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Abstract 
Geostatistics of extreme values makes it possible to model the asymptotic be-
havior of random phenomena that depend on time or space. In this paper, we 
propose new models of the extremal coefficient of a stationary random field 
where the cumulative distribution is associated with a multivariate copula. 
More precisely, some models of extensions of the extremogram and these de-
rivatives are built in a spatial framework. Moreover, both these two geostatistical 
tools are modeled using the extremal variogram which characterizes the 
asymptotic stochastic behavior of the phenomena.  
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1. Introduction 

In spatial statistical analysis, variograms and covariance functions are technical 
tools used to describe how spatial continuity changes with a given separation 
distance between two pairs of stations. Thus, the classical variogram provides a 
framework for modeling and predicting the variability of a given spatial stochas-
tic process. Geostatistics provides tools for statistical analysis of spatial or spatio 
temporal datasets. This branch of statistics was developed originally in the year 
1930 by a pioneering work of George Matheron [1] to predict the probability 
distributions of more grades for mining operations. Since, geostatistics became a 
subdomain of statistics based random fields including petroleum geology, hy-
drogeology, geochemistry, geometallurgy, geography, forestry, environmental 
control, landscape ecology, soil science and agriculture. 
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The family of copulas provides a natural way to construct multivariate dis-
tribtutions whose marginals are uniform and not necessarily exchangeable. Let 
( )1, , nX X  be a random vector with multivariate continuous distribution 
function (c.d.f.) H and c.d.f marginal 1, , nH H . The copula of X or the c.d.f. H 
respectively is the multivariate c.d.f. C of the random vector uniform  

( ) ( )1 1= , , n nU H X H X    each component of U is standard uniformly distri-
buted, i.e., ( )~ 0,1iU U  for 1, ,i n=  . 

More specifically, every n-copula must satisfy the n-increasing property [2]. 
That means that, for any rectangle [ ], n nB a b= ⊆  , the B-volume BC  of C is 
positive, that is,  

( ) ( ) ( )1

1
1

2 2

1 1
1 1

d 1 , , 0.n

n
n

i i
B i iB

i i
C C u C u u+ +

= =

= = − ≥∑ ∑∫


             (1) 

While modeling the main geostatistical tools Ouoba & et al. [3] proposed a 
family of copulas based variogram, correlogram and madogam and they pointed 
out that these tools do not take into account the extremal data observed in the 
different observation sites. However, copulas make it possible to model the ex-
treme data and detect any nonlinear link between different observation sites. It is 
therefore necessary to express the variogram and the covariogram according to 
the copula in order to be able to model the spatial structuring even if our data-
base contains extreme values and to be able to detect the presence of some non-
linear dependence. 

The variogrm and covariogram ( )ˆ ,i jc s s  are linked by the copula function 
via the relation:  

( ) ( ) ( ) ( ) ( ) ( )1 12 2 1 1
0 0

, 2 , d d 2 ,i j Z i Z j Z Z i js s s s F u F v c u v u v m mϑ σ σ − −= + − −∫ ∫  

and  

( ) ( ) ( ) ( )1 1 1 1
0 0

ˆ , , d d ;i j Z Z i jc s s F u F v c u v u v m m− −= −∫ ∫  

where im  and jm  the respective averages of ( )iZ s  and ( )jZ s ; ( ),c u v  the 
copula density function attached to ( )iZ s  and ( )jZ s . 

The major contribution of this paper is to provide tools to model the distribu-
tional dependence of spatial or temporal extremes in various sites in a study area. 
Specifically, we offer geostatistical tools such as the extremal coefficient, the ex-
tremogram and its derivatives based on copula and unit Frechet processes for 
modeling spatial extremes. In Section 2, we develop the tools needed to achieve 
our goals. Our main results are given in Section 3, where we propose new mod-
els of the extremal coefficient of a stationary spatial field using multivariate co-
pula and extensions of the extremogram and the crossed extremmogram in a 
spatial framework using the extremal variogram which characterizes the asymp-
totic stochastic behavior of phenomena. 

