values, denoted by ai. To obtain the ai, the 
mi must first be calculated. 

( ) ( )1 1 0.375
1 0.25i

i a i
m

n a b n
− −− −   

= Φ = Φ   
+ − − +   

 

A value of 3/8 is given to the a and b values. It is based on the fact that the i 
order statistic of a variable with a standard uniform distribution follows a beta 
distribution of parameters: α = i and β = n + 1 − i, whose expected value is α/(α 
+ β) = i/(n + 1). The values a and b can vary from 0 to 1 and 3/8 achieves the es-
timates with the best approximation to the quantiles of a normal distribution for 
many different sample sizes [16]. 

2
1 ii

nm m
=

= ∑  

1u n=  

2 3

4 5

0.221157 0.147981 2.071190

4.434685 2.706056
n na m m u u u

u u

= + − −

+ −
 

2 3
1 1

4 5

0.042981 0.293762 1.752461

5.682633 3.582663
n na m m u u u

u u
− −= + − −

+ −
 

1 na a= −  

2 1na a −= −  

2 2
1

2 2
1

2 2
1 2 2

n n

n n

m m m
a a

−

−

− −
=

− −
  

; 3, 4, , 2i ia m i n= = −  
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( )22

1 1 1 1
0; 0; 1; 1

n n n n

i i i i
i i i i

a a n aa aa
= = = =

= = = = − =∑ ∑ ∑ ∑  

The standardized value of the logarithmically transformed statistic for sample 
sizes from 12 to 5000 (n ≥ 20) is obtained using the following formulas: 

( )
( ) ( )

( )
( )ln 1

ln 1
ln 1

ln 1
~ 0,1l

l
l

l W
W

W

W
Z N

µ

σ
−

−
−

− −
=  

( ) ( ) ( ) ( )2 3
ln 1 1.5861 0.31082ln 0.083751 ln 0.0038915 ln

lW n n nµ − = − − − +        

( )
( ) ( ) 20.4803 0.082676ln 0.0030302 ln

ln 1 e
l

n n
Wσ − − +   
− =  

If ( )( ) ( )( )ln 1 ln 11
l lW WP Z z P Z z α− −≥ = − < ≥ , H0 is accepted 

If ( )( ) ( )( )ln 1 ln 11
l lW WP Z z P Z z α− −≥ = − < < , H0 is rejected. 

The other alternative is to calculate the Q' statistic using the standardized val-
ues of the logarithmically transformed Shapiro-Francia W' statistics [4] of the 
2k−1 sums of linear combinations among the k variables. The test statistic for 
univariate normality from Shapiro and Francia [2] is used, which is the square of 
the correlation between the empirical quantiles and the expected quantiles under 
normal distribution [4]. 

( )

( )( )( )

( ) ( )
( )( )

( )

2 2

1 12
2 2 2

1 1 1 1
2i l

n n
l i l ii l i li i

l x n n n n
il

m
il i il li i i i

x x m m x x m
W

x m
r

x a a x x
= =

= = = =

   − − −   ′= = =
− − −

∑ ∑
∑ ∑ ∑ ∑

 

mi = theoretical quantiles that are the same for the k variables. 

( )1 0.375
0.25i

i
m

n
− − 

= Φ  
+ 

 

1 1
0; 0

n n

i i
i i

m m m n
= =

= = =∑ ∑  

The standardization of the logarithmically transformed W' statistic requires 
calculating its mean and standard deviation that depend on the u and v values, 
respectively. The u and v values only depend on the sample size n, so they are 
common to the 2k − 1 transformed statistics, as are the means and standard dev-
iations. This standardization was developed for sample sizes from 5 to 5000. 

( )ln 1 lW ′−  

( ) ( )ln ln lnu n n= −    

( )ln 1 1.0528 1.2725
lW uµ ′− = −  

( ) ( )ln ln 2 lnv n n= +    

( )ln 1 0.26758 1.0308
lW vσ ′− = − +  

The standardized value of the logarithmic transformation of W' statistic fol-
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lows a standard normal distribution [4]. 

( )
( ) ( )

( )
( )ln 1

ln 1
ln 1

ln 1
~ 0,1l

l
l

l W
W

W

W
Z N

µ

σ
′−

′−
′−

′− −
=  

If ( )( ) ( )( )ln 1 ln 11
l lW WP Z z P Z z α′ ′− −≥ = − < ≥ , H0: ( )2~ ,

l ll X XX N µ σ  is ac-

cepted. 

If ( )( ) ( )( )ln 1 ln 11
l lW WP Z z P Z z α′ ′− −≥ = − < < , rechaza H0 is rejected. 

3) Finally, the sum of the squares of the 2k − 1 z-statistics is calculated, thus 
obtaining the value of the test statistic Q or Q'. Since the calculation of the 
probability is one-sided towards the right tail, a negative value implies a good fit 
to normality. The more negative it is, the better the fit. Therefore, it is necessary 
to truncate any negative value; otherwise, the value of Q or Q' would be wrongly 
inflated. The number of canceled values is denoted by a. 

( )

( ) ( )

2
ln 1

2 2
ln 1 ln 1

0 0

0
l

l l

W
l

W W

z
z

z z
−

− −

 <= 
≥

      ( )

( ) ( )

2
ln 1

2 2
ln 1 ln 1

0 0

0
l

l l

W
l

W W

z
z

z z
′−

′ ′− −

 <′ = 
≥

 

2 1 2
1

k

llQ z−

=
= ∑                ( )22 1

1

k

llQ z−

=
′ ′= ∑  

2.4. Sampling Distribution 

Initially, there were 2k − 1 identically distributed (with standard normal distri-
bution) random variables with samples of size 1 (inferential reconceptualization 
of sample values: zln(1−W) or zln(1−W'), whose sum of squares in case of indepen-
dence follows a chi-square distribution with 2k − 1 degrees of freedom. However, 
once the variables are truncated, they become standard half-normal distribution 
with mean or mathematical expectation: ( ) 2 2lE Z σ= × =π π  and va-
riance: ( ) ( ) ( )2 1 2 1 2lvar Z σ= × − = −π π , where σ2 = 1 [17]. To solve this ob-
stacle, additional lemmas were considered. 

If X follows a half-normal distribution, the ratio between the square of the va-
riable and σ2 follows a chi-square distribution with one degree of freedom: 

( )
2 2 2

1~X σ χ . In turn, the sum of 2k − 1 independent variables with chi-squared 
distribution with one degree of freedom follows a chi-squared distribution with 
2k − 1 degrees of freedom [18], leading to the initial path without the need to 
make any changes, since the truncated zln(1−W) or zln(1−W') values are divided by σ2 
= 1 [17]. It is worth mentioning that the correspondence of the quantiles of a 
chi-squared distribution with a ( )

2
1χ  degree of freedom is more direct with the 

squared standard half-normal distribution (HZ2) than with the squared standard 
normal standard distribution (Z2). This is due to the 0 to +∞ support, positive 
skewness and leptokurtosis of the chi-square and half-normal distributions ver-
sus the −∞ to +∞ support, symmetry and meso-kurtosis of the normal distribu-
tion (Table 1). 

2 2
1p pHZχ ≡  2 2

1 0.5 2p p pZχ ′= +≡  
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Table 1. Correspondence among the quantiles of a chi-square distribution with one de-
gree of freedom, a squared standard half-normal distribution, and squared standard 
normal distribution. 

p ( )
2
1pχ  HZp 

2
pHZ  p' = 0.5 + p/2 Zp' 

2
pZ ′  

0.05 0.004 0.063 0.004 0.525 0.063 0.004 

0.1 0.016 0.126 0.016 0.55 0.126 0.016 

0.2 0.064 0.253 0.064 0.6 0.253 0.064 

0.25 0.102 0.318 0.101 0.625 0.319 0.102 

0.3 0.148 0.385 0.148 0.65 0.385 0.148 

0.4 0.275 0.524 0.275 0.7 0.524 0.275 

0.5 0.455 0.674 0.455 0.75 0.455 0.455 

0.6 0.708 0.841 0.708 0.8 0.842 0.708 

0.7 1.074 1.036 1.074 0.85 1.036 1.074 

0.75 1.323 1.150 1.323 0.875 1.150 1.323 

0.8 1.642 1.281 1.642 0.9 1.282 1.642 

0.9 2.706 1.645 2.706 0.95 1.645 2.706 

0.95 3.841 1.960 3.841 0.975 1.960 3.841 

μ 1 0.7979 1  0 1 

Var. 2 0.3634 2  1 2 

1β  8  0.995272   0  

β2 − 3 12 0.869177   0  

Note: p = quantile order, ( )
2
1pχ  = the pth quantile of a chi-square distribution with one 

degree of freedom, HZp = the pth quantile of a standard half-normal distribution, 2
pHZ  

= the pth quantile of a standard half-normal distribution, p' = 0.5 + p/2 = modified quan-
tile order, Zp' = the quantile of order p' of a standard normal distribution, 2

pZ ′  = the 

quantile of order p' of a squared standard normal distribution. Population or distribution 
statistics: μ = mean or mathematical expectation, Var. = variance, 1β  = the measure of 

skewness based on the third standardized central moment, β2 − 3 = excess kurtosis or 
measure of kurtosis based on the fourth standardized central moment minus the expected 
value for a normal distribution which is 3. 
 

The test statistic Q or Q' is the sum of squares of 2k − 1 random variables with 
a chi-square distribution with one degree of freedom. In case the 2k − 1 random 
variables are independent, the sampling distribution of Q or Q' statistics would 
be a chi-square with 2k − 1 degrees of freedom [15] [18] [19]. However, a correc-
tion for the degrees of freedom was introduced to achieve greater specificity in 
the test by eliminating one degree of freedom for each canceled variable. Con-
sequently, the degrees of freedom become 2k − 1 − a, where a is the number of 
nulled variables. 
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2 1
1

k

liQ z−

=
= ∑  ó 2 1 2

1 2 1
~

k

kli a
Q z χ−

= − −
′ ′= ∑  

In case the independence assumption is not met, it would be a generalized 
chi-square distribution [19]. 

In these cases, critical values can be obtained using a repetitive sampling me-
thod with replacement (Monte Carlo simulation). For the simulation, 2k − 1 − a 
half-normal distributions (truncated normal distribution from the quantile of 
order 0.5 to the quantile of order 0.9999) are defined. The outcome variable is 
the sum of squares of the 2k − 1 − a to half-normal distributions. A correlation 
matrix is defined that has ones in the main diagonal, the values of the significant 
autocorrelations between the corresponding variables (e.g., with first-order lag 
corresponds to the contiguous diagonals above and below the main diagonal), 
and zeros in the remaining cells. See an example of this matrix with three va-
riables (bivariate normality: two variables and their linear combination) with a 
lag of first order (h = 1) and a negative autocorrelation of −0.7. 

X1, X2, and X3 ~ HN (σ = 1). 
Correlation X1   X2   X3 
X1 1    −0.7   0 
X2 −0.7   1   −0.7 
X3 0    −0.7   1 
Table 2 shows the quantiles for the case of three half-normally distributed va-

riables, as well as the quantiles of the sampling distribution of the Q-statistic 
when the variables are independent or when they are correlated (with a first- 
order lag and different values of positive or negative autocorrelation). Compared 
to the quantiles of a chi-square distribution with three degrees of freedom, the 
bootstrap-based quantiles with independent variables are slightly higher. How-
ever, they increase quite a bit as the variables have higher positive correlations, 
and decrease quite a bit as the variables have lower negative correlations. These 
could be cases of bivariate normality testing with two variables, as three simple 
linear combinations are generated with these two variables (l = 22 − 1 = 3). 

Table 3 shows the bootstrap-based quantiles for seven independent or de-
pendent (with an autocorrelation of −0.5, −0.25, 0.25 or 0.5 for a first-order lag) 
half-normally distributed variables and the quantiles corresponding to a 
chi-square distribution with seven degrees of freedom. It is also observed that 
the bootstrap-based quantiles with independent variables are slightly higher than 
those of the chi-square distribution with seven degrees of freedom. However, 
they increase greatly when the variables are positively correlated and decrease 
greatly when they are negatively correlated. These could be cases of the multiva-
riate normality test with three variables, since seven simple linear combinations 
are generated (l = 23 − 1 = 7). 

The test of the assumption of serial independence is performed after truncat-
ing the standardized values of the log-transformed W or W' statistics, and is 
therefore performed on the generative sequence of the 2k − 1 values zl or lz′ . 
These values are reconceptualized as random variables with one-case samples in  
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Table 2. Bootstrap-based quantiles (Monte Carlo simulation) and quantiles of chi-square 
distribution with 3 degrees of freedom. 

p Q 
ind ( )

2
3χ  

Rel. Q (variables with first-order lagged autocorrelations) 

−0.7 −0.6 −0.5 −0.4 −0.25 0.25 0.4 0.5 0.6 0.7 

0.05 0.367 0.352 0.005 0.072 0.132 0.172 0.286 0.343 0.468 0.445 0.372 0.196 

0.10 0.579 0.584 0.008 0.124 0.232 0.326 0.442 0.618 0.701 0.714 0.616 0.380 

0.20 0.996 1.005 0.014 0.216 0.401 0.557 0.792 1.116 1.200 1.144 1.063 0.822 

0.25 1.198 1.213 0.017 0.261 0.477 0.660 0.980 1.368 1.465 1.411 1.315 1.072 

0.30 1.425 1.424 0.020 0.304 0.580 0.757 1.122 1.614 1.739 1.675 1.617 1.292 

0.40 1.802 1.869 0.027 0.406 0.748 1.009 1.462 2.141 2.258 2.147 2.143 1.866 

0.50 2.271 2.366 0.036 0.502 0.925 1.324 1.868 2.665 2.848 2.755 2.760 2.493 

0.60 2.866 2.946 0.045 0.637 1.135 1.637 2.350 3.444 3.521 3.529 3.536 3.369 

0.70 3.538 3.665 0.058 0.788 1.428 2.040 2.884 4.224 4.419 4.444 4.345 4.482 

0.75 4.060 4.108 0.066 0.900 1.644 2.282 3.209 4.788 5.015 4.993 4.979 5.027 

0.80 4.586 4.642 0.077 1.002 1.888 2.601 3.707 5.469 5.754 5.625 5.609 5.821 

0.90 6.594 6.251 0.101 1.372 2.448 3.547 4.987 7.275 8.348 8.222 8.094 8.508 

0.95 8.322 7.815 0.133 1.723 3.261 4.455 6.388 9.072 10.50 10.25 10.76 11.39 

0.975  9.348           

0.99  11.34           

0.995  12.84           

Note: p = quantile order. Three truncated normal distributions (between the quantile of 
0.50 order and the quantile of 0.9999 order), i.e., three standard half-normal distributions 
(σ2 = 1), Ind Q = bootstrap-based quantiles for the test statistic or sum of squares of the 
three half-normally distributed variables when they are independent, and Rel Q when 
they are correlated (a first-order lag), ( )

2
3χ  = the pth quantiles of a chi-squared distribu-

tion with three degrees of freedom. In each simulation, the number of bootstrap samples 
was 1000. The sampling method was Latin hypercubes (number of sections = 500), and 
the correlation type was Spearman. Monte Carlo simulations were performed with 
XLSTAT version 24 [20]. 
 
