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Abstract 
In financial analysis risk quantification is essential for efficient portfolio 
management in a stochastic framework. In this paper we study the value at 
risk, the expected shortfall, marginal expected shortfall and value at risk, in-
cremental value at risk and expected shortfall, the marginal and discrete mar-
ginal contributions of a portfolio. Each asset in the portfolio is characterized 
by a trend, a volatility and a price following a three-dimensional diffusion 
process. The interest rate of each asset evolves according to the Hull and 
White model. Furthermore, we propose the optimization of this portfolio ac-
cording to the value at risk model. 
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1. Introduction 

In the financial world, portfolio management is essential. For that stochastic 
processes are used to describe the random evolution of financial assets. In their 
standard model, Black and Scholes [1] considered a model with constant volatil-
ity and drift. To solve one of the shortcomings of this model, other authors have 
assumed that the volatility and drift are stochastic. Stochastic volatility is used in 
quantitative finance to value derivatives, such as options. The modeling of inter-
est rates has been the subject of work by several researchers. We can mention the 
Vasicek model, the Cox-Ingersoll-Ross (CIR) model, the Hull and White model 
(see [2]). The stochastic interest rate model of Hull and White r is 

( ) ( )( )d d d .r k t ar t t Bσ= − +                    (1) 

where B is the standard Brownian motion, σ  the annualized instantaneous 
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deviation of changes in the rate. 
Applications of stochastic optimal control to management and finance prob-

lems were developed in the 1970s, notably with Merton’s pioneering article on 
portfolio allocation. Portfolio management using mean-variance criteria was in-
itially formulated by the American economist Harry Markowitz (one of the 1990 
Nobel Prize winners in economics) in a static one-period framework. An effi-
cient portfolio is one that presents the optimal risk/return trade-off for an in-
vestor. Optimization problems in finance using risk measures or the dynamic 
programming principle and the Hamiltonjacobibellman theory are studied in 
the works of Schied [3], Gundel [4], Barrieu and El Karoui [5], Yang and al [6] 
and Mbigili and al [7]. Marginal risks are important criterion in portfolio man-
agement [8] [9]. 

The major contribution of this paper is the study of the management of a large 
complex portfolio of assets with stochastc drifts and stochastic volatilities by 
these marginal, incremental risks and by the optimization of this portfolio by 
minimizing its potential loss for a fixed return. The price and volatility of each 
asset are correlated and the assets move independently. The rest of our work will 
be organized as follows. Section 2 is devoted to the preliminaries of the study, 
where properties on stochastic processes are presented, and Euler’s theorem on 
homogeneous functions. In Section 3 we present the main result of our study. 
Finally in Section 4 we give model of VaR and optimization of portfolio. 

2. Materials and Methods 

In this section, we give important definitions and properties on stochastic 
processes, Euler theorem on the homogeneous functions. We refer the readers to 
[10]-[17] for stochastic processes applied to finance and to [18] for homogene-
ous functions. These results turn out to be necessary for our study. 