2. Materials and Methods 

In this section, we collect the necessary definitions and usefull properties on 
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multivariate extremes. 
Multivariate extreme values (MEV) theory present the framework of coordi-

natewise maxima. Towards a multivariate analogue of Fisher-Tippett we are 
looking for some sort of multivariate limit distribution for conveniently norma-
lized vectors of multivariate maxima. For an arbitrary index of set T denoting 
generally a space of time, a random vector ( ){ };1 ,t jY Y t j m t T= ≤ ≤ ∈  in m  
is said to be max-stable if, for all n∈ , every ( ) ( ) ( ) ( ) ( )( )1 ; ; n

j j jY t Y t Y t=   is a 
n-dimensionnal max-stable vector, that is, there exists suitable and time-varying 
non-random sequences ( ){ }0na t >  and ( ){ }d

nb t ∈  such as  

( ) ( ) ( ) ( ). .1 ; ,f d d
n n

n

M t b t X t t T
a t

 − → ∈               (2) 

where . .f d d→  denotes the convergence for the finite-dimensional distribu-
tions while ( ) ( )( )1max ;n i n iM t X t t T≤ ≤= ∈  being the component-wise maxima 
of the time-variying vector ( )X t . 

As in the non-spatial analysis, several canonical representations of max-stable 
processes have been suggested in spatial extreme values context. In the same 
vain, Barro et al. (see [4]) have proposed a general form of the one-dimensional 
marginal of the max-stable ST process { }tY  where ( ) ( )t tY x Y x= ;  

3
t D

x T Rχ∈ × ⊂ . ( )( ); 0; ;s
jY t j t T s S≥ ∈ ∈  such that, for each fixed couple 

( ),t s , the sequence is independent and identically distributed according to a 
joint cumulative function s

tG . Under the assumption that this function is 
max-stable, every univariate margins ,

s
t iG  lies its own domain of attraction and 

is expressed by on the space of interest  

( ){ }, , , , , , , , ,; 0;1s
t s i t s i t s t i i t si

S z y i nξ σ ξ µ+ = ∈ + − > ≤ ≤  by  

( )( )
( ) ( ) ( )

( )
( )

( )

( ) ( )
( ) ( )

1

exp 1 if 0

exp exp if 0

si ii i
i i

i

i i

i i
i

i

y s s
s s

s
G y s

y s s
s

s

ξµ
ξ ξ

σ

µ
ξ

σ

−  
  −  − + ≠         

=  
    −   − − =          

;  (3) 

and for all site s, the parameters { }, ,i t sµ ∈ , { }, , 0i t sσ >  and { }, ,i t sξ ∈  are 
referred to as the location, the scale and the shape parameters respectively. Par-
ticularly, the different values of ( )i sξ ∈  allows 3 to be a spatial EV model, 
that is, to belong either to Frechet family, the Weibull one or Gumbel one. 

In multivariate case, if the one-dimensional margins of F are unit-Fréchet dis-
tributed let M be a non-empty subset of { }1, ,N n=   and Mc  the n-dimen- 
sional vector of which the jth coordinate is one or zero according to j M∈  or 
j M∉ . Then, the multivariate, Mθ  is defined on the n-dimensional unit simp-

lex, ( ) [ ]{ }1 1, , 0,1 , 1n n
n n iiS t t t

=
= ∈ ≤∑ , such as,  

( ) ( )
1

max d ,
n

j
M M jS j M

w
V c H w

w
θ

∈

 
= =   

 
∫                 (4) 

where H is a finite non-negative measure of probability and 
1. , the 1-norm, see 
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[5] [6] [7]. Particularly  

( ) ( )1 1 , ,   for all 0 1.n nP F x p F x p p pθ ≤ ≤ = < <           (5) 

In spatial study, a natural way to measure dependence among spatial maxima 
stems from considering the distribution of the largest value that might be ob-
served on domain of study. 

Our main results are summaried by the following sections. 

3. Main Results 

Extreme value analysis is frequently used to model spatio-temporal data, for 
which the phenomenon of dependence is often intrinsic. In this article, this de-
pendence is measured for a process studied on different space stations. Authors 
such as Ledford et al. [8] and Coles and et al. [9], proposed tools to measure 
lower and upper tail dependence for a bivariate couple ( ),X Y  of distribution 
function ( ),X YF F . We propose new tools for measuring the dependence of a 
spatial process ( ){ }, dZ Z s s= ∈  at two measurement points s and s h+ .  