Table 3. Bootstrap-based quantiles and quantiles of chi-square distribution with 7 de-
grees of freedom. 

p 
Ind 
Q ( )

2
7χ  

Rel. Q (variables with first-order lagged 
autocorrelations) 

−0.5 −0.25 0.25 0.5 

0.05 2.233 2.167 0.733 1.438 2.472 2.696 

0.10 2.767 2.833 0.977 1.915 3.369 3.381 

0.20 3.801 3.822 1.326 2.600 4.618 4.705 

0.25 4.155 4.255 1.472 2.886 5.064 5.344 
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Continued 

0.30 4.537 4.671 1.598 3.134 5.616 5.994 

0.40 5.451 5.493 1.837 3.601 6.668 7.017 

0.50 6.398 6.346 2.114 4.146 7.624 7.989 

0.60 7.455 7.283 2.498 4.898 8.712 9.346 

0.70 8.484 8.383 2.894 5.674 10.116 11.111 

0.75 9.061 9.037 3.138 6.154 10.778 12.132 

0.80 9.760 9.803 3.408 6.682 11.647 13.027 

0.90 11.957 12.017 4.151 8.140 14.284 16.200 

0.95 13.638 14.067 5.060 9.922 16.725 19.647 

0.975  16.013     

0.99  18.475     

0.995  20.278     

Note: p = quantile order. Seven truncated normal distributions (between the quantile of 
0.50 order and the quantile of 0.9999 order), i.e., seven standard half-normal distributions 
(σ2 = 1), Ind Q = bootstrap-based quantiles for the test statistic or sum of squares of the 
three half-normally distributed variables when they are independent, and Rel Q when 
they are correlated (a first-order lag), ( )

2
3χ  = the pth quantiles of a chi-squared distribu-

tion with three degrees of freedom. In each simulation, the number of bootstrap samples 
was 1000. The sampling method was Latin hypercubes (number of sections = 500), and 
the correlation type was Spearman. Monte Carlo simulations were performed with 
XLSTAT version 24 [20]. 
 
a cumulative sequence (k individual variables: z1, z2, …, zk, k(k − 1)/2 sums of 
two variables, kC3 sums of three variables, …, a sum of k variables), and this re-
conceptualization allows testing the hypothesis of independence by means of the 
Wald-Wolfowitz runs test [21]. If the null hypothesis of independence holds, the 
chi-square approximation with 2k − 1 − a degrees of freedom could be used. 
Here the reduction of the degrees of freedom (−a) is an operational correction. 

Usually, the assumption of random independence within a sequence of data is 
tested with a first-order lag, as does the Wald-Wolfowitz nonparametric test 
[20]. Another more comprehensive option to check serial independence is to 
specify lags from 1 to h and test for significance using the Ljung-Box Q-test [22], 
as well as the correlogram [23]. 

When considering that the autocorrelation values are required for the simula-
tion, it is recommended to use the Ljung-Box Q-test; all the more so, when it is 
the most powerful test of serial dependence in comparative studies [24]. This test 
has an assumption of bivariate normality in each autocorrelation, so its robust 
variant can be used, which consists of transforming the variable into ranks, using 
average ranks in the case of ties [25] [26]. Another option is to use the series 
without truncation. The maximum number of lags (h) for the Ljung-Box test can 
be estimated using the Hyndman-Athanasopoulos rule for nonstationary series 
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[27]: h = min (10, n/5), where n = 2k − 1. Another option would be the Schwert’s 
rule: h = 12 × (n/100)0.25 [28], widely used in econometrics [29], in turn, a num-
ber of lags from 5 to 10 is usually recommended for the correlogram [29]. 

In case of significance, the analysis is repeated with the simplified series 
(without zeros) from the ordinary Ljung-Box test (without transforming to 
ranks). If this second test is significant, the correlogram is used to obtain the 
significantly non-zero autocorrelations. In case the significance of the full se-
quence is not confirmed in the simplified sequence (used in the simulation), 
there is a situation of ambiguity, which is resolved in favor of non-significance. 
Because the bootstrap-based quantiles with medium or high negative correla-
tions go down a lot with respect to independent samples or up a lot with me-
dium or high positive correlations, it is not recommended to consider only the 
reduced sequence (without zeros). 

2.5. Statistical Decision with an Alpha Significance Level 

To make the statistical decision, tested the assumption of independence in the 
sequence of zl values, the critical level or probability value of the test statistic 
value conditional on the null hypothesis of multivariate normality is calculated 
from the point to infinity (right tail) in a chi-square distribution with 2k − 1 − a 
degrees of freedom. If P( ( )

2
1k aχ − −  ≥ q' o q) > α, the null hypothesis of multiva-

riate normality holds, since the test statistic value falls within the acceptance re-
gion: q' or q ≤ ( )

2
11 k aα χ − −− . Conversely, if P( ( )

2
1k aχ − −  ≥ q' o q) ≤ α, the null hypo-

thesis of multivariate normality is rejected, since the test statistic value falls 
within the rejection region: q' o q > ( )

2
11 k aα χ − −− . 

If the assumption does not hold, a simulation would be used to obtain the 
quantiles or critical values (percentiles) by generating at least 1000 bootstrap 
random samples. The sampling distribution of the 2k − 1 − a variables (non- 
negative zl values) would be truncated standard normal distribution (from quar-
tile of 0.5 order to quartile of 0.9999 order), i.e. standard half-normal distribu-
tion (with scale parameter σ = 1), and the outcome variable would be the sum of 
squares of the 2k − 1 − a half-normally distributed variables. The matrix is de-
fined with the significant autocorrelations (ar). If q' or q > P95 (bootstrap-based 
95th percentile), H0 is rejected. It should be noted that the discrepancy between 
the bootstrap-based quantiles (from a repeated sampling with replacement or 
Monte Carlo simulation) and quantiles of a chi-square distribution is not large 
in the case of the number of variables is high and the correlations low (ar < 
0.30). The bootstrap-based quantiles are higher if the correlations are positive 
and lower if they are negative, so that chi-square quantiles of order 0.975 (ar = 
0.25), 0.99 (ar = 0.3) and 0.995 (ar = 0.4) or 0.9 (ar = −0.25), 0.85 (ar = −0.3), 
and 0.8 (ar = −0.4) could also be used instead of 0.95 in case the simulation fails, 
because of its complexity. 

2.6. Effect Size 

The effect size can be calculated using the squared eta coefficient (η2) or its 
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square root which is the eta coefficient (η). Both vary from 0 (no effect or inde-
pendence) to 1 (total effect or dependence). Values of η2 less than 0.01 are 
usually considered trivial. Cohen [30] suggests interpreting η2 values between 
0.01 and 0.059 as a small effect size, between 0.06 and 0.139 medium, and greater 
than or equal to 0.14 large for analysis of variance. For multiple linear regres-
sion, the cut-off points suggested by Cohen [30] are: 0.02 (small), 0.13 (me-
dium), and 0.26 (large). A larger effect implies a larger deviation from the mul-
tivariate normality model in the test being proposed. 

( )
2

2 1k

Q Q
n gl n a

η
′ ′

= =
× − −

 o 
( )

2

2 1k

Q
n a

η =
− −

 

2.7. A Posteriori Type II Error and Statistical Power 

Type II error (β) and statistical power (ϕ = 1 − β) are calculated using the cu-
mulative distribution function of the noncentral chi-square distribution (NCχ2). 
Its degrees of freedom are the k-th power of 2 subtracting 1 and the number of 
null values, ν = 2k − 1 − a, and the non-centrality parameter is the squared eta 
coefficient multiplied by the sample size and degrees of freedom, λ = η2 × n × (2k 
− 1 − a) = q. The distribution function is evaluated at the critical value of the sta-
tistic Q or Q': 1−αχ2[2k − 1 − a], i.e., the quantile of order 1 −α of a chi-squared 
distribution with 2k − 1 − a degrees of freedom. 

( )( ) ( )2
2 2

1 2 12 1 , 2 1 kk k aa n a q
NC αυ λ η

β χ χ− − −= − − = × × − − =
=  

1φ β= −  

β = P(hold H0|H1 true) = the type II error or false negative error = the proba-
bility of holding the null hypothesis conditional on a true alternative hypothesis. 
When the null hypothesis is rejected due to a probability value less than the sig-
nificance level, p < α, the probability β should be less than 0.5 and preferably 
equal to or less than 0.2, evidencing low probability of a mistaken rejection. 
When the null hypothesis holds due to a probability value greater than or equal 
to the significance level α, p ≥ α, the probability β should be greater than 0.5, in-
dicating the low probability of the alternative hypothesis. 

ϕ = P(reject H0|H1 true) = statistical power or success in rejecting the null hy-
pothesis = probability of rejecting the null hypothesis conditional on a true al-
ternative hypothesis. When the null hypothesis is rejected due to a probability 
value less than the significance level, p < α, the statistical power should be great-
er than 0.5 and preferably equal to or greater than 0.8 (strong power) or 0.9 
(very strong power). When the null hypothesis holds due to a probability value 
greater than or equal to the significance level, p ≥ α, the statistical power should 
be less than 0.5, revealing the low probability of the alternative hypothesis. 

α = P(reject false H0|H1) = type I error or false positive error, which is also 
called significance level = the probability of rejecting the null hypothesis condi-
tional on a false alternative hypothesis and hence true null hypothesis. It is fixed 
a priori, usually with a value of 0.05. With small samples, it can be raised to 0.1 
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and with very large samples can be lowered to 0.01. 
1 −α = P(hold H0|H1 false) = success in holding the null hypothesis or confi-

dence level = the probability of holding the null hypothesis conditional on a false 
alternative hypothesis and hence true null hypothesis. If α = 0.05, then 1 −α = 
0.95. 

2.8. Example of Calculation of the Proposed Test 

Let be a random sample of 20 participants who were measured on four different 
variables (Table 4). Check whether the sample was drawn from a population 
with multivariate normal distribution of unknown parameters μ and Σ. 

( ) ( )0 1 2 3 4H : ~ ,x X X X X N µ= Σ
   

( ) ( )1 1 2 3 4H : ,Σx X X X X N µ=
 

  

The 15 unweighted linear combinations (by simple summation) of the four 
variables are calculated (l = 24 − 1 = 15). The 20 data of each linear combination 
of variables are sorted in ascending order (empirical quantiles). These data are  
 
Table 4. Data of the four variables in their random order. 

Participant X1 X2 X3 X4 

1 −0.354 −0.787 −0.360 −0.281 

2 0.008 −0.573 −1.045 0.627 

3 0.107 0.211 0.372 −0.473 

4 −0.142 1.940 −0.085 0.973 

5 −0.222 −0.081 1.395 −0.616 

6 1.629 0.540 0.215 −0.298 

7 0.020 0.225 −0.146 0.517 

8 0.482 −0.334 −0.032 0.001 

9 −0.487 1.702 −0.713 1.330 

10 −0.249 0.645 0.744 0.047 

11 −0.508 0.560 −1.148 0.473 

12 −1.756 −1.081 −1.560 1.406 

13 −1.091 0.288 0.588 0.078 

14 1.916 0.573 0.690 1.305 

15 1.493 −1.180 −0.288 0.197 

16 −0.337 −0.357 0.032 0.199 

17 0.559 −0.203 1.104 0.232 

18 0.463 −0.717 0.699 0.768 

19 1.633 −0.577 0.317 −0.118 

20 −0.670 1.591 −0.585 0.008 
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assigned ranks i from 1 to 20. The orders of the theoretical quantiles, denoted by 
pi, are obtained as a function of the order i, pi = (i − 0.375)/20.25. The theoretical 
quantiles, denoted by mi, are computed using the Probit function or quantile 
function of the standard normal distribution, mi = Φ−1(pi). Finally, the standar-
dized and normalized expected values, denoted by ai, are obtained using the 
Royston’s formulas [3], as can be seen in Table 5. 

On the one hand, the correlations between the empirical quantiles (of the 15 
linear combinations) and the standardized and normalized theoretical quantiles 
ai are calculated. It should be recalled that theoretical quantiles are the same for 
all 15 linear combinations. These squared correlation coefficients constitute the 
W test statistics of the Shapiro-Wilk univariate normality test [1]. A logarithmic 
transformation is applied to the W statistics, the mean and standard deviation of 
the transformation are calculated as a function of the sample size (n = 20), and 
the log-transformed statistics are standardized following the Royston’s proce-
dure [3]. See Table 6. 
 

Table 5. Linear combinations (of one and two variables) among the 4 variables with their values sorted in ascending order or em-
pirical quantiles and expected quantiles. 

i X1 X2 X3 X4 X1 + X2 … X1 + X2 + X3 + X4 pi mi ai 

1 −1.756 −1.180 −1.560 −0.616 −2.837  −2.990 0.031 −1.868 −0.473 

2 −1.091 −1.081 −1.148 −0.473 −1.141  −1.781 0.080 −1.403 −0.322 

3 −0.670 −0.787 −1.045 −0.298 −0.803  −0.983 0.130 −1.128 −0.256 

4 −0.508 −0.717 −0.713 −0.281 −0.694  −0.622 0.179 −0.919 −0.208 

5 −0.487 −0.577 −0.585 −0.118 −0.565  −0.462 0.228 −0.744 −0.169 

6 −0.354 −0.573 −0.360 0.001 −0.302  −0.137 0.278 −0.589 −0.134 

7 −0.337 −0.357 −0.288 0.008 −0.254  0.116 0.327 −0.448 −0.101 

8 −0.249 −0.334 −0.146 0.047 0.052  0.217 0.377 −0.315 −0.071 

9 −0.222 −0.203 −0.085 0.078 0.148  0.223 0.426 −0.187 −0.042 

10 −0.142 −0.081 −0.032 0.197 0.246  0.344 0.475 −0.062 −0.014 

11 0.008 0.211 0.032 0.199 0.313  0.476 0.525 0.062 0.014 

12 0.020 0.225 0.215 0.232 0.318  0.617 0.574 0.187 0.042 

13 0.107 0.288 0.317 0.473 0.356  1.187 0.623 0.315 0.071 

14 0.463 0.540 0.372 0.517 0.396  1.212 0.673 0.448 0.101 

15 0.482 0.560 0.588 0.627 0.921  1.255 0.722 0.589 0.134 

16 0.559 0.573 0.690 0.768 1.056  1.693 0.772 0.744 0.169 

17 1.493 0.645 0.699 0.973 1.214  1.831 0.821 0.919 0.208 

18 1.629 1.591 0.744 1.305 1.798  2.086 0.870 1.128 0.256 

19 1.633 1.702 1.104 1.330 2.169  2.686 0.920 1.403 0.322 

20 1.916 1.940 1.395 1.406 2.489  4.484 0.969 1.868 0.473 

Note: i = the order of the data when sorted in ascending order, pi = (i − 0.375)/20.25 = the order of the theoretical quantile [16], mi 
= Φ−1 (pi) = theoretical quantile under normal distribution [3] [4], ai = standardized and normalized theoretical quantile [3]. 
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Table 6. Statistics W and W' with their logarithmic transformation, standardization and truncation. 