More precisely, we first model the extremal coefficient using the copula in a 
spatial framework. Then, we propose other versions of the spatio-temporal ex-
treme modeling tools such as the extremogram and the crossed extremogram 
using the copulas. Finally, we propose tools to model the asymptotic dependence 
of extremes in a spatial context. 

3.1. Extremal Dependence Index and Copulas 

The study of MEV theory have been extended both to spatial and multivariate 
contexts these last years. The extremal coefficient, a natural dependence meas-
ures for extreme value models which provides the magnitude of the asymptotic 
dependence of a random field at two points of the domain. This section gives the 
relationship between the extremal coefficient via copula. 

Proposition 1. Let ( ){ }2,Z s s∈  be stationary max-stable random process 
with Fréchet marginal. Then, the extremal copula-based coefficient is given by:  

( )

( )
( ) ( )

( )

( ) ( )

1 1
0

1 1
0

d ,
if  0

1

d ,
exp if  0

Z h

Z h

F u C u u
u z

h
F u C u u

β

µ
µ ξ

ξ
θ

µ
ξ

σ

−

−

  −  + ≠
  Γ −
  = 

  −  = 
   

∫

∫
,       (6) 

where  

( )

1

1 if  1 0

0 if  1 0

z z

u z
z

ξ

β

µ µξ ξ
σ σ

µξ
σ

 −  −   + + >          = 
−  + ≤   

; for all z∈ , 

and Γ , the well-known gamma function, such as for all  
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0z > , ( ) 1
0

e dz tz t t
+∞ − −Γ = ∫ . 

Proof. Let Z be a stationary random field of the second order of form parame-
ter 1ξ < . The extremal coefficient is given using the underlying madogram (see 
[9]) by:  

( )
( ) ( )

( )
( )

if  0
1

exp if  0

M h
u z

h
M h

β µ ξ
ξ

θ

ξ
σ

  
+ ≠  
Γ −   = 

    =    

. 

where hM  is the semi-variogram given by:  

( )
( ) ( )( )

.
2

E Z x h Z x
M h

+ −
=                 (7) 

For all 2x∈  and by taking into account the fact that  

( ) ( ) ( ) ( ) ( ) ( )2max , ;Z x h Z x Z x h Z x Z x h Z x + − = + − + −   

then, the relation 7 provides:  

( )
( ) ( ) ( ) ( )( )2max ,

.
2

E Z x h Z x Z x h Z x
M h

 + − + − =  

So, it follows that:  

( ) ( ) ( )( ) ( )( ) ( )( )1max ,
2

M h E Z x h Z x E Z x h E Z x  = + − + +     

Then, for a stricly continous context,  

( ) ( ) ( )( )max , ,M h E Z x h Z x µ = + −                          (8) 

where ( )( ) ( )( )E Z x h E Z xµ = + =  is the means of ( ).Z , stationary at second 
order. Thus, we have  

( ) ( )( ) ( ) ( )( )max , , .h Z ZE Z x h Z x zdC F z F z
+∞

−∞
 + =  ∫  

Which gives  

( ) ( )( ) ( ) ( )1 1
0

max , d , .Z hE Z x h Z x F u C u u− + =  ∫             (9) 

Then, using the Formula (9) in (8), one obtain  

( ) ( ) ( )1 1
0

d , .Z hM h F u C u u µ−= −∫                   (10) 

By using the relation (10) in the expression of the coefficient extremal we get  

( )

( )
( ) ( )

( )

( ) ( )

1 1
0

1 1
0

d ,
if  0

1

d ,
exp if  0

Z h

Z h

F u C u u
u z

h
F u C u u

β

µ
µ ξ

ξ
θ

µ
ξ

σ

−

−

  −  + ≠
  Γ −
  = 

  −  = 
   

∫

∫
. 

Finally, it yields the relation (6) as disserted. 
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Let Z be a max-stable random field. The extremal coefficient (Figure 1) and 
the copula function are related differently depending on the marginal distribu-
tion of the Z process.  

Proposition 2. Let Z be a spatial domain of a stationary max-stable model G 
with either or Gumbel or Weibull univariate marginal. Then, the extremal coef-
ficient is given by:  

( ) ( )
( )( )

1
1 , , for standard Weibull margin

exp , , for standard Gumbel margin
Z h

Z h

G F C u
h

G F C u

µ
θ

µ

− − + = 
−

     (11) 

where ( ) ( ) ( )1 1
0

, , d ,Z h Z hG F C u F u C u u−= ∫ .  
Proof. Dealing with the case where the margins of Z are distributed according 

the Weibull model, it is well known that the extremal coefficient and the mado-
gram are associated by the relation  

( ) ( ) 1
1 .h M hθ

−
 = −   

So, using (10) in this relation, it comes, under the existence, that  

( ) ( ) ( )
11 1

0
1 d , .Z hh F u C u uθ µ

−
− = − +  ∫  

Hence the first result of (11).  
Similarly, if the margins of Z are Brown-Resnick model (see [3]), then 
( ) ( )( )exph M hθ = . Furthermore, by using (10) in this relationship, it comes 

that  

( ) ( ) ( )( )1 1
0

exp d , .Z hh F u C u uθ µ−= −∫  

Hence the last result of (11).  
The following section allows us to construct a model of the extremogram and 

the cross-extremogram via copula function to determine the distributional de-
pendence of the random variables of the random field Z depending on the in-
ter-site distance. 
 

 
Figure 1. Graph of Extremal coefficient for a Brown-Resnick process 1. 
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3.2. Sampling Extremogram with Copulas 

In this subsection, we model the extremogram function (Figure 2) using a co-
pula function for all A +

∗⊂   and a A∈ . By using the tools proposed in ([10] 
[11] [12]) and by considering that the variables ( )iZ s  and ( )jZ s  have uni-
form margins, we obtain the following proposition. 

Proposition 3. Consider { }, ; 1, ,i ZF i n=   the distribution function of the 
random variable iZ  and ( ),i i ZU F Z=  the uniform transformation of ,i ZF . 
Then, a copula-based extremogram is given, for all , d

i jx x ∈ , by:  

( ) ( ) ( ) ( )
,

1

1 ,
2 lim ,

1
ijh

AA ij ija
u

C u u
h h

u
ρ ρ

−+∞
→

−
= = −

−
 

where ijh  is the separating distance between ,i jx x .  

Proof. It is well known that ( ) ( ) ( )
lim /j i

AA ij z

Z x Z x
h P A A

z z
ρ

→∞

 
 = ∈ ∈
 
 

. Such as: 

( ),A a= +∞ , this expression can be written as,  

( )

( ) ( )

( )

,

lim .

j i

AA ij z
i

Z x Z x
P a a

z z
h

Z x
P a

z

ρ
→+∞

 
 > >
 
 =

 
> 

 

 

Then, it is easy to show that,  

( ) ( ) ( )( )
( )( )

,
lim ,

j i
AA ij z

i

P Z x az Z x az
h

P Z x az
ρ

→+∞

> >
=

>
 

Z being a stationary random field. Under the assumption that  
( ) ( )i jF az F az u= = .  
Then, it follows that,  

( ) ( )
( )1

,
lim .j i

AA ij
u i

P U u U u
h

P U u
ρ

−→

> >
=

>
 

Nevertheless, using the survival copula, when have:  

( ) ( ), 1 , .
ijj i hP U u U u u u C u u> > = − − +  

Therefore,  

( ) ( )
1

1 2 ,
lim .

1
ijh

AA ij
u

u C u u
h

u
ρ

−→

− +
=

−
 

Then, based on a result of Cooley & et al. [9], it follows that:  

( ) ( )
1

1 ,
lim 2 .

1
ijh

AA ij
u

C u u
h

u
ρ

−→

 −
= − 

−  
 

So, as disserted  

( ) ( ) ( )
( )

,
1

1 ,
2 lim .

1
ijh

AA ij a
u

C u u
h h

u
ρ ρ

−+∞
→

−
= = −

−
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In the particular case, where 1a = , that is ( ) ( )i iF az F z=  the extremogram 
merges with the upper tail dependence measure. So,  

( ) ( ) ( ) ( )
1 1

1 , 1 ,
lim 2 2 lim .