l wl ln(1 − wl) ( )ln 1 lWz −  zl lw′  ln(1 – w') ( )ln 1 lWz ′−  
lz′  

1 X1 0.939 −2.793 0.749 0.749 0.939 −2.801 0.839 0.839 

2 X2 0.941 −2.832 0.669 0.669 0.950 −2.986 0.508 0.508 

3 X3 0.986 −4.253 −2.194 0 0.989 −4.500 −2.203 0 

4 X4 0.946 −2.927 0.478 0.478 0.958 −3.169 0.181 0.181 

5 X1 + X2 0.962 −3.276 −0.225 0 0.951 −3.023 0.442 0.442 

6 X1 + X3 0.975 −3.699 −1.079 0 0.973 −3.607 −0.604 0 

7 X1 + X4 0.940 −2.809 0.716 0.716 0.936 −2.754 0.924 0.924 

8 X2 + X3 0.943 −2.859 0.615 0.615 0.945 −2.903 0.658 0.658 

9 X2 + X4 0.907 −2.376 1.588 1.588 0.913 −2.437 1.492 1.492 

10 X3 + X4 0.951 −3.024 0.282 0.282 0.958 −3.163 0.192 0.192 

11 X1 + X2 + X3 0.941 −2.825 0.683 0.683 0.924 −2.576 1.242 1.242 

12 X1 + X2 + X4 0.939 −2.790 0.754 0.754 0.939 −2.795 0.850 0.850 

13 X1 + X3 + X4 0.966 −3.372 −0.419 0 0.959 −3.199 0.126 0.126 

14 X2 + X3 + X4 0.958 −3.166 −0.004 0 0.969 −3.475 −0.368 0 

15 X1 + X2 + X3 + X4 0.979 −3.866 −1.415 0 0.964 −3.332 −0.111 0 

Note: l = the order of the simple linear combination in its generative sequence, wl = the Shapiro-Wilk W-test statistic of the lth 
combination, ln(1 − wl) = the log-transformation of wl statistic, ( )ln 1 lWz −  = the standardized value of the log-transformation of wl 

statistic, zl = the standardized and truncated value of the log-transformation of wl statistic (zl = 0, if ( )ln 1 0
lWz − < ), lw′  = the Sha-

piro-Francia W' test statistic of the lth combination, ln(1 − wl) = the log-transformation of lw′  statistic, ( )ln 1 lWz ′−  = standardized 

value of the log-transformation of lw′  statistic, lz′  = the standardized and truncated value of the log-transformation of lw′  
statistic ( 0lz′ = , if ( )ln 1 0

lWz ′− < ). 
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( )
( ) ( )

( )

( ) ( )
1

1 ln 1
ln 1

ln 1

ln 1 ln 1 0.9387 3.1642
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2.7927 3.1642 0.7488
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On the other hand, the correlations between the empirical quantiles of the 15 
linear combinations and the theoretical quantiles mi that are common to the 15 
combinations are calculated. These squared correlation coefficients constitute 
the W' test statistics of the Shapiro-Francia univariate normality test [2]. A loga-
rithmic transformation is applied to the W' statistics, the mean and standard 
deviation of the transformation are calculated as a function of the sample size (n 
= 20), and the log-transformed statistics are standardized following the Roys-
ton’s procedure [4]. Finally, the negative values of ( )ln 1 lW−  and ( )ln 1 lW ′−  
are cancelled, which affects six values in the first case and four in the second, re-
sulting in the sequences zl and lz′ . See Table 6. 
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( ) ( ) ( ) ( )ln ln ln ln ln 20 ln 20 1.8985u n n= − = − = −        

( ) ( )ln 1 1.0528 1.2725 1.0528 1.8985 1.2725 3.26996W uµ ′− = − = × − − = −  

( )( ) ( ) ( )( ) ( )ln ln 2 ln ln ln 20 2 ln 20 1.7648v n n= + = + =  

( )ln 1 0.26758 1.0308 0.26758 1.7648 1.0308 0.5586W vσ ′− = − + = − × + =  
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The assumption of independence between the 15 values of zl (standardized 
and truncated values of the log-transformed W statistics) and lz′  (standardized 
and truncated values of the log-transformed W' statistics) is tested using the 
Wald-Wolfowitz runs test from the exact probabilities at a 10% significance level 
due to the small sizes of the sequences (15 elements). The hypothesis holds at the 
10% significance level in a two-tailed test for both sequences (in its generative 
order). The exact probabilities are the same for both sequence of values zl and 

lz′ , since the number of runs (r = 8), number of values zl or lz′  less than their 
median (no = 7) and greater than or equal to their median (n1 = 8) coincide: 
point probability, P(R = 8) = 0.2176, probability to the left tail, P[R ≤ 8 = 
Mdn(R)] = 0.5136, probability to the other tail, P(R > 8) = 0.4864, and probabil-
ity to two tails, P(R ≤ 8) + P(R > 8) = 0.5136 + 0.4864 = 1 > α = 0.10. 

In turn, the independence assumption is tested using the Ljung-Box test. The 
lag order was determined using the Hyndman-Athanasopoulos criterion for 
non-stationary series: h = min(10, n/5) = min(10, 15/5) = 3. The test is not sig-
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nificant at the 10% significance level for either sequence with a third-order lag. 
A visual inspection of the two correlograms with a maximum lag of 7 

(Schwert’s criterion) reveals no significant autocorrelation, since the bars lie in 
the space between the upper and lower limits of 90% confidence intervals of null 
autocorrelations with lags from 1 to 7. See Figure 1. 

( ) ( )1 4 1 412 100 12 15 100 7.46 7h n= × = × = =  

Lung-Box test applied to the zln(1−W) sequence (from the Shapiro-Wilk W sta-
tistics) 

( )
2 2 2 2

1

0.0391 0.0457 0.09892 15 17 0.0279
14 13 12

h
i
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i
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Q n n

n i=

 −
= + = × × + + = −  

∑  

2 2
1 0.90 30.0279 6.2514LB hq α χ χ−= < = =  

y ( )2
3 0.0279 0.9988 0.10LBP qχ α≥ = = > = , se mantiene H0:  

1 2 3 0ρ ρ ρ= = = . 
 

 
 

 
Figure 1. Correlograms with interpretation limits with a 90% confidence level. 
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Lung-Box test applied to the zln(1−W') sequence (from the Shapiro-Francia W' 
statistics). 

( )
2 2 2 2

1

0.0357 0.0489 0.11352 15 17 0.0232
14 13 12

h
i

LB
i

ar
Q n n

n i=

 −
= + = × × + + = −  

∑  

2 2
1 0.90 30.0232 6.2514LB hq α χ χ−= < = =  

y ( )2
3 0.0232 0.9991 0.10LBP qχ α≥ = = > = , se mantiene H0:  

1 2 3 0ρ ρ ρ= = = . 
With the robust Ljung-Box test [25] [26], the null hypothesis of independence 

also holds for the sequence zl (Qr = 0.338, p = 0.953) and lz′  (Qr = 0.620, p = 
0.892) with third-order lag. 

Next, the sums of squares of zl and lz′  are performed, yielding the test statis-
tics q and q', respectively. Since the assumption of independence holds, these 
two sums of squares follow a chi-square distribution. The degrees of freedom are 
9 for Q-test (from the zl statistics) and 11 for Q'-test (from the lz′  statistics). 
Since the values of the test statistics q and q' are less than their corresponding 
critical values and their probability values under the null hypothesis of multiva-
riate normality are greater than the 5% significance level, the null hypothesis is 
maintained with both versions of the proposed test. 
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( )2
9 5.7636 0.7633 0.05P qχ α≥ = = > =  

( ) ( )
2 1 152 2

1 1
2 2 2 2 2 2

2 2 2 2 2

0.8388 0.5081 0 0.1805 0.4418 0 0.9239 0.6576
1.4918 0.1916 1.2416 0.8499 0.1262 0 0

7.0174

k

l l
l l

Q z z
−

= =

′ ′ ′= =

= + + + + + + +

+ + + + + + +
=

∑ ∑
 

42 1 2 1 4 16 1 11kdf a= − − = − − = − =  
2 2

1 0.95 112 1 4
7.0174 19.6751kq α χ χ− − −

′ = < = =  

( )2
11 7.0174 0.7977 0.05P qχ α′≥ = = > =  

The effect size is calculated, which is small in both versions of the proposed 
test. 

( )
2 5.7636 0.0320

20 92 1k

Q Q
n gl n a

η = = = =
× ×− −
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( )
2 7.0174 0.0319

20 112 1k

Q Q
n gl n a

η
′ ′

= = = =
× ×− −

 

The type II error is very high (β > 0.5) and the statistical power very low (ϕ = 
1 − β < 0.5), which indicates that the alternative hypothesis is very unlikely and 
the null hypothesis of multivariate normality should be maintained with both 
versions of the proposed test. The version with the Shapiro-Wilk W statistic [3] 
seems slightly better than with the Shapiro-Francia W' statistic [4] in terms of 
type II error and statistical power. 

Calculation of type II error and statistical power for Q-test (from Shapi-
ro-Wilk W statistics). 

( )( ) ( )2
2 2

1 2 12 1 , 2 1 kk k aa n a q
NC αυ λ η

β χ χ− − −= − − = × × − − =
=  

( ) ( )2 2
0.95 99, 5.7636 16.9190 0.6750NC υ λβ χ χ= == = =  

1 1 0.6750 0.3250φ β= − = − =  

Calculation of type II error and statistical power for Q'-test (from Shapi-
ro-Francia W' statistics). 

( ) ( )2
2 2

1 2 12 1, (2 1) kk kn q
NC αυ λ η

β χ χ− −′= − = × × − =
=  

( ) ( )2 2
0.95 1111, 7.0174 16.9190 0.6360NC υ λβ χ χ= == = =  

1 1 0.6360 0.3640φ β= − = − =  

3. Method 
3.1. Sample Generation and Statistical Analysis 

In the present simulation study, only samples of 20 elements for four variables 
were analyzed, so it is a pilot study of the proposal. The small size of 20 was 
chosen as it is the minimum recommended for normality tests and with which 
the statistical power and discriminative capacity of the tests can be more com-
promised. Four variables were chosen as this is an easily manageable small 
number. 

Fifty samples of 20 elements and 4 variables were generated. On the one hand, 
40 samples were created. Four random variables with standard continuous uni-
form distribution U[0, 1] were used as a starting point to obtain variables with a 
standard normal distribution: xi = Φ−1(pi); with a good distributional conver-
gence to normality: chi-square with 100 degrees of freedom, 2

100ip χ , Student’s t 
with 100 degrees of freedom, 100ip t , and binomial B(pi, 0.5, 20); with a distribu-
tion close to normality: standard logistic distribution: xi = ln[pi/(1 − pi)]; and 
with distributions far from normality: exponential with parameter λ = 1: xi = 
ln(pi), standard Cauchy distribution: xi = tan[π × (pi − 0.5)], standard log normal 
distribution: exp(Φ−1(pi)), standard Laplace distribution: xi = −1 × sign(pi − 0.5) 
× ln(1 − 2 × |pi − 0.5|), and binomial: xi = B(pi, 0.1, 10). Samples with four cor-
related normally distributed variables were obtained using Cholesky decomposi-
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tion of covariance matrices with moderate to high correlations. In addition, 10 
more samples were created. Eight standard continuous uniform variables were 
used to generate eight independent normal variables (Z), and from their trans-
formation, independent non-normal distributions were obtained: inverse nor-
mal (Z−1 = 1/Z), chi-square with one degree of freedom (Z2), chi-square with two 
degrees of freedom ( 2 2

1 2Z Z+ ), chi-square four degrees of freedom  
( 2 2 2 2

1 2 3 4Z Z Z Z+ + + ), and Cauchy distribution (Z1/Z2). 
It was considered that the normality hypothesis should hold in the following 

situations (10 samples, 20%): 
 Seven samples with normal variables (3 samples with the four independent 

variables and 4 samples with the four correlated variables). 
 Three samples with a good convergence to multivariate normality: four va-

riables following a Student’s t-distribution with 100 degrees of freedom, four 
variables following a chi-square distribution with 100 degrees of freedom, 
and four variables following a binomial distribution B(n = 20, p = 0.5). 

Conversely, it should be rejected in the following situations (40 samples, 80%): 
N = normal, E = exponential, LogN = log normal, Logist = logistic, Lap = Lap-
lace, C = Cauchy, B(n, p) = binomial with n independent trials and constant 
probability of success p, N−1 = 1/N = inverse normal and ( )

2
νχ  = chi-square 

with ν degrees of freedom. 
 Three variables with normal distribution and one without normal distribu-

tion (the preceding number indicates the number of variables, but if there is 
only one variable, the number is omitted): 3NE, 3NC, 3NLogN, 3NN−1, 

( )
2
23Nχ , ( )

2
13Nχ , and 3NCauchy. 

 Two independent variables with normal distribution and two without normal 
distribution (if the subscripts match, they are related, and if they do not 
match or have no subscripts, they are independent): 2NE1C1, 2NE1LogN1, 
2NC1LogN1, 2NE2C2, 2NE2Log2, 2NC2LogN2, 2NE3C3, 2NE3LogN3. 2NC3LogN3, 
2NE4C4, 2NE4LogN4, 2NC4LogN4, 2NE1C3, 2NE1LogN3, 2NC1LogN3, 2NE2C1, 
2NE2LogN1, 2NC2LogN1, ( )

2
22N2χ , ( )

2
42N2χ , ( )

2
12N2χ , and 2N2C. 

 One variable with normal distribution and three without normal distribution: 
N1E1C1LogN1, N2E2C2LogN2, N3E3C3LogN3, N4E4C4LogN4, and N1E2C3LogN4. 

 Four independent variables with no normal distribution: 4E, 4C, 4LogN, 
4Logist, 4Lap, and 4B (n = 10, p = 0.1). 

On the one hand, the probability of the correct decision conditional on the al-
ternative hypothesis is calculated. When the null hypothesis must be retained, 
this probability is the type II error or probability β, and when it must be rejected, 
it is the statistical power or complement of the beta probability: ϕ = 1 − β. The 
comparison of measures of central tendency in β or ϕ values among six samples 
is performed using the Friedman’s test [31]. Effect size is calculated using the 
Kendall’s W coefficient of concordance [32]. Pairwise comparisons are per-
formed using the Wilcoxon’s signed-rank test [33], estimating the effect size by 
the Rosenthal’s r coefficient [34]. The Sidak’s correction is applied with the 
Holm’s procedure to control for the family error rate [35] [36]. These compari-
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sons are made with the 50 multivariate samples (β and ϕ), with 40 multivariate 
samples that deviate from multivariate normality (β), and with the 10 multiva-
riate samples that follow or have a with good convergence to multivariate nor-
mality (ϕ). 

On the other hand, the frequency of successes among the six tests was com-
pared using the Cochran’s Q test [37] with the 50 multivariate samples. Effect 
size was estimated by the eta-squared coefficient [38]. Pairwise comparisons 
were performed using the McNemar’s test [39], and the effect size was calculated 
by the Cohen’s q statistic (1988). The Sidak’s correction with the Holm’s proce-
dure was applied to control the error rate by family [35] [36]. In addition, 2 × 2 
tables were computed for each of the six tests with respect to the decision on null 
hypothesis. From these tables, point and interval estimates of sensitivity, speci-
ficity and efficacy were calculated for each of the 50 multivariate samples gener-
ated, using the Wilson’s confidence interval score with the Newcombe’s conti-
nuity correction [40] [41]. Pairwise comparisons between these correlated pro-
portions were performed using the McNemar’s Z-test [39]. 

A final analysis involved creating a variable of ordered categories by classify-
ing the 50 multivariate samples generated by their deviation from multivariate 
normality. Five levels of deviation were defined. The ordinal variable was corre-
lated with the critical level or probability value of each of the six multivariate 
normality tests, that is, with the probability associated with a critical region 
bounded by the observed value of the test statistic under the assumption that the 
null hypothesis is true within a known distribution (normal for the multivariate 
runs test and chi-square for the other tests). The more negative this correlation 
is (closer to −1), the better the multivariate normality test. Correlations were 
calculated by the Spearman’s rank coefficient [42]. The confidence interval was 
estimated with the Fisher’s transformation [43] and the Bonett-Wright standard 
error [44]. Comparisons were made using the Steiger’s Z-test [45], following the 
suggestion of Myers and Sirois for the Spearman’s correlation [46]. 