1 1
ij ijh h

AA ij ij
u u

C u u C u u
h h

u u
ρ χ

− −→ →

− −
= − = − =

− −
 

For the particular case where 1a = . Moreover If ( ) ( )1, 0ijhρ +∞ = , then the 
random variables iZ  and jZ  are asymptotically independent. 

In a second case, considering that A −
∗⊂   and a A∈ , we obtain next rela-

tion of the extremogram via the underlying copula. In particular, if hχ  is re-
duced to a single site x, the law of Y ∗  is either the Frechet distribution, the 
Gumbel or the Weibull distribution.  

The following result provides a copula-based extension of the extremogram of 
the process. 

Proposition 4. The extremogram AAρ  and the copula function 
ijhC  are 

linked by the relation:  

( ) ( )
[ ]

0

,
lim , 0,1 .ijh

AA ij
u

C u u
h u

u
ρ

+→
= ∈                  (12) 

Proof. It is well known that ( ) ( ) ( )
lim /j i

AA ij z

Z x Z x
h P A A

z z
ρ

→−∞

 
 = ∈ ∈
 
 

.  

Since ( ),A a= −∞ , it follows that:  

( ) ( ) ( )
lim / .j i

AA ij z

Z x Z x
h P a a

z z
ρ

→−∞

 
 = ≤ ≤
 
 

 

Then,  

( ) ( ) ( )( )lim / .AA ij j iz
h P Z x az Z x azρ

→−∞
= ≤ ≤  

Thus,  

( ) ( )
0

lim / .AA ij j i
u

h P U u U uρ
+→

= ≤ ≤  

Therefore,  

( ) ( )
( )0

,
lim .j i

AA ij
u i

P U u U u
h

P U u
ρ

+→

≤ ≤
=

≤
 

Hence the result (12) as disserted.  
The following subsection gives a relation between the cross-extremogram and 

the copula function. 

3.3. Cross-Extremogram Sampling with Spatial Copulas 

The following result provides a characterization of the cross extremogram in a 
copula contex, for two given sites is  and js . 

Theorem 5. For two given sites is  and js  separated by ijh , the extremal 
coefficient it given by:  

( )
( ) ( )

( )
1 2

2 1 2

, 1 ,1 1

,
1 lim .

1
ij

i j

j h i j
AB ij

u u i

u C u u
h

u
ρ

− −→

−
= −

−
            (13) 
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Figure 2. Graph of theoretical extremogram. This figures gives the representation in 2D and 3D for ( ),1A = −∞  and 

( )1,A = +∞ . We denote by upper extremogram for ( )1,A = +∞  and lower extremogram for ( ),1A = −∞ . above the figure. 

 
Proof. Let ( )( )ji i jiF Z x U=  be the univariate distribution functions obtained 

by integral transforms to the variables ( )j iZ x  with j i ijx x h− = , 1 ,i j n≤ ≤ , 
i j≠ . It is well known that  

( ) ( ) ( )( )2 1lim / .AB ij j iz
h P Z s zB Z s zAρ

→∞
= ∈ ∈  

Since ( ),A a= ∞  and ( ),B b= ∞ , it follows that  

( ) ( ) ( )( )2 1lim / .AB ij j iz
h P Z s zB Z s zAρ

→∞
= ∈ ∈  

It follow that,  

( ) ( ) ( )( )2 1lim / .AB ij j iz
h P Z s bz Z s azρ

→∞
= ≥ ≥  

So,  

( ) ( ) ( )( )
( )( )

2 1

1

,
lim .

j i
AB ij z

i

P Z s bz Z s az
h

P Z s az
ρ

→∞

≥ ≥
=

≥
 

( ) ( )
( )( )1

ˆ ,
lim ijh

AB ij z
i

H bz az
h

P Z s az
ρ

→∞
=

≥
 

with ( )ˆ ,
ijhH bz az  the survival function of the variables ( )2 jZ s  and ( )1 iZ s . 

Moreover, if 
ijhC  is the jointed copula underlying the distribution of ( )1 iZ s  

and ( )2 jZ s , then, it follows that:  

( ) ( ) ( ) ( )1 2
ˆ , 1 ,

ij ijh i j hH bz az F az F bz H bz az= − − +  

so,  

( ) ( ) ( ) ( ) ( )( )1 2 2 1
ˆ , 1 , ,

ij ijh i j h j iH bz az F az F bz C F bz F az= − − +  

Likewise  
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( )( ) ( )( ) ( )1 1 11 1 .i i iP Z s az P Z s az F az≥ = − < = −  

By replacing these two last relations in (8), we obtain the following result:  

( ) ( ) ( ) ( ) ( )( )
( )

1 2 1 2

1

1 ,
lim .

1
iji j h i j

AB ij z
i

F az F bz C F az F bz
h

F az
ρ

→∞

− − +
=

−
     (14) 

Let us consider ( )1 1i iu F az=  et ( )2 2j ju F bz= . When z →+∞  then 1 1iu −→  
and 2 1ju −→ . By using these transformations in the relation (14), it follows 
that:  

( )
( ) ( )

( )
1 2

1 2 1 2

, 1 ,1 1

1 ,
lim .

1
ij

i j

i j h i j
AB ij

u u i

u u C u u
h

u
ρ

− −→

− − +
=

−
 

So  

( )
( ) ( )

( )
1 2

2 1 2

, 1 ,1 1

,
1 lim .

1
ij

i j

j h i j
AB ij

u u i

u C u u
h

u
ρ

− −→

−
= −

−
 

Hence the result (13) as disserted. 
The following results provides an asymptotic statement. 
Proposition 6. Consider ( ) [ ]0,1ij ijF az u= ∈  the distribution function of the 

variable ( )j iZ x . If z +∞ , then 1iju −
  The relation (16) is written ac-

cording to the copula by the relation:  

( )
( )
( )
( )

( )

( )

( ) ( )
( )

( ) ( )
( )

11

22

11 22

11 22

11 11 11

1 11
11

22 22 22
22

1 22

12
22 22 11

, 1 ,121 11

11 11 22

, 1 ,1 22

,
1 lim

1
,

1 lim
1

,
1 lim

1

,
1 lim

1

ij

ij

ij

ij

h

u

AA ij h

uBB ij

hAB ij

u u
BA ij

h

u u

u C u u

u
h u C u u
h u

u C u uh
uh

u C u u

u

ρ

ρ

ρ

ρ

−

−

− −

− −

→

→

→

→

 −
 −

−
  −  −  −
  =
  −
− 

− 
   − −

−














 


          (15) 

Proof. In matrix form, the extremogram and the crossed extremogram can be 
written, (see Muneya et al. [13]), for all , dx x h+ ∈ , such as,  

( )
( )
( )
( )

( ) ( )( )
( ) ( )( )
( ) ( )( )
( ) ( )( )

11 1 1

22
2 2

12
2 1

21
1 2

/

/
lim

/

/

AA

BB

z
AB

BA

P Z x h zA Z x zAh
P Z x h zB Z x zBh

h P Z x h zB Z x zA
h P Z x h zA Z x zB

ρ
ρ
ρ
ρ

→+∞

 + ∈ ∈     + ∈ ∈   =    + ∈ ∈     + ∈ ∈   

          (16) 

Consider ( ),B A a= = +∞ . Z being stationary, let 1 1 11i ju u u= = . With these 
transformations the relation (13) is written in the form,  

( ) ( )
11

11 11 1111

1 11

1 2 ,
lim .

1
ijh

AA ij
u

u C u u
h

u
ρ

−→

− +
=

−
 

Hence the first expression of (15). 
In the same way, let us consider that ( ),A B b= = +∞  and 2 2 22j iu u u= = , the 
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relation (13) is written in the form,  

( ) ( )
22

22 22 2222

1 22

1 2 ,
lim .

1
ijh

BB ij
u

u C u u
h

u
ρ

−→

− +
=

−
 

Hence the second expression of (15). 
Similarly for ( ),A a= +∞  and ( ),B b= +∞ , let 1 1 11i ju u u= =  and  

2 2 22j iu u u= = . The relation (13) is written in the form,  

( )
( ) ( )

( )
11 22

22 11 22 1112

, 1 ,1 11

1 ,
lim .