3.2. Multivariate Normality Tests with Which the New Proposal Is  
Compared 

The calculation of the test statistic, the probability value for the statistical deci-
sion at the α level of significance, the effect size, the type II error, and the statis-
tical power of the four tests with which the new proposal is compared are shown 
below. It starts with the omnibus test based on the multivariate skewness and 
kurtosis [5] [6] [7]. It continues with the runs Z-test for multivariate normality 
[8] [9], and ends with Royston’s test [10] based on the H statistic (with the 
transformation and standardization of the W statistic of Royston [3]) and the H' 
statistic (with the transformation and standardization of the W' statistic of 
Royston [4]). 

3.2.1. Mardia’s Omnibus Test of Multivariate Normality 
The Mardia’s test starts from the square matrix of order n of standardized dis-
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tances or moments, denoted by M. This is obtained by the product among the 
rectangular matrix of order n × k of differential scores (D), the square matrix of 
order k of the inverse of sample covariance matrix (S−1), and the rectangular ma-
trix of order k × n of the transpose of the matrix of the differential scores (DT), 
where n is the number of participants and k the number of variables. 

( )
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Test statistics and sampling distribution 
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2 2
MVNK Q Z= +  

( )( )
2 2

1 2
1

6

~MVN k k kK χ + + 
+  

 

 

Statistical decision under the null hypothesis of multivariate normality with a 
given level of significance (alpha). 

( )( )
2 2

1 2
1

6

MVNk k kP Kχ α+ + 
+  

 

 
 ≥ ≥
 
 

, H0 is accepted; and α< , H0 is rejected. 

The effect size estimated using the eta-squared coefficient. 
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2 2
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1
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n
η = =

× + + 
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Type II error and statistical power calculated using the cumulative distribu-
tion function of a noncentral chi-squared distribution. 

( )( ) ( )( )2 2

2 2
11 2 1 2

1 , 1
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1φ β= −  

3.2.2. Royston’s Multivariate Normality Test and Its Two Variants 
To obtain the test statistic H (from Shapiro-Wilk W statistics) or H' (from Sha-
piro-Francia W' statistics), the following formulas are used [10]: 

1
k

jje
H

k

ψ
==

∑
 

( ) ( )( )
2

1 1
2

0.5 , 1, 2, ,j
j j j

z
z k

z
ψ − −

  
   = = × =    

Φ


Φ −
Φ Φ −   

Φ−1 = the probit function or quantile function associated with a standard 
normal distribution, and Φ = the cumulative distribution function of a standard 
normal variable. 
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ln 1
j

j
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σ
′−

′−

′− −
′ =  

The formulas for obtaining the mean (μ) and standard error (σ) for ln(1 − Wj) 
are given in Royston [3] and for ( )ln 1 jW ′−  in Royston [4], and are shown in 
Section 2.3. 
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If 10 2000n≤ ≤ , then 5λ = , 0.715µ = , and  
( ) ( )2 30.21364 0.015124 ln 0.0018034 lnn n nυ = + − . 

The sampling distribution of the test statistic H or H' is a chi-square distribu-
tion with e degrees of freedom: 2~ eH χ  and 2~ eH χ′  

The statistical decision under the null hypothesis of multivariate normality at 
a given significance level is taken one-sided to the right tail. 

If ( )2
eP Hχ α≥ ≥ , H0 is accepted, and α< , is rejected. 

If ( )2
eP Hχ α′≥ ≥ , H0 is accepted, and α< , is rejected. 

The size of the effect is estimated using the eta-squared coefficient. 

2 H H
n gl n e

η = =
× ×

 2 H H
n gl n e

η
′ ′

= =
× ×

 

Type-II error or probability β and statistical power ϕ are calculated using the 
cumulative distribution function of a non-central chi-square distribution (NCχ2): 
degrees of freedom (df) = e, and non-centrality parameter (NCP) = η2 × n × e = 
H. Its argument is the critical value for the statistics h or h': 2

1 eα χ− . 

( )
( )2

2 2
1,

1 1
k edf e NCP n e

k c

NC αη
β χ χ−

= = = × ×
+ −

=  

1φ β= −  

3.2.3. Runs Test for Multivariate Normality 
A network diagram is a set of points connected by non-directional lines. In this 
type of diagram, the points are called nodes and the lines connecting the points 
are called edges. Each edge has a weight or value corresponding to the distance 
between the two nodes it connects, and is denoted by wi. In the present work, 
such weight is calculated through the Euclidean distance formula. Let the ran-
dom vectors x  and y . 

( )1 2 kx x x x=


  
( )1 2 ky y y y=
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( ) ( ) ( ) ( )2 22 2
1 1 2 21i i i k

k
kiw x y x y x y x y

=
= − = − + − + + −∑   

A spanning tree is a subset of nodes connected without the chain of connec-
tions returning to the origin. When the chain of connections is closed, returning 
to the origin, it is referred to as a cycle. As the nodes are numbered from 1 to n 
(random sampling order of the n score vectors or n data tuples), the root of the 
spanning tree is the node that receives no connections. A minimum spanning 
tree is the one that has the smallest sum of the weights of its edges. This may be 
unique or there may be more than one in a network diagram [8]. 

In the multivariate runs test applied to multivariate normality [8] [9], the 
random vector x  corresponds to sample data and the random vector y  is 
generated from a multivariate normal distribution, whose location parameter µ  
is estimated with the vector of sample means x  and its scale parameter Σ is es-
timated with the sample covariance matrix S of the vector x . 

( )R RZ R µ σ= −  

0 1 1R
n n

n
µ = +  

( ) ( )( ) ( )( )0 1 0 1
0 1

2 2 2 1 4 2
1 2 3R

n n n n n c n n n n n
n n n n n

σ
 − − +

= + − − + 
− − −  

 

n0 = the number of empirical k-dimensional tuples or k-dimensional vectors. 
n1 = the number of theoretical or generated tuples under a multivariate nor-

mal distribution model with the sample mean vector x  as the estimator of the 
location parameter µ  and the sample covariance matrix of the vector x  as 
the estimator of the scale parameter Σ. 

0 1 02n n n n= + = ×  

r = the number of separate trees that result when any edge (line) in the mini-
mum spanning tree between nodes of different (empirical vs. theoretical) sam-
ples is removed. 

c = the number of pairs of edges (links or lines) sharing a common node 
(point) in the network diagram (points joined by lines). 

( )
1

1 1
2

n

i i
i

c d d
=

= −∑  

di = the degree of node i (i = 1, 2, … n) in the minimum spanning tree within 
the network diagram or number of edges connected to node i. 

The n1 theoretical tuples are generated from the vector of sample means, the 
sample covariance matrix and the lower triangular matrix of the Cholesky’s de-
composition of the sample covariance matrix. 

Vector of sample means: ( )1 2
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Lower triangular matrix of the Cholesky’s decomposition of the sample cova-
riance matrix: 

11

21 22

1 2

0 0
0 k k

k k kk

c
c c
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c c c

×
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TS C C=  

( ) ( )1 2 , ~ 0,1k
k iz z z z z N= ∈ ∀ 

  

Vector of scores generated from multivariate normal distribution: 

( )~ ,ky m Cz N µ= + ∈ Σ

    

The test statistic and its sampling distribution which is a standard normal dis-
tribution. 

( ) ( )~ 0,1R RZ R Nµ σ= −  

The statistical decision under the null hypothesis of multivariate normality at 
a given significance level is made for a left-tailed test. If P(Z ≤ z) ≥ α, H0 is ac-
cepted; and <α, H0 is rejected. 

The effect size can be estimated using Rosenthal’s r correlation coefficient. 

1 2r z n z n n= = +  

The calculation of the type II error or probability β and the statistical power ϕ 
is left-tailed in accordance with the calculation of the probability value or critical 
level. 

1 R RR zαµ σ= +  

1 1
1 11

R R

R R R RP Z z P Z zβ
σ σ

   − −
= ≥ = = − ≤ =   

   
 

( )11 P Z zφ β= − = ≤  

4. Results 
4.1. Comparison of the Probability of the Correct Decision  

Conditional on the Alternative Hypothesis among the Six  
Multivariate Normality Tests 

Table 7 shows the statistical power values ϕ when the generated samples are 
drawn from a population without multivariate normality, corresponding to 40 
random samples. The tests are expected to reject the null hypothesis of multiva-
riate normality. Probability β appears when the generated samples have been 
drawn from a population with multivariate normality (sample #6 = 4N inde-
pendent, sample #7 = 4N related, sample #32 = 4N related, sample #33 = 4N re-
lated, sample #34 = 4N related, sample #41 = 4N independent, and sample #46 = 
4N independent) or with a good convergence to multivariate normality (sample 
#38 = 4t[ν = 100] independent, sample #39 = 4χ2[ν = 100] independent, and  
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Table 7. Probability of the correct decision conditional on the alternative hypothesis of the six multivariate normality tests. 

Sample Pr. 
Proposed Mardia SJ Royston 

Q' Q K2 Z H H' 

1 N1E1C1L1 ϕ 0.9996 0.9989 1 0.9998 0.9219 0.8884 

2 N2E2C2L2 ϕ 1 0.9999 1 0.9993 0.9451 0.9244 

3 N3E3C3L3 ϕ 1 1 1 0.9978 1 0.9999 

4 N4E4C4L4 ϕ 1 1 0.9995 0.9999 0.9730 0.9582 

5 N1E2C3L4 ϕ 1 1 0.9890 0.6167 1 0.9999 

6 N1N2N3N4 β 0.7516 0.8587 0.2687 0.9755 0.6176 0.6185 

7 4N rel. β 0.9334 0.9500 0.3671 0.8404 0.8677 0.8492 

8 4E ind ϕ 1 1 0.9974 0.7330 1 0.9999 

9 4C ind ϕ 1 1 0.9849 0.8269 1 1 

10 4L ind ϕ 1 1 0.9999 0.8264 1 1 

11 N1N2E1C1 ϕ 0.9975 0.9793 0.9998 0.9993 0.8687 0.8171 

12 N1N2E1L1 ϕ 0.9885 0.9968 0.9971 0.9998 0.7969 0.7385 

13 N1N2C1L1 ϕ 0.9985 0.9888 1 0.9999 0.9175 0.8889 

14 N1N3E2C2 ϕ 0.9967 0.9621 0.9970 0.9981 0.9623 0.9490 

15 N1N3E2L2 ϕ 0.9975 0.9976 0.9996 0.9876 0.9355 0.9154 

16 N1N3C2L2 ϕ 0.9998 0.9942 0.9998 0.6161 0.9899 0.9828 

17 N1N4E3C3 ϕ 1 1 1 0.9979 1 0.9998 

18 N1N4E3L3 ϕ 1 1 0.9702 0.9946 0.9995 0.9982 

19 N1N4C3L3 ϕ 1 1 1 0.9870 1 0.9999 

20 N2N3E4C4 ϕ 0.9800 0.9545 0.9904 0.8979 0.9766 0.9663 

21 N2N3E4L4 ϕ 1 1 0.9798 0.0500 0.9816 0.9898 

22 N2N3C4L4 ϕ 0.9988 0.9978 0.9938 0.4893 0.9909 0.9846 

23 N2N4E1C3 ϕ 1 1 0.8843 0.9872 0.9989 0.9964 

24 N2N4E1L3 ϕ 1 1 0.9666 0.7357 0.9994 0.9976 

25 N2N4C1L3 ϕ 1 1 0.9865 0.3634 0.9996 0.9987 

26 N3N4E2C1 ϕ 1 0.99998 0.9321 0.3630 0.9738 0.9667 

27 N3N4E2L1 ϕ 0.9951 0.9954 0.9393 0.6199 0.9915 0.9874 

28 N3N4C2L1 ϕ 0.9997 0.9983 0.9953 0.3637 0.9907 0.9859 

29 3NE rel ϕ 0.5444 0.5842 0.4909 0.2515 0.5685 0.4633 

30 3NC rel ϕ 0.9572 0.8650 0.7551 0.1591 0.6984 0.6555 

31 3NL rel ϕ 0.6181 0.6983 0.6562 0.9432 0.8009 0.7332 

32 4N rel β 0.8822 0.8796 0.2782 0.6377 0.9013 0.9077 
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Continued 

33 4N rel β 0.9082 0.9249 0.0612 0.8409 0.8526 0.8496 

34 4N rel β 0.8344 0.6814 0.4174 0.7505 0.6934 0.7279 

35 4Logist ind ϕ 0.3846 0.3538 0.7429 0.0109 0.5109 0.5171 

36 4Lap ind ϕ 0.6833 0.7130 0.8456 0.0109 0.8250 0.8092 

37 4B (10, 0.1) ind ϕ 1.0000 1.0000 0.7956 0.0108 0.9999 0.9996 

38 4t [100] ind β 0.7194 0.6863 0.4734 0.9998 0.8090 0.7993 

39 4χ2 [100] ind β 0.6423 0.6945 0.4215 0.9890 0.7484 0.7466 

40 4B (20, 0.5) ind β 0.3549 0.3628 0.3415 0.9891 0.4726 0.5652 

41 4N ind β 0.6360 0.6750 0.2585 0.7481 0.6993 0.7342 

42 2N2N−1 ind ϕ 1 1 1 0.9993 1 0.9999 

43 2N2χ2 (2, 4) ind ϕ 0.7991 0.8737 0.8159 0.0936 0.9203 0.8948 

44 2N2χ2 [1] ind ϕ 0.9991 0.9997 0.9166 0.1598 0.9978 0.9947 

45 2N2C ind ϕ 0.9996 0.9978 0.6199 0.2506 0.9750 0.9601 

46 4N ind β 0.4665 0.3009 0.5901 0.9755 0.8038 0.8033 

47 3N1N−1 ind ϕ 1 1 0.9999 0.9998 0.9995 0.9981 

48 3N1χ2 [2] ind ϕ 0.7880 0.8968 0.3631 0.2504 0.8121 0.7306 

49 3N1χ2 [1] ind ϕ 1 0.9972 0.9449 0.0500 0.9877 0.9733 

50 3N1C ind ϕ 1 1 0.9872 0.9946 0.9946 0.9868 

Note: Multivariate samples extracted from: N = standard normal distribution, E = exponential distribution with inverse scale pa-
rameter λ = ½, C = standard Cauchy distribution, L = standard LogNormal distribution, B(n, πsucces) = binomial distribution with 
parameters n (number of trials) and p (probability of success), χ2[ν] = chi-square distribution with ν degrees of freedom, t[ν] = 
Student’s t distribution with ν degrees of freedom, Lap = standard Laplace distribution, N−1 = inverse normal distribution, and 
Logist = standard logistic distribution; ind = independent variables, rel = correlated variables. The preceding number is the num-
ber of variables with the same type of distribution. When the number of the variable subscripts matches, the corresponding va-
riables are correlated. Pr = the probability of the correct decision conditional on the alternative hypothesis; when the null hypo-
thesis of multivariate normality must be accepted, this probability is the type II error or beta probability (β), and when the null 
hypothesis must be rejected, it is the complement of the beta probability or statistical power (ϕ). Tests: the proposed Q-test from 
the Shapiro-Wilk W-statistics [3] and the proposed Q' test from the Shapiro-Francia W' statistics [4], Mardia: K2 = Q + Z2 = mul-
tivariate normality omnibus statistic [7], SJ = multivariate runs test applied to the multivariate normality by Smith and Jain [8] 
[9], which is a left-tailed Z-test, and the Royston’s H-test from the Shapiro-Wilk W-statistics [3] [10] and the H'-test from the 
Shapiro-Francia W' statistics [4] [10]. Probability values were rounded to 4 decimal places, so the 1’s are an artifact of rounding. 

 
sample #40 = 4B[n = 20, πsuccess = 0. 5] independent). With these 10 random 
samples, the tests are expected to sustain the null hypothesis of multivariate 
normality. 