1
ijh

AB ij
u u

u u C u u
h

u
ρ

− −→

− − +
=

−
 

By swapping A and B, 11u  and 22u  will change location. So this new rela-
tionship is still written in the form,  

( )
( ) ( )

( )
22 11

11 22 11 2221

, 1 ,1 22

1 ,
lim .

1
ijh

BA ij
u u

u u C u u
h

u
ρ

− −→

− − +
=

−
 

Hence the third and fourth expressions of (15).  
The following section is used to characterize the asymptotic dependence of 

extremes through the extremogram. 

3.4. Asymptotic Dependence and Extremogram Model 

Consider a random variable ( )T x  of a spatial process ( ){ }, dT T x x= ∈  of 
standardized marginalized ( )( )TF T x  (see [2] [14]). The following result gives 
another approach to quantify the asymptotic dependence of a random field at 
two sites x and x h+ . 

Proposition 7. Let ( ){ }, dZ Z x x= ∈  be a spatial stationary process such 
that  

( ) ( )( )( ) 1
. log . .TZ F T

−
 = −    

The marginal distribution of Z are Fréchet standard marginal. The extremo-
gram of random field Z(.) in two sites , dx x h+ ∈  is define such as,  

( ) ( )
11

;h
AA hh u u ηρ

−

=                       (17) 

where ( ) ( ]0,1hη ∈  is the tail dependence coefficient, ( );A a= ∞  with ( ]0,1a∈  
and ( ).  a slowly varying function. 

Before giving the proof of the above theorem, let’s note that, even in a spatial 
study, there no loss of generality in dealing with Fréchet marginal, for any  

continuous function f, the transformation ( )( ) ( )( )
1

logi
i

f Y x
Y x
−

=  gives  

approximatively this distribution. Indeed, the parameters of the GEV in (2) as 
smooth function of the explanatory variables (longitude, altitude, elevation etc.) 
such as:  

( ) ( ) ( )
( ) ( ) ( ) 1xx

Y x x Z x
x

ξσ
µ

ξ
 = + −
 

 where Z(x) ~ Unit-Fréchet 
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for some partially correlation. That needs to model both spatial behaviour of 
marginal parameters and spatial joint dependence. 

Proof. Considering ( );A a= ∞ , ( ]0;1a∈ , the extremogram is written  

( )
( ) ( )( )

( )( )
,

lim .AA z

P Z x h az Z x az
h

P Z x az
ρ

→+∞

+ > >
=

>
 

According to Ledford and Tawn [15], when z tends towards infinity,  

( ) ( )
11

2 1, ~ .P Z r Z r r r η
−

> >                    (18) 

Using (18), for any spatial process Z at two sites x and x h+  when z tends 
towards infinity, we can write  

( ) ( )( ) ( )( )
11/ ~ .hhP Z x h az Z x az az az η

−+ > >            (19) 

Thus, let ( )( )F Z x  be the distribution function of ( )Z x  and ( )( )F Z x h+  
the distribution function of ( )Z x h+ . According to the above, when z tends 
towards infinity, it follows that:  

( )( ) ( ) ( )( ) ( )( ) ( )( )
11/ ~ .hhP F Z x h F az F Z x F az az az η

−+ > >     (20) 

Considering ( )( )U F Z x= , ( )( )V F Z x h= +  and ( )u F az= , it follows 
that:  

( ) ( )
11

/ ~ ,h
hP V u U u u u η

−

> >                   (21) 

when z tends towards infinity. 
Using (21) in the expression of the extremogram, it follows that:  

( ) ( )
11
h

AA hh u u ηρ
−

=   

Hence (17) as disserted. 
Ancona and Tawn [16] proposed a measure of extreme dependence called ex-

treme variogram. This measure of dependence is expressed as a function of the 
dependence of tail by the relation:  

( ) ( )( )2 1 .E h hγ η= −                       (22) 

Thus, the extremogram is modeled according to the extreme variogram by the 
following result. 