None of the six distributions of the β or ϕ probabilities corresponding to the 
six multivariate normality tests applied to the 50 generated multivariate samples 
followed a univariate normal distribution checked using the Shapiro-Wilk 
W-test (Royston, 1992) and D’Agostino-Berlanger-D’Agostino K2-test at a 5% 
significance level. The distributions showed a U-shaped profile with elevations at 
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both ends and a depression in the center. All of them had negative skewness (left 
tail longer than right tail), three had positive excess kurtosis or heavy tails (Q, Q' 
and H'), one had negative excess kurtosis or shortened tails (Smith-Jain), and 
two had zero excess kurtosis (Mardia and H). See Table 8 and Table 9. 

Nor did any of the ϕ probabilities of the six multivariate normality tests ap-
plied to the 40 multivariate samples drawn from populations without multiva-
riate normality followed a univariate normal distribution either by the Shapi-
ro-Wilk W-test [3] or D’Agostino-Berlanger-D’Agostino K2-test at the 5% signi-
ficance level [47]. Five of their distributions showed negative skewness with an 
elongated profile of increasing staircase slope to the right, except for the distri-
bution of ϕ probabilities from the runs test which showed symmetry. The profile 
of five of the six distributions was leptokurtic or thick-tailed, except for the pro-
file of the runs test, which was platykurtic or thin-tailed. See Table 8 and Table 
9. 

However, the distributions of the β probabilities of four of the six multivariate 
normality tests applied to the 10 multivariate samples (drawn from populations 
with multivariate normality or with good convergence to it) were fitted to a  
 
Table 8. Check of univariate normality using the Shapiro-Wilk test. 

n Statistic 
Proposal Mardia’s SJ Royston’s 

Q' Q K2 Z H H' 

50 

W 0.6494 0.6325 0.7488 0.8046 0.7675 0.8001 

Z 5.9769 6.0772 5.2658 4.7306 5.1013 4.7790 

p <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Normality no no no no no no 

40 

W 0.4679 0.4751 0.6446 0.8279 0.6718 0.7056 

Z 6.2316 6.1915 5.5607 4.0350 5.3934 5.1648 

p <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Normality no no no no no no 

10 

W 0.9287 0.8735 0.8765 0.7942 0.9634 0.9746 

Z 0.1642 1.2270 1.1811 2.2472 −0.9280 −1.4755 

p 0.4348 0.1099 0.1188 0.0123 0.8233 0.9300 

Normality yes yes yes no yes yes 

Note. n = sample size, W = the Shapiro-Wilk test statistic, Z = the standardized value of 
log-transformed W statistics using the Royston’s formulas [3], p = right-tailed probability 
value under standard normal distribution, and Normality: yes when p < α = 0. 05 for n = 
50 and 40 and 0.1 for n = 10, no when p ≥ α. Multivariate normality tests: the proposed 
Q-test from the Shapiro-Wilk W-statistics [3] and the Q'-test from the Shapiro-Francia 
W' statistics [4], Mardia: K2 = Q + Z2 = multivariate normality omnibus statistic [7], SJ = 
multivariate runs test applied to the multivariate normality by Smith and Jain [8] [9], 
which is a left-tailed Z-test, and the Royston’s H-test from the Shapiro-Wilk W-statistics 
[3] [10] and the H'-test from the Shapiro-Francia W' statistics [4] [10]. 
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Table 9. Tests of univariate skewness, kurtosis and normality based on standardized cen-
tral moments. 

n Stat. 
Proposal Mardia’s SJ Royston’s 

Q' Q K2 Z H H' 

50 

z( 1b ) −4.1668 −4.6032 −3.1285 −2.2595 −3.7671 −3.4225 

p <0.0001 <0.0001 0.0018 0.0239 0.0002 0.0006 

z(b2) 2.2434 2.9631 0.2025 −2.1260 1.8991 1.4236 

p 0.0249 0.0030 0.8395 0.0335 0.0576 0.1546 

K2 22.3948 29.9696 9.8284 9.6251 17.7975 13.7400 

p <0.0001 <0.0001 0.0073 0.0081 0.0001 0.0010 

N(μ, σ) no: − & ↑  no: − & ↑  no: − no: − & ↓  no: − & ↑  no: − 

40 

z( 1b ) −5.0475 −5.4837 −4.4467 −1.3323 −4.2865 −4.0234 

p 0.0000 0.0000 <0.0001 0.1828 <0.0001 0.0001 

z(b2) 3.7356 4.3276 3.1058 −4.0867 2.9193 2.5986 

p 0.0002 0.0000 0.0019 <0.0001 0.0035 0.0094 

K2 39.4326 48.7984 29.4190 18.4761 26.8963 22.9408 

p <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

N(μ, σ) no: − & ↑  no: − & ↑  no: − & ↑  no: ↓ no: − & ↑  no: − & ↑  

10 

z( 1b ) −1.0754 −1.2556 1.9175 −1.7229 −1.0924 −0.3804 

p 0.2822 0.2093 0.0552 0.0849 0.2747 0.7037 

z(b2) −0.0624 0.0740 1.9760 0.4832 0.6720 0.1697 

p 0.9503 0.9410 0.0481 0.6290 0.5016 0.8653 

K2 1.1605 1.5820 7.5815 3.2018 1.6449 0.1735 

p 0.5598 0.4534 0.0226 0.2017 0.4394 0.9169 

N(μ, σ) yes yes no: + &  ↑ yes yes yes 

Note. n = sample size, z( 1b ) = standardized value of skewness measure based on stan-

dardized third central moment [50], p = two-tailed probability under a standard normal 
distribution, z (b2) = standardized kurtosis measure value based on standardized fourth 
central moment [51], p = two-tailed probability value under a standard normal distribu-
tion, K2 = z( 1b )2 +  z(b2)2 = test statistic from the D’Agostino-Belanger-D’Agostino 

omnibus test of normality [47], p = probability to the right tail under a chi-square distri-
bution with two degrees of freedom. N(μ, σ) = fit to normality: yes when p < α = 0. 05 for 
n = 50 and 40 and 0.1 for n = 10, no when p < 0.05, either due to skewness (+positive or 
−negative) or kurtosis (↓ b2 < 3 leptokurtosis or ↑ b2 > 3 platykurtosis). 
 
model a univariate normality distribution checked using W- and K2-tests at the 
10% significance level (Q, Q', H and H'). The distribution of β probabilities from 
the runs test deviated from normality when tested using the W-test and showed 
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negative skewness. The distribution of β probabilities from the Mardia’s test did 
not follow a normal distribution according to the K2-test, as they showed a posi-
tive skew and a leptokurtic profile. See Table 8 and Table 9. Except for the two 
versions of the Royston test, no profile of β probabilities was bell-shaped in the 
histogram. The profiles were ladder-shaped with their steps increasing with Q-, 
Q'-, and runs z-test and decreasing with Mardia’s test. Nor does the dotted line 
clearly lined up at 45 on the normal quantile-quantile plot with these last four 
tests. 

When comparing probabilities β or ϕ, the choice was made to use nonpara-
metric tests with the total of 50 generated multivariate samples and the 40 sam-
ples drawn from populations without multivariate normality. Even a non-parametric 
analysis approach was adopted with the 10 samples drawn from populations 
with multivariate normality or a good convergence to it due to the small sample 
size [48], consistency with previous analyses, and lack of evidence of normality 
in the plots [49], particularly in four of them. 

Using the Friedman’s omnibus test for comparing values ϕ or β, there was a 
significant difference both in the sample of 50 tuples and in the sample of 40 
tuples from a population without multivariate normality and in the sample of 10 
tuples from a population with multivariate normality or a good convergence to it 
(Q > 11.071, p < 0.05). The statistical power was very high in the three tests (ϕ > 
0.9). Following the cut-off points suggested by Kendall and Gibbons [32], the ef-
fect size, estimated by the Kendall’s coefficient of agreement, was small in the 
50-tuple and 10-tuple samples, with values in the interval (0.1, 0.3), and reached 
a medium level in the sample of 40 tuples (See Table 10). 

In the random sample of 50 tuples, the highest median probability of the cor-
rect decision conditional on the alternative hypothesis (ϕ or β values) appeared 
with the version from the Shapiro-Francia statistics of the proposed test, Mdn (ϕ 
or β) = 0.9989, followed by the same test from the Shapiro-Wilk W'-statistics, 
Mdn (ϕ or β) = 0.9974. Thirdly, the Royston’s H-test from the Shapiro-Wilk W 
statistics was located, Mdn (ϕ or β) = 0.9734, fourthly, the Mardia’s K2-test, Mdn 
(ϕ or β) = 0.9684, fifthly, the Royston’s H-test from the Shapiro-Francia W' sta-
tistic, Mdn (ϕ or β) = 0.9591, and lastly the runs Z-test, Mdn (ϕ or β) = 0.8337. 

When making the pairwise comparisons through the Wilcoxon’s signed-rank 
test from the asymptotic probability with the Sidak’s correction using Holm’s 
procedure to control for the family rate error [35] [36], the two versions of the 
proposed test were equivalent in ϕ or β values and both were superior to the 
runs Z-test, Mardia’s K2-test, and Royston H'-test from Shapiro-Francia W' sta-
tistics. The version of the Royston test from the Shapiro-Wilk W-statistics was 
superior to the version from the Shapiro-Francia W'-statistics and was also su-
perior to the runs Z-test and Mardia’s K2-test. In turn, the Royston H'-test from 
Shapiro and Francia W' statistic was superior to the runs Z-test. Following the 
cut-off points suggested by Cohen (1988), the effect sizes estimated using Ro-
senthal’s r coefficient varied from small (0.1 to 0.29) to medium (0.3 to 0.49). See 
Table 11. 
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Table 10. Friedman test, effect size, and statistical power. 

Variable n Q df p Kendall’s W ( )
2

0.95 5χ  β ϕ 

ϕ o β 50 52.7123 5 3.85 × 10−10 0.2116 11.0705 7.34 × 10−6 0.99999 

ϕ 40 73.2948 5 2.11 × 10−14 0.3665 11.0705 1.08E-08 0.91792 

β 10 13.8286 5 0.0167 0.2766 11.0705 0.16664 0.90243 

Note: Compared variable: ϕ or β = the probability of the correct decision conditional on the alternative hypothesis of the six mul-
tivariate normality tests (ϕ with the 40 samples drawn from distributions without multivariate normality and β with the 10 sam-
ples from distributions with multivariate normality or a good convergency to it), ϕ = statistical power or probability of rejecting 
the null hypothesis when the alternative hypothesis is true, β = type II error or probability of maintaining the null hypothesis 
when the alternative hypothesis is true, n = the number of tuples, Q = the value of the Friedman’s test statistic, df = the degrees of 
freedom, p = right-tailed probability in a chi-square distribution with five degrees of freedom, Kendall’s W = the coefficient of 
agreement Kendall’s W as a measure of effect size, ( )

2
0.95 5χ  (5) = critical value or quantile of order 0.95 of a chi-square distribution 

with five degrees of freedom, β = type II error, and Φ = statistical power. 
 
Table 11. Pairwise comparisons between the six multivariate normality tests using the Wilcoxon signed-rank test in the sample of 
50 tuples. 

G1 G2 MdnG1 MndG2 up z p r i αc Sig. Dif. 

Q' Q 0.999 0.997 38 <0.001 1 0 15 0.0500 No  

Q' M 0.999 0.968 49 −3.482 0.0005 0.348 4 0.0136 Sí Q’ > M 

Q' SJ 0.999 0.834 50 −3.774 0.0002 0.377 2 0.0068 Sí Q’ > SJ 

Q' H 0.999 0.973 50 −1.786 0.0741 0.179 14 0.0467 No  

Q' H' 0.999 0.959 50 −2.365 0.0180 0.237 9 0.0303 Sí Q' > H' 

Q M 0.997 0.968 49 −3.561 0.0004 0.356 3 0.0102 Sí Q > M 

Q SJ 0.997 0.834 50 −3.456 0.0005 0.346 5 0.0170 Sí Q > SJ 

Q H 0.997 0.973 50 −1.824 0.0681 0.182 13 0.0435 No  

Q H' 0.997 0.959 50 −2.182 0.0291 0.218 10 0.0336 Sí Q > H' 

M SJ 0.968 0.834 50 −1.902 0.0572 0.190 12 0.0402 No  

M H 0.968 0.973 50 −2.597 0.0094 0.260 8 0.0270 Sí H > M 

M H' 0.968 0.959 50 −2.018 0.0436 0.202 11 0.0369 No  

SJ H 0.834 0.959 50 −2.973 0.0029 0.297 6 0.0203 Sí H > SJ 

SJ H' 0.834 0.959 50 −2.838 0.0045 0.284 7 0.0237 Sí H' > SJ 

H H' 0.973 0.959 50 −4.035 0.0001 0.404 1 0.0034 Sí H > H' 

Note: G1 = group 1 and G2 = group 2. Multivariate normality tests: the Q = proposed Q-test from the Shapiro-Wilk W statistics 
and the Q'-test from the Shapiro-Francia W' statistics, M = the Mardia’s K2-test, SJ = the Smith-Jain runs Z-test, H = the Royston 
H-test from the Shapiro-Wilk W statistics, and the H'-test from the Shapiro-Francia W' statistics, Mdn (ϕ or β) = the sample me-
dian of ϕ or β values, up = the number of unequal pairs (non-zero differences), z = the Wilcoxon’s rank-signed test z-statistic from 
its approximation to the normal distribution with the correction for ties and the continuity correction, p = two-tailed probability 
under a standard normal distribution, r = 100z  = the Rosenthal’s r coefficient as a measure of effect size, i = range in as-

cending order of probability value with average ranges in case of ties, αc = 1 − 0.95i/15 = significance level with the Sidak’s correc-
tion using the Holm’s procedure [35] [36], Sig = significance: no when p ≥ αc and yes when p < αc, Diff = the group with the high-
est median in each pairwise comparison. 
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In the random sample of 40 tuples, the highest median statistical power (ϕ) 
appeared with the version from the Shapiro-Francia W' statistics of the proposed 
test, Mdn (ϕ) = 0.9999, followed by its version from Shapiro-Wilk W-statistics, 
Mdn (ϕ) = 0.9993. Thirdly, the median of the Mardia’s K2-test was located, Mdn 
(ϕ) = 0.9868, fourthly, that of the Royston’s H-test from the Shapiro-Wilk W 
statistics, Mdn (ϕ) = 0.9847), fifthly, that of the Royston’s H'-test from the Sha-
piro-Francia W' statistics, Mdn (ϕ) = 0.9781, and lastly that of runs Z-test, Mdn 
(ϕ) = 0.7419. When making the pairwise comparisons using the Wilcoxon 
signed-rank test from the asymptotic probability with the Sidak’s correction with 
the Holm’s procedure [35] [36], the two versions of the proposed test were 
equivalent in ϕ values and both were superior to the other tests. Again, the ver-
sion of the Royston’s test from the Shapiro-Wilk-statistics was superior to the 
version from the Shapiro-Francia W' statistics with a large effect size (Rosen-
thal’s r = 0.506) and both versions were superior to the runs Z-test. In turn, the 
Mardia’s K2-test was superior to the runs Z-test. The effect sizes estimated using 
Rosenthal’s r coefficient varied from small (from 0.1 to 0.29) to medium (from 
0.3 to 0.49), reaching a large effect size on the statistical power when choosing 
between the proposed Q'-test and the runs Z-test. See Table 12. 