Corollary 1. Let ( )E hγ  be the extreme variogram of two stationary random 
variables. The extremogram is linked to the extreme variogram by the relation:  

( ) ( )
( )
( )2 ;

E

E

h
h

AA hh u u
γ
γρ

−
−=                     (23) 

with ( ) [ )0;2E hγ ∈ . 

Proof. From the relation (22), we can say that ( ) ( )11
2 Eh hη γ= − . Using this 

relation in (17), it follows that:  

( ) ( ) ( )
21

2 .E h
AA hh u u γρ

−
−=   
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Hence the expression,  

( ) ( )
( )
( )2 .

E

E

h
h

AA hh u u
γ
γρ

−
−=  

In the following, we estimate the extremogram using the relation (17). In this 
relationship, estimation of the extremogram requires estimation of the slowly 
varying function and the tail dependence coefficient. The following result gives 
the estimate of the extremogram. 

Proposition 8. Consider two spatial random variables ( )Z x  and  
( ); , dZ x h x x h+ + ∈  of respective marginal distribution function ( )( )ZF Z x  

and ( )( )ZF Z x h+ . Let ( ).W  considering  

( )
( )( )( ) ( )( )( )

1 1min ; ,
log logZ Z

W h
F Z x F Z x h

 − − =  
+  

 

the estimated extremogram is written, for a fixed threshold hu , in the form,  

( ) ( ) ( )
11

ˆˆ ˆ .h
AA hh c u u ηρ

−

=                       (24) 

where  

( ) ( ) ( ) ( )1
ˆ

1

ˆ1ˆˆ  ;    log ,
uh

h

h

n
u h k h

h h
ku h

n w h u
c u u h

n n u
η η

=

 − = =  
  

∑  

with ( )ˆ , 1, ,
hk uw h k n=   are the observations ( )Ŵ h  exceeding the threshold 

hu .  
Proof. The extremogram is expressed by the relation,  

( )
( ) ( )( )

( )( )
( )( )
( )( )

,
lim lim .AA z z

P Z x h z Z x z P W h z
h

P Z x z P Z x z
ρ

→+∞ →+∞

+ > > >
= =

> >
 

Ledford ([17] [18]) proposed to consider ( )h u  as constant that is, 
( )h hu c=  for all values z exceeding the threshold hu . Using the observations 

of the independent replications of the spatial process approximate independent 
observations on ( )Ŵ h  are obtained, where ( )Ŵ h  is the approximation to the 
variable ( )W h . From model (20) and n independent observations, the 
log-likelihood is  

( ) ( ) ( )1
1

1 ˆ, log 1 log ,
uh

h hh

n
h h

h h u u h i
ih hh

c cl c n n n c w h
u ηη

η η =

   
= − − + − −   

  
∑  

where ( ){ }ˆ , 1, ,
hi uw h i n=   are the observations of ( )Ŵ h  above the threshold 

hu . Using the maximum likelihood method, the estimate of hc  is written,  

( )
1

ˆ ,hu h
h h

n
c u

n
η=  

and using the Hill estimator method, the estimate of hη  is written,  

( ) ( )
1

ˆ1ˆ log .
uh

h

n
k h

ku h

w h u
h

n u
η

=

 − =  
  

∑  
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where ( )ˆ , 1, ,
hk uw h k n=   are the observations ( )Ŵ h  exceeding the threshold 

hu . Hence the result,  

( ) ( ) ( )
11

ˆˆ ˆ .h
AA hh c u u ηρ

−

=                      (25) 

Therefore Formula (24) is verified.  

4. Conclusions 

In this study, we have been modeling some technical tools of spatial prediction 
within a copula-based space. Thus, the extremal coefficient and the extremo-
gram have been expressed via the underlying copulas. These results are impor-
tant insofar as we want to determine the inter-site distribution dependence of a 
definite area. The results of this paper make it possible to find a relation between 
the extremal coefficient and the extremogram using the copula function. These 
new models are very crucial since the copula is a parametrization of the number 
of variables that do not deal with the marginal distribution. Hence, they allow 
not only determining the distributional dependence of spatial or temporal ex-
tremes, but also, and above all, the conditional distributional dependence be-
tween these extremes in various observation sites.  

In our further work, we will use these tools to determine the extreme distribu-
tion of metals in a mining context. 
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