In the random sample of 10 tuples, the highest median type II error (β) ap-
peared with the runs Z-test, Mdn (β) = 0.9755. Secondly, the Royston’s H-test 
from the Shapiro-Wilk W-statistics was located, Mdn (β) = 0.8064, thirdly, this 
same test from the Shapiro-Francia W'-statistics, Mdn (β) = 0.8013, fourthly, the 
proposed test from the Shapiro-Francia W' statistics, Mdn (β) = 0.7355, fifthly, 
this same test from the Shapiro-Wilk W-statistics, Mdn (β) = 0.6904, and lastly 
the Mardia’s K2-test, Mdn (β) = 0.3922. When pairwise comparisons were made 
using the Wilcoxon signed-rank test from the exact probability with Sidak’s cor-
rection with Holm’s procedure with a nominal significance level of 0.1, the two 
versions of the proposed test were equivalent in β values as were the two ver-
sions of Royston’s test. The Mardia’s K2-test had a significantly lower β probabil-
ity values than the two versions of the Royston test and the runs Z-test. The ef-
fect sizes estimated using the rank biserial correlation were very large. See Table 
13. 

4.2. Difference in the Number of Successes among the Six  
Multivariate Normality Tests 

The proposed Q-test from the Shapiro-Wilk W statistics and the Royston’s H- 
test also based on the Shapiro-Wilk W statistics had the highest proportion of 
correct classifications or probability of success (ps = 0.94). Secondly, Royston’s 
H'-test from the Shapiro-Francia W'-statistics was located (ps = 0.94), thirdly, the 
proposed Q'-test from the Shapiro-Francia W' statistics (ps = 0.88), fourthly, the 
Mardia’s K2-test (ps = 0.70), and lastly, the runs Z-test (ps = 0.68). 

Using Cochran’s omnibus Q test, there was significant difference in the sam-
ple of 50 tuples (Q = 44.593, df = 5, p < 0.001). The statistical power of the test 
was very high (ϕ = 0.9999). Following the cut-off points suggested by Cohen  
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Table 12. Pairwise comparisons between the six multivariate normality tests using the Wilcoxon signed-rank test on the sample of 
40 tuples. 

G1 G2 MdnG1 MdnG2 up z p-value r i αc Sig. Diff. 

Q' Q 0.9999 0.9993 28 −0.512 0.60840 0.057 14 0.0467 No  

Q' M 0.9999 0.9868 39 −2.561 0.01044 0.286 12 0.0369 Sí Q' > M 

Q' SJ 0.9999 0.7419 40 −4.751 <0.00001 0.531 1 0.0051 Sí Q' > SJ 

Q' H 0.9999 0.9847 40 −2.991 0.00278 0.334 10 0.0402 Sí Q' > H 

Q' H' 0.9999 0.9781 40 −3.676 0.00024 0.411 7 0.0270 Sí Q' > H' 

Q M 0.9993 0.9868 39 −2.728 0.00637 0.305 11 0.0336 Sí Q > M 

Q SJ 0.9993 0.7419 40 −4.563 0.00001 0.510 2 0.0102 Sí Q > SJ 

Q H 0.9993 0.9847 40 −3.246 0.00117 0.363 9 0.0303 Sí Q > H 

Q H' 0.9993 0.9781 40 −3.703 0.00021 0.414 6 0.0237 Sí Q > H' 

M SJ 0.9868 0.7419 40 −3.985 0.00007 0.446 4 0.0136 Sí M > SJ 

M H 0.9868 0.9847 40 −0.880 0.37864 0.098 13 0.0435 No  

M H' 0.9868 0.9781 40 −0.114 0.90904 0.013 15 0.0500 No  

SJ H 0.7419 0.9847 40 −3.717 0.00020 0.416 5 0.0170 Sí H > SJ 

SJ H' 0.7419 0.9781 40 −3.555 0.00038 0.397 8 0.0203 Sí H' > SJ 

H H' 0.9877 0.9781 40 −4.523 0.00001 0.506 3 0.0051 Sí H' > H 

Note: G1 = group 1 and G2 = group 2. Multivariate normality tests: Q = the proposed Q-test from the Shapiro-Wilk W statistics 
and the Q'-test from the Shapiro-Francia W' statistics, M = the Mardia’s K2-test, SJ = the Smith-Jain runs Z-test, H = the Royston 
H-test from the Shapiro-Wilk W statistics, and the H'-test from the Shapiro-Francia W' statistics, Mdn (ϕ) = the sample median of 
ϕ values, up = the number of unequal pairs (non-zero differences), z = the Wilcoxon’s rank-signed test z-statistic from its ap-
proximation to the normal distribution with the correction for ties and the continuity correction, p = two-tailed probability under 
a standard normal distribution, r = 80z  = the Rosenthal’s r coefficient as a measure of effect size, i = range in ascending 

order of probability value with average ranges in case of ties, αc = 1 − 0.95i/15 = significance level with the Sidak’s correction using 
the Holm’s procedure [35] [36], Sig = significance: no when p ≥ αc and yes when p < αc, Diff = the group with the highest median 
in each pairwise comparison. 
 
Table 13. Pairwise comparisons between the six multivariate normality tests using the Wilcoxon signed-rank test on the sample of 
10 tuples. 

G1-G2 Mdn1 Mdn2 up SR− SR + T p rbp i αc Sig. > 

Q'-Q 0.736 0.690 10 30 25 25 0.8457 0.091 14 0.0937 No  

Q'-M 0.736 0.392 10 7 48 7 0.0371 0.745 4 0.0277 No  

Q'-SJ 0.736 0.975 10 44 11 11 0.1055 0.600 6.5 0.0446 No  

Q'-H 0.736 0.806 10 35 20 20 0.4922 0.273 13 0.0873 No  

Q'-H' 0.736 0.801 10 36 19 19 0.4316 0.309 12 0.0808 No  

Q-M 0.690 0.392 10 11 44 11 0.1055 0.600 6.5 0.0446 No  

Q-SJ 0.690 0.975 10 45 10 10 0.0840 0.636 5 0.0345 No  
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Continued 

Q-H 0.690 0.806 10 38 17 17 0.3223 0.382 10.5 0.0711 No  

Q-H' 0.690 0.801 10 38 17 17 0.3223 0.382 10.5 0.0711 No  

M-SJ 0.392 0.975 10 54 1 1 0.0039 0.964 2 0.0139 Yes SJ > M 

M-H 0.392 0.806 10 45 0 0 0.0039 1 2 0.0139 Yes H > M 

M-H' 0.392 0.801 10 54 1 1 0.0039 0.964 2 0.0139 Yes H' > M 

SJ-H 0.975 0.806 10 14 41 14 0.1934 0.491 8.5 0.0580 No  

SJ-H' 0.975 0.801 10 14 41 14 0.1934 0.491 8.5 0.0580 No  

H-H' 0.806 0.801 10 28 27 27 1 0.018 15 0.1000 No  

Note: G1 = group 1 and G2 = group 2. Multivariate normality tests: Q = the proposed Q-test from the Shapiro-Wilk W statistics 
and the Q'-test from the Shapiro-Francia W' statistics, M = the Mardia’s K2-test, SJ = the Smith-Jain runs Z-test, H = the Royston 
H-test from the Shapiro-Wilk W statistics, and the H'-test from the Shapiro-Francia W' statistics, Mdn (β) = the sample median of 
β values. Wilcoxon’s signed-rank test: up = the number of unequal pairs (non-zero differences), SR− = the sum of negative ranks 
(G1 < G2), SR + = the sum of positive ranks (G1 > G2), T = test statistics or minor of SR + and SR− statistics, p = two-tailed exact 
probability, rbp = (SR+ − SR−)/(SR+ + SR−) = biserial rank correlation as a measure of effect size, i = range in ascending order of 
probability value with average ranges in case of ties, αc = 1 − 0.95i/15 = significance level with the Sidak’s correction using the 
Holm’s procedure [35] [36], Sig = significance: no when p ≥ αc and yes when p < αc, Diff = the group with the highest median in 
each pairwise comparison. 

 
[30], the effect size estimated using the eta-squared coefficient was small (η2 = 
0.032), with a value in the interval [0.01, 0.6). 

When pairwise comparisons were made using the McNemar’s test from the 
exact probability (binomial distribution) applying the Sidak’s correction using 
the Holm’s procedure to control for the family error rate, there was no signifi-
cant difference in successes between the two versions of the proposed test and 
the two versions of the Royston’s test, these four tests being statistically equiva-
lent in number of successes. Both versions of the proposed test and the Royston 
test were more correct than the Mardia’s K2-test and the runs Z-test, the latter 
two being equivalent to each other. When the effect size was estimated by the 
odds ratio (OR) or Cohen’s g statistic and, following the cutoff points suggested 
by the author, the effect size was large in 6 of 8 significant differences (OR > 4.25 
and |g| > 0.25). In the other two comparisons, the OR remained undefined and, 
therefore, so did the g-statistic. When the effect size in these two comparisons 
was calculated using the eta-squared coefficient, it was also large: η2 = Q/(n01 + 
n10) > 0.25, where Q = (|n01 + n10| − 1)2/(n01 + n10). See Table 14. 

Although the difference between the two versions of the proposed test was not 
significant (exact probability: point value and one-tailed value of 0.125 and 
two-tailed value of 0.25 > α = 0.05), the effect size was large (OR = 0, g = −0.5, η2 
= 0.44), the type II error was null and the unit statistical power, which supports 
the alternative hypothesis of difference, where Q-test would have a higher pro-
portion of successes than Q'-test (0.94 versus 0.88). Consequently, there is a sit-
uation of ambiguity with respect to this difference. 
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Table 14. Pairwise comparisons of the number of successes using the McNemar’s test. 

Test 
Joint 

probabilities 
Two-tailed 

exact probability 
Effect 
size 

Holm-Sidak 
correction 

T1 T2 n00 n01 n10 n11 x n p ϕ OR g η2 i αc Sig > 

Q' Q 3 3 0 44 0 3 0.25 1 0 −0.5 0.44 9 0.0303 No  

Q' M 6 0 9 35 0 9 0.004 I I  0.79 7 0.0237 Yes Q' 

Q' SJ 5 1 11 33 1 12 0.006 0.928 11 0.417 0.56 8 0.0270 Yes Q' 

Q' H 2 4 1 43 1 5 0.375 0.328 0.25 −0.3 0.16 10 0.0336 No  

Q' H' 2 4 2 42 2 6 0.688 0.089 0.5 −0.167 0.03 11 0.0369 No  

Q M 3 0 12 35 0 12 0.000 I I  0.84 3 0.0102 Yes Q 

Q SJ 2 1 14 33 1 15 0.001 0.985 14 0.433 0.64 5.5 0.0186 Yes Q 

Q H 2 1 1 46 1 2 1 0.5 1 0 0.25 13.5 0.0451 No  

Q H' 2 1 2 45 1 3 1 0.333 2 0.167 0.00 13.5 0.0451 No  

M SJ 12 3 4 31 3 7 1 0.013 1.33 0.071 0.00 13.5 0.0451 No  

M H 3 12 0 35 0 12 0.0005 1 0 −0.5 0.84 3 0.0102 Yes H 

M H' 4 11 0 35 0 11 0.0010 1 0 −0.5 0.83 5.5 0.0186 Yes H' 

SJ H 3 13 0 34 0 13 0.0002 1 0 −0.5 0.85 1 0.0034 Yes H 

SJ H' 4 12 0 34 0 12 0.0005 1 0 −0.5 0.84 3 0.0102 Yes H' 

H H' 3 0 1 46 0 1 1 I I  0 13.5 0.0451 No  

Note: T1 = first test, T2 = second test, n00 = the number of concordant pairs of non-normality for both tests, n01 = the number of 
discordant pairs of non-normality for the first test and normality for the second test, n10 = the number of discordant pairs of nor-
mality for the first test and non-normality for the second test, n11 = number of concordant pair of normality for both tests, x = the 
smaller of the discordant frequencies (n01 or n10) or number of successes for the calculation of the exact probability, n = sum of the 
discordant frequencies or parameter of the number of trials for the calculation of the exact probability, p = two-tailed exact proba-
bility under a binomial distribution B(n = n01 + n10, p = 0.5), ϕ = two-tailed statistical power (I = undefined), OR = n10/n01 = Co-
hen’s odds ratio for correlated 2 × 2 tables (I = undefined), Cohen’s g = n10/(n01 + n10) – 0.5 = effect size statistic that is only calcu-
lated if the OR value is defined, η2 = Q/(n01 + n10) = eta-squared coefficient, calculated with the McNemar’s test statistic Q with its 
continuity correction, i = rank in ascending order of the two-tailed exact probability values with average ranks in case of ties, αc = 
significance level with the Sidak’s correction using the Holm’s (1979) procedure, Sig = significance: yes when p < αc and no when 
p ≥ αc, ≥group with the highest number of successes in the pairwise comparison. 

4.3. Sensitivity, Specificity and Efficiency of the Six Multivariate  
Normality Tests 

The six tests presented a sensitivity of 100%, so the confidence intervals were 
calculated using the rule of three [52]: [1 − ln(0.05)/50, 1], as can be seen in Ta-
ble 15. The specificity or ability to successfully reject the null hypothesis in case 
of deviation from multivariate normality varied from a minimum of 0.825 with 
the runs Z-tests to a maximum of 0.925 with the proposed Q-test from the Sha-
piro-Wilk W statistics. When making interval estimates at the 95% confidence 
level, the Wilson’s score intervals with the continuity correction [40] [41] for the 
specificity values of the six tests overlapped (Table 15). When making compari-
sons using the McNemar’s Z-test for two paired samples, the null hypothesis of  
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Table 15. Point estimates and 95% confidence intervals for the sensitivity, specificity and efficiency of the six multivariate nor-
mality tests. 

MN 
Test 

Table 2 × 2 Sensibility Specificity Efficiency 

n00 n01 n10 n11 S LI LS E LB UB Ef LB UB 

Q' 34 0 6 10 1 0.940 1 0.850 0.715 0.930 0.88 0.750 0.950 

Q 37 0 3 10 1 0.940 1 0.925 0.805 0.977 0.94 0.825 0.984 

M 33 0 7 10 1 0.940 1 0.825 0.686 0.913 0.86 0.726 0.937 

SJ 33 0 7 10 1 0.940 1 0.825 0.686 0.913 0.86 0.726 0.937 

H 35 0 5 10 1 0.940 1 0.875 0.744 0.947 0.90 0.774 0.963 

H' 36 0 4 10 1 0.940 1 0.900 0.774 0.963 0.92 0.799 0.974 

Note: MN Test = Multivariate normality tests: Q = the proposed Q-test from the Shapiro-Wilk W statistics and the Q' test from 
the Shapiro-Francia W' statistics, M = the Mardia’s K2-test, SJ = the Smith-Jain runs Z-test, H = the Royston H-test from the Sha-
piro-Wilk W statistics, and the H' test from the Shapiro-Francia W' statistics. Joint frequencies: n00 = the frequency of successes 
when classifying as the sample as coming from the population without multivariate normal distribution, n01 = the frequency of 
false negatives, n10 = the frequency of false positives, and n11 = the frequency of successes when classifying the sample as coming 
from the population with multivariate normal distribution. S = n11/(n11 + n01) = sensitivity or proportion of successes when de-
tecting cases of multivariate normality, E = n00/(n00 + n10) = specificity or proportion of successes when detecting multivariate 
non-normality cases, and Ef. = (n00 + n11)/(n11 + n01 + n10 + n11) = efficiency or proportion of successes when classifying. LB = the 
lower bound and UB = the upper bound of the Wilson’s score interval with Newcombe’s continuity correction at 95% confidence 
level. 

 
no difference was maintained at the 5% significance level, even without consi-
dering any correction for family error rate in all 15 comparisons. The mean and 
median of specificity values were high, 0.867 and 0.863, respectively. 

The efficiency or successes ratio varied from a minimum of 0.86 with the runs 
Z-test to a maximum of 0.94 with the proposed Q' test from the Shapiro-Wilk W 
statistics. The confidence intervals of the six tests overlapped. When compari-
sons were made using the Z-test for two paired samples, the null hypothesis of 
equivalence was maintained at the 5% significance level for the 15 differences, 
even without considering any correction for family error rate. The mean and 
median of efficiency values were high, 0.893 and 0.890, respectively. 

As the lowest values of specificity and efficiency were observed in the Mardia’s 
K2-test and runs Z-test, but did not reveal to be significant in the comparisons of 
proportions with the other four tests, it was chosen to test in each of the six tests 
whether the specificity and efficiency values are equal to or greater than 0.90. At 
a significance level of 5%, the null hypothesis was rejected with the Mardia’s 
K2-test and runs Z-test with respect to specificity value with low statistical power 
(0.5 < ϕ = 0.54 < 0.80) and small effect size (0.10 < r = 0.25 < 0.30). Applying the 
Sidak’s correction with the Holm’s procedure, the null hypothesis would not be 
rejected: p (the probability value for a left-tailed hypothesis) = 0.039 (i = 1.5) > 
αc = 1 − 0.95 (1.5/6) = 0.013. In all other cases, the null hypothesis was hold (Table 
16). 
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Table 16. Test of a value equal or greater than 0.85 for specificity and efficiency using the 
McNemar Z-test. 

MN 
Test 

E 
H0: E ≥ 0.9 

Ef 
H0: Ef ≥ 0.9 

z p ϕ r z p ϕ r 

Q' 0.850 −1.179 0.119 0.320 0.167 0.88 −0.471 0.319 0.120 0.067 

Q 0.925 0.589 0.722 0.013 0.083 0.94 0.943 0.827 0.005 0.133 

M 0.825 −1.768 0.039 0.549 0.250 0.86 −0.943 0.173 0.241 0.133 

SJ 0.825 −1.768 0.039 0.549 0.250 0.86 −0.943 0.173 0.241 0.133 

H 0.875 −0.589 0.278 0.146 0.083 0.9 0.000 0.500 0.050 0 

H' 0.9 0 0.5 0.050 0.000 0.92 0.471 0.681 0.017 0.067 

Note: MN test = multivariate normality test: Q = the proposed Q-test from the Shapi-
ro-Wilk W-statistics and the Q' test from the Shapiro-Francia W' statistics, M = Mardia’s 
K2-test, SJ = the Smith-Jain runs Z-test, H = the Royston’s H-test from the Shapiro-Wilk 
W statistics and the H' test from the Shapiro-Francia W' statistics. E = specificity value, Ef 
= efficiency value, z = Z-test statistic for a population proportion, p = left-tailed probabil-
ity in a standard normal distribution under the null hypothesis E ≥ 0.9 in the fourth col-
umn and Ef ≥ 0.9 in the seventh column, ϕ = left-tailed statistical power, r = 50z  = 

effect size measure based on the Rosenthal’s r coefficient. 

4.4. Correlation between the Critical Level or Probability Value  
and the Deviation from Normality 

Finally, the deviation from multivariate normality of the 50 generated multiva-
riate samples was classified by ordered categories, as can be seen in Table 17. 
The higher the level in variable D, the greater the deviation from multivariate 
normality. 

All six correlations were significant and negative. The negative sign of the 
correlation means that the smaller the critical level or probability value of the 
test, the greater the deviation from normality according to expectation. The 
highest absolute correlation of the ordinal variable D (of deviation from multi-
variate normality) was with the probability value of the proposed Q-test from 
the Shapiro-Wilk W statistics (rhoQD = −0.746, 95% CI [−0.789, −0.399]), fol-
lowed by the same test from the Shapiro-Francia W' statistics (rhoQ’D = −0.740, 
95% CI [−0.787, −0.395]). In third place was the correlation with the Royston’s 
H' test from the Shapiro-Francia W' statistics (rhoH’D = −0.677, 95% CI [−0.759, 
−0.345]), in fourth place, with the same test from the Shapiro-Wilk W statistics 
(rhoHD = −0.664, 95% CI [−0.753, −0.335]), and in fifth place, with the Mardia’s 
K2-test (rhoMD = −0.645, 95% CI [−0.744, −0.319]). These five correlations were 
statistically equivalent using the Steiger’s Z-test and, following the cut-off points 
suggested by Cohen (1988), their strength of association was high (rs > 0.50). In 
sixth place was the correlation with the Smith-Jain runs test (rhoSJD = −0.455, 
95% CI [−0.638, −0.153]), with a medium strength of association. The latter 
presented significant differences with the two versions of the proposed test and 
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the Mardia’s K2-test at a 5% significance level. If the Sidak’s correction using the 
Holm’s procedure is considered, only with the two versions of the proposed test 
would be significant, since their strength of association with D was very high, 
rho > 0.70 (Table 18 and Table 19). 
 
Table 17. Classification of the 50 generated multivariate samples in five ordered catego-
ries of deviation from multivariate normality. 

Level 1 Level 3 Level 4 Level 5 

6 N1N2N3N4 29 3NE rel 11 N1N2E1C1 1 N1E1C1L1 

7 4N rel 30 3NC rel 12 N1N2E1L1 2 N2E2C2L2 

32 4N rel 31 3NL rel 13 N1N2C1L1 3 N3E3C3L3 

33 4N rel 35 4Logist ind. 14 N1N3E2C2 4 N4E4C4L4 

34 4N rel 48 ( )
2
23N1χ  ind 15 N1N3E2L2 5 N1E2C3L4 

41 4N ind 49 ( )
2
13N1χ  ind 16 N1N3C2L2 8 4E ind 

46 4N ind 50 3N1C ind 17 N1N4E3C3 9 4C ind. 

 Level 2   18 N1N4E3L3 10 4L ind. 

38 4t(100) ind   19 N1N4C3L3 36 4Lap ind. 

39 ( )
2
1004χ  ind   20 N2N3E4C4 37 4B (10,0.1)ind 

40 4B (20, 0.5) ind   21 N2N3E4L4 42 2N2N−1 ind 

    22 N2N3C4L4 47 3N1N−1 ind 

    23 N2N4E1C3   

    24 N2N4E1L3   

    25 N2N4C1L3   

    26 N3N4E2C1   

    27 N3N4E2L1   

    28 N3N4C2L1   

    43 2N2χ2
 (2, 4) ind   

    44 2N2χ2
 (1) ind   

    45 2N2C ind   

Note: N = standard normal distribution, E = exponential distribution with inverse scale 
parameter λ = ½, C = standard Cauchy distribution, L = standard LogNormal distribu-
tion, B (n, p) = binomial distribution with parameters n (number of trials) and p (proba-
bility of success), χ2(ν) = chi-square distribution with ν degrees of freedom, Lap = stan-
dard Laplace distribution, N−1 = inverse normal distribution, Logist = standard logistic 
distribution, ind = independent variables, rel = correlated variables. The preceding num-
ber is the number of variables of the same type of distribution. When the number of sub-
scripts of variables matches, the corresponding variables are correlated. 
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Table 18. Correlation between the critical level or probability value of each test and the level of deviation from multivariate nor-
mality. 

Correlated 
tests 

rs SE 
Fisher’s transformation 95% CI for rs 

zrs LBz UBz LB UB 

Q' & D −0.740 0.165 −0.951 −1.063 −0.417 −0.787 −0.395 

Q & D −0.746 0.165 −0.964 −1.069 −0.423 −0.789 −0.399 

M & D −0.645 0.160 −0.766 −0.959 −0.330 −0.744 −0.319 

SJ & D −0.455 0.153 −0.490 −0.755 −0.154 −0.638 −0.153 

H & D −0.664 0.161 −0.801 −0.980 −0.348 −0.753 −0.335 

H' & D −0.677 0.162 −0.823 −0.994 −0.360 −0.759 −0.345 

Note: Q = the proposed Q-test from the Shapiro-Wilk W-statistics and the Q' test from the Shapiro-Francia W' statistics, M = the 
Mardia’s K2-test, SJ = the Smith-Jain runs Z-test, H = the Royston’s H-test from the Shapiro-Wilk W statistics and the H' test from 
the Shapiro-Francia W' statistics, and D = the ordinal variable of deviation from multivariate normality, rs = the value of Spear-

man’s rank-order correlation or rho coefficient, SE = ( ) ( )21 3sr n+ −  = Bonett-Wright standard error for rho coefficient, zrs = 

atanh(rs) = the Fisher’s hyperbolic arctangent transformation of rs, LB = zrs − 1.96 × EE = the lower bound and UB = zrs + 1.96 × 
EE = the upper bound of the 95% confidence interval for the transformed correlation, 95% CI for rs = 95% confidence interval for 
rho coefficient undoing the transformation: LB = tanh (LBZ) and UB = tanh (UBZ). 
 
Table 19. Comparison of correlations between the six tests using the Steiger’s Z-test. 

T1 T2 T1D T2D T1T2 z p ϕ r i αc Sig. Dif. 

Q' Q −0.740 −0.746 0.976 0.283 0.777 0.344 0.227 14 0.047 no  

Q' M −0.740 −0.645 0.646 −1.185 0.236 0.093 0.039 11 0.037 no  

Q' SJ −0.740 −0.455 0.503 −2.709 0.007 0.726 0.332 2 0.007 yes Q'D > SJD 

Q' H −0.740 −0.664 0.848 −1.377 0.168 0.076 0.159 8 0.027 no  

Q' H' −0.740 −0.677 0.846 −1.159 0.247 0.126 0.203 12 0.040 no  

Q M −0.746 −0.645 0.632 −1.248 0.212 0.094 0.094 10 0.034 no  

Q SJ −0.746 −0.455 0.531 −2.851 0.004 0.733 0.384 1 0.003 no QD > SJD 

Q H −0.746 −0.664 0.845 −1.482 0.138 0.078 0.064 6 0.020 no  

Q H' −0.746 −0.677 0.844 −1.266 0.205 0.133 0.112 9 0.030 no  

M SJ −0.645 −0.455 0.784 −2.447 0.014 0.768 0.404 3 0.010 no MD > SJD 

M H −0.645 −0.664 0.671 0.236 0.813 0.149 0.121 15 0.050 no  

M H' −0.645 −0.677 0.673 0.387 0.698 0.195 0.147 13 0.043 no  

SJ H −0.455 −0.645 0.484 1.642 0.101 0.805 0.379 5 0.017 no  

SJ H' −0.455 −0.677 0.467 1.937 0.053 0.838 0.396 4 0.014 no  

H H' −0.664 −0.677 0.997 1.383 0.167 0.352 0.221 7 0.024 no  

Note: rhoT1D = the Spearman’s rank correlation coefficient between the first test (T1) and the ordinal variable of deviation from 
multivariate normality (D), rhoT2D = the Spearman’s rank correlation coefficient between the second test (T2) and the ordinal va-
riable of deviation from normality multivariate normality (D), rhoT1T2 = the Spearman’s rank correlation coefficient between the 
two tests (T1 and T2), z = the standardized value of the difference between correlations using the Steiger’s formula [45], p = 
two-tailed probability under a standard normal distribution, αc = level of significance with the Sidak’s correction using the Holm’s 
procedure, ϕ = statistical power (calculated with the GPower program for the Z-test of two dependent correlations with a common 
index: a = D, b = T1, and c = T2) [53], r = z n  = effect size measure, Sig = significance: no when p ≥ αc and yes when p < αc, 

and Diff. = higher correlation between T1 or T2 and D in each pairwise comparison. 
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4.5. On the Assumption of Independence in the 50 Tuples 

Due to the small size of the sequences, a significance level of 10% was used. 
Among the 50 sequences of the 15 zln(1−W’) values (from the Shapiro-Francia W' 
statistics), the ordinary Ljung-Box test detected serial dependence in multiva-
riate samples 6, 12, 15, and 46. The robust Ljung-Box test from the sequences of 

lz′  values (transformed into ranks) detected serial dependence in multivariate 
samples 15, 22, 25, 38, and 46. Both tests agreed in samples 15 and 46. However, 
the ordinary Ljung-Box test applied to the reduced sequences (without zeros) 
did not confirm serial dependence in any of the seven cases. From the reduced 
sequences, there was serial dependence in the multivariate samples 39 (from four 
independent samples with chi-square distribution with 100 degrees of freedom) 
with a significant first-order lag autocorrelation (ar1 = −0.684 < LB90% = −0.672) 
and 44 (from two independent samples with normal distribution and two inde-
pendent samples with chi-square distribution with one degree of freedom) with 
a significant second-order lag autocorrelation (ar2 = −0.462 < LB90% = −0.457). 
See Table 20. 

Reviewing the 50 sequences of zln(1−W) values (from the Shapiro-Wilk W statis-
tic), the assumption of independence was rejected by the ordinary Ljung-Box 
Q-test in multivariate samples 15 and 46. The robust Ljung-Box test from the 
sequences of zl values (transformed into ranks) detected serial dependence in 
multivariate samples 6, 15, 22, 26, and 46. Once again, both tests coincided in the 
significance of samples 15 and 46. However, the ordinary Ljung-Box test did not 
confirm serial dependence in any of the five cases in the reduced sequences 
(without zeros). With the reduced sequences, the Ljung-Box Q-test was signifi-
cant in the multivariate sample 29 of three correlated variables with normal dis-
tribution and one independent variable with exponential distribution. Its highest 
autocorrelation was that of first-order lag (ar1 = −0.666). See Table 20. 

Critical values were obtained by bootstrapping (Monte Carlo simulation) for 
multivariate sample 29 (proposed Q test) and multivariate samples 39 and 44 
(proposed Q' test). Three, six, and thirteen standard half-normal distributions 
(truncated standard normal distribution between the 0.5 and 0.9999 quantiles) 
were defined, respectively. The outcome variable was the sum of squares of the 3, 
6 or 13 variables with standard half-normal distributions. Three correlation ma-
trices were defined with ones in the main diagonal, the value of the autocorrela-
tion in the corresponding variables and zeros in the remaining cells. The corre-
lation was −0.666 (first-order lag autocorrelation) between z1 - z2 and z2 - z3 in 
sample 29. The correlation was −0.684 (first-order lag autocorrelation) between 
z1 - z2, z2 - z3, z3 - z4, z4 - z5, and z5 - z6 in sample 39. The correlation was −0.462 
(second-order lag autocorrelation) between z1 - z3, z2 - z4, z3 - z5, z4 - z6, z5 - z7, z6 
- z8, z7 - z9, z8 - z10, z9 - z11, z10 - z12, and z11 - z13 in sample 44. Correlations were 
estimated using Spearman’s rank-order coefficient and calculations were per-
formed with the XLSTAT software version 24 [20]. Percentiles were obtained 
from 1000 bootstrap samples for statistical decision making: if q' or q > (simu-
lated) 95th percentile, H0 is rejected. As the autocorrelations were negative, the  
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Table 20. Testing the assumption of independence using the Ljung-Box Q test. 

Multivariate 
sample 

Complete (h = 3) Reduced Complete (h = 3) Reduced 

zln(1−W') R ( lz′ ) lz′  zln(1−W) R(zl) zl 

p for LJ p for LJr h p for LJ p for LJ p for LJr h p for LJ 

1 N1E1C1L1 0.593 0.781   0.914 0.955   

2 N2E2C2L2 0.439 0.118   0.338 0.363   

3 N3E3C3L3 0.826 0.441   0.825 0.192   

4 N4E4C4L4 0.338 0.421   0.312 0.392   

5 N1E2C3L4 0.722 0.461   0.782 0.471   

6 N1N2N3N4 0.087 0.369 1 0.840 0.173 0.051 1 0.117 

7 4N rel 0.734 0.279   0.631 0.942   

8 4E ind 0.878 0.807   0.894 0.940   

9 4C ind 0.545 0.773   0.616 0.688   

10 4L ind 0.632 0.464   0.687 0.369   

11 N1N2E1C1 0.156 0.146   0.189 0.150   

12 N1N2E1L1 0.093 0.120 2 0.683 0.119 0.174   

13 N1N2C1L1 0.527 0.512   0.373 0.622   

14 N1N3E2C2 0.216 0.191   0.162 0.155   

15 N1N3E2L2 0.062 0.052 2 0.710 0.091 0.066 2 0.215 

16 N1N3C2L2 0.228 0.115   0.291 0.237   

17 N1N4E3C3 0.455 0.417   0.392 0.176   

18 N1N4E3L3 0.175 0.124   0.181 0.124   

19 N1N4C3L3 0.891 0.471   0.875 0.487   

20 N2N3E4C4 0.355 0.556   0.216 0.486   

21 N2N3E4L4 0.287 0.175   0.198 0.161   

22 N2N3C4L4 0.427 0.047 2 0.740 0.262 0.028 2 0.491 

23 N2N4E1C3 0.939 0.672   0.868 0.598   

24 N2N4E1L3 0.680 0.644   0.583 0.612   

25 N2N4C1L3 0.833 0.479   0.869 0.539   

26 N3N4E2C1 0.456 0.097 3 0.721 0.361 0.070 2 0.289 

27 N3N4E2L1 0.813 0.729   0.637 0.285   

28 N3N4C2L1 0.932 0.892   0.873 0.787   

29 3NE rel 0.654 0.227   0.884 0.602 3 0.068 

30 3NC rel 0.478 0.172   0.252 0.308   

31 3NL rel 0.517 0.893   0.563 0.850   
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Continued 

32 4N rel 0.923 0.323   0.833 0.452   

33 4N rel 0.159 0.121   0.453 0.697   

34 4N rel 0.550 0.911   0.424 0.474   

35 4Logist 0.347 0.067   0.434 0.430   

36 4Lap ind 0.267 0.210   0.443 0.369   

37 4B(10,.1) 0.282 0.530   0.456 0.372   

38 4t(100) 0.746 0.057 2 0.344 0.326 0.221   

39 4χ2(100) 0.678 0.181 6 0.034 0.603 0.268   

40 4B (20,.5) 0.835 0.695   0.813 0.728   

41 4N ind 0.952 0.725   0.964 0.927   

42 2N2N−1 0.317 0.186   0.286 0.186   

43 2
2 or 42N2χ  0.960 0.332   0.935 0.883   

44 2
12N2χ  0.679 0.586 13 0.070 0.572 0.910   

45 2N2C 0.703 0.859   0.809 0.814   

46 4N 0.005 0.014 2 0.290 0.018 0.078 1 0.604 

47 3N1N−1 0.340 0.441   0.419 0.566   

48 2
23N1χ  0.321 0.707   0.431 0.444   

49 2
13N1χ  0.803 0.563   0.579 0.197   

50 3N1C 0.485 0.291   0.651 0.604   

Note: Complete sequence (sequence of 15 values): zln(1−W') = the standardized and log- 
transformed Shapiro-Francia W' statistics [4], lz′  = the truncated, standardized and log- 
transformed W' statistics, R( lz′ ) = the range of the value lz′  with average ranks in case of 
a tie, zln(1−W) = the standardized and log-transformed Shapiro-Wilk W statistics [3], zl = 
the truncated, standardized and log-transformed W statistics, R(zl) = the range of the 
value zl with average ranks in case of a tie. Reduced sequence: without the null lz′  or zl 
values. p = asymptotic probability to the right tail in a chi-square distribution with three 
degrees of freedom in the complete sequence and with h degrees of freedom in the re-
duced sequence (without zeros), LJ = ordinary Ljung-Box Q-test, LJr = robust Ljung-Box 
Q-test, h = the order of the maximum lag determined using the Hyndman-Athanaso- 
poulos rule [27]. Significant tests at a 10% significance level are highlighted in bold. 
 
critical values or simulated percentiles were lower compared to the simulated 
percentiles with the independent variables or the percentiles of the chi-square 
distribution. See Table 21. 

In samples 29 and 44, the null hypothesis of multivariate normality is rejected 
according to expectation (q = 6.922 < simulated P95 = 0.223 and q' = 45.9 < si-
mulated P95 = 11.052, respectively). In sample 39, the null hypothesis is also re-
jected (q' = 5.322 < simulated P95 = 3.958), when the expectation is that it holds,  
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Table 21. Monte Carlo simulation quantiles. 

p 
Sample 29 Sample 39 Sample 44 

2
3pχ  Ind Rel 2

6pχ  Ind Rel 2
13pχ  Ind Rel 

0.05 0.352 0.347 0.008 1.635 1.602 0.464 5.892 5.743 2.929 

0.10 0.584 0.610 0.014 2.204 2.201 0.625 7.042 7.189 3.666 

0.20 1.005 1.045 0.023 3.070 3.130 0.858 8.634 8.573 4.372 

0.25 1.213 1.242 0.028 3.455 3.470 0.959 9.299 9.219 4.702 

0.30 1.424 1.492 0.033 3.828 3.876 1.085 9.926 10.100 5.151 

0.40 1.869 1.897 0.044 4.570 4.572 1.319 11.129 11.172 5.698 

0.50 2.366 2.344 0.057 5.348 5.324 1.504 12.340 12.594 6.423 

0.60 2.946 3.008 0.071 6.211 6.193 1.736 13.636 13.626 6.949 

0.70 3.665 3.667 0.090 7.231 7.326 2.053 15.119 15.014 7.657 

0.75 4.108 4.040 0.102 7.841 8.009 2.230 15.984 15.927 8.123 

0.80 4.642 4.673 0.116 8.558 8.655 2.457 16.985 16.928 8.633 

0.90 6.251 6.249 0.162 10.645 10.586 3.169 19.812 19.412 9.900 

0.95 7.815 7.537 0.223 12.592 12.743 3.958 22.362 21.671 11.052 

Note: Sampling method: Latin hypercubes (number of sections = 500), number of inter-
vals: 50, number of simulations: 1000, type of correlation: Spearman. 2

p dfχ  = the p-order 

quantile of a chi-square distribution with df degrees of freedom, Ind = simulation with 
independent variables, and Rel = simulation with correlated variables. 
 
so the test seems to perform better from the asymptotic approach by forcing the 
assumption of independence as is done in Mardia’s K2-test and multivariate runs 
Z-tests. Hence, it is advisable to use the reduced sequence only in case of signi-
ficance in the full sequence. If the ordinary Ljung-Box test is used, the sequence 
must include the negative values. With the truncated sequence, the robust 
Ljung-Box test is used, which does not require normality and is more sensitive to 
anomalous tails [25] [26]. 

5. Discussion 

The first objective of this article was to present a new multivariate normality test. 
It is based on the lemma or proven proposition that, if a set of correlated or in-
dependent variables follow a multivariate normal distribution, any linear com-
bination of them follows a univariate normal distribution [14] [54]. If there are k 
variables, the number of unweighted linear combinations is 2k − 1. Additionally, 
the lemma that the sum of squares of 2k − 1 independent variables with standard 
normal distribution follows a chi-square distribution with 2k − 1 degrees of 
freedom is considered [15]. This proposal has two variants: one from the Shapi-
ro-Wilk W statistics with the logarithmic transformation and standardization of 
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Royston [3] and the other from the Shapiro-Francia W' statistics with the loga-
rithmic transformation and standardization of Royston [4]. Since the calculation 
of the critical level or probability value of the Royston´s statistics is one-sided (to 
the right tail), a problem arises with the negative values that indicate good fit. 
One option would be to take its absolute inverse, but this would result in a 
strong deviation in the sampling distribution of the test statistic from the 
chi-square distribution. 

Another way of solving this problem was sought, and it was considered that 
the best option was to truncate these values to 0, so that the sampling distribu-
tion of the variables changes from a standard normal distribution to standard 
half-normal distribution, since truncating a standard normal variable between 
the quantiles 0.5 and 0. 9999… results in a standard half-normal variable: x ∈ X 
~ SN(σ = 1), f(x) = 2 × φ(x), F(x) = 2 × Φ(x) − 1, and F−1(x) = Φ−1[(p + 1)/2], 
where φ is the density function, Φ the distribution function and Φ−1 the quantile 
function of a standard normal distribution [17]. Two additional lemmas are 
added here. The first states that if a variable follows a half-normal distribution, 
the square of the quotient between the variable and its scale parameter σ follows 
a chi-squared distribution with one degree of freedom [17]. The second posits 
that the sum of 2k − 1 independent variables with chi-square distribution with 
one degree of freedom follows a chi-square distribution with 2k − 1 degrees of 
freedom [18]. As the scale parameter σ takes a unit value in the 2k − 1 variables, 
the sum of squares of each variable divided by σ is reduced to the sum of squares 
of the variables, thus returning to the starting point. 

For the sum of squares of standard normal variables (of mean 0 and unit va-
riance) or standard half-normal variables to follow a chi-square distribution with 
as many degrees of freedom as variables summed, independence between va-
riables is required [18]. However, the test is based on all possible linear combi-
nations among the k variables from which the Shapiro-Wilk W- or Shapi-
ro-Francia W' statistics are calculated. Here one could object that they are de-
pendent variables and that the sampling distribution is generalized chi-square, 
which is a very complex distribution to calculate [19]. Indeed, the generated va-
riables are linearly dependent, but the zl (from Shapiro-Wilk W statistics) or lz′  
(from Shapiro-Francia W' statistics) values are not necessarily, so the indepen-
dence assumption shifts to showing that the 2k − 1 zl or lz′  values in their ge-
nerative sequence are independent, i.e., they do not exhibit serial correlation, ei-
ther with a first-order lag or with a lag greater than one order. Here, these 2k − 1 
values are conceived as identically distributed random variables with sample size 
1. To test this assumption, the Ljung-Box Q test is used, and the maximum lag 
can be determined using the Hyndman-Athanasopoulos rule for non-stationary 
series [27]. The Ljung-Box test assumes bivariate normality in each autocorrela-
tion, so it is required to use its robust version from the truncated sequence or to 
resort to the untruncated series. In case of non-compliance with the indepen-
dence assumption, the critical values for the Q- or Q'-test can be obtained using 
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Monte Carlo simulation. 
To improve the specificity of the test, an operational correction is introduced 

that consists of eliminating one degree of freedom for each canceled variable 
(negative value converted to zero). Consequently, the simulation is run with a 
simplified sequence that corresponds to the non-zero values (random variables 
with sample size 1). Hence, the serial independence test has to be repeated with 
the simplified sequence, and from there obtain the significant autocorrelation 
values for the simulation. To obtain these last values, the correlogram is a very 
useful tool [23]. If there is no serial dependency in this second test, an ambi-
guous situation is generated that is resolved in favor of independence. One can 
also go directly to the simplified sequence. However, it seems that it is better to 
force the assumption of independence, so this second path is not recommended. 
It is only considered that there is a serial dependency if it appears in both the 
complete and reduced sequence with some significant autocorrelation. 

The second objective of the study sought to compare the central tendency of 
the type II error or β-probability and the statistical power or complement of the 
β-probability. From these central tendency analyses, the new test yields good re-
sults without a clear advantage of one of its two versions, being equivalent to the 
Royston’s test and superior to the Mardia’s K2-test and runs Z-test. The third 
objective involved to compare the frequency of successes among the six multiva-
riate normality tests. In this analysis, the proposed test together with the Roys-
ton’s test are the best, with no difference between their two versions. Although 
there is a situation of ambiguity in the statistical decision of equivalence between 
the two versions of the proposed test. The difference is not significant, but the 
effect size is large, the type II error is null and the unitary statistical power, 
which supports the alternative hypothesis of difference, in which the Q-test 
would have a higher proportion of successes than the Q'-test, 0.94 versus 0.88. 
The fourth objective focused on calculating and comparing the sensitivity, speci-
ficity, and efficiency of the six multivariate normality tests. All six tests have unit 
sensitivity, so they are equivalent in the property of detecting normality. Com-
parisons in specificity and efficiency among the six tests do not reveal significant 
differences, even without controlling for family rate error, so it would seem that 
average values would be valid for all of them and these would be high, namely 
above 0.85. However, when testing higher-than-average specificity and efficiency 
values (H0: E ≥ 0.90 and H0: Ef ≥ 0.90), the runs Z-test and Mardia’s K2-test show 
significantly lower specificity values than those hypothesized. The fifth objective 
proposed to classify the samples into ordered categories of deviation from nor-
mality, calculate the correlation between this ordinal variable and the critical 
level or probability value of each of the six tests, and compare these correlations. 
The highest correlations appear in the proposed test and the lowest appears with 
the runs Z-test. The latter presents a significant difference only in comparison 
with the two versions of the proposed test. In this analysis, the proposed test 
stands out with no difference between its two versions. 
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6. Conclusions 

The new proposal presents a performance very similar to Royston’s test and 
clearly superior to the Mardia’s K2-test and runs a Z-test with samples of 20 te-
tra-dimensional tuples. It should be noted that the Q version from the Shapi-
ro-Wilk W statistics reveals a very slight advantage over the Q' version from the 
Shapiro-Francia W' statistics. In the face of samples of 20 participants and 4 va-
riables, the highest specificity and efficiency values, success ratio, and correlation 
between the critical level and the ordinal variable of deviation from normality 
are achieved with the proposed Q-test. 

As limitations of the study, it should be noted that the number of simulations 
is very small, so it is merely a pilot study. With a larger number of simulations, 
some of the differences between the two versions of the proposed test may be 
significant, and the version based on the Shapiro-Wilk W statistics may be more 
specific and efficient. This pilot study only handles one sample size (n = 20) and 
one number of variables (k = 4) when the variation of n and k would allow the 
definition of power curves to compare the tests. There are also other multivariate 
normality tests not covered in the present work, such as those of Cox and Small 
[55], Henze and Zirkler [56], and Doornik and Hansen [57], available in the R 
program [58], the Monte Carlo version of multivariate runs test available in Ex-
cel [9] [59] or the tests of Arnastauskaite, Ruzgas and Braženas [60] and Kese-
men, Tiryaki, Tezel and Özkul [61], more recently. There is also another genera-
lization of the Shapiro-Wilk test developed by Villaseñor-Alva and González- 
Estrada [62], different from that of Royston [10] and the present work. Any of 
these tests not included would be excellent comparison options for future re-
search, although there is currently no evidence or consensus on which is the best 
test [58] [60]. 

Further study of this new statistical test is suggested. A test based on the prin-
ciple that, given k variables drawn from a multivariate normal population, any 
linear combination of these variables should follow a univariate normal distribu-
tion; additionally, on the principle that the sum of squares of independent stan-
dard half-normal variables follows a chi-square distribution with as many de-
grees of freedom as variables added, with the additional correction of eliminat-
ing the number of variables nulled in the degrees of freedom. The independence 
assumption is tested on the generative sequence of standardized and truncated 
values. Initially, it is checked with the complete series and, in case of depen-
dence, it is repeated with the reduced series (without zeros). If both series show 
dependence, the assumption is not fulfilled. In case of discrepancy between the 
independence of the two series, the decision is in favor of independence, since 
the simulated quantiles with moderate or high negative correlations go down a 
lot or with moderate or high positive correlations go up a lot compared to the 
situation with independent samples, resulting in a less accurate test. If further 
studies support this test, its computational implementation in programs such as 
R or Excel is very simple. Precisely, this article details an example, executed from 
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the Excel program. 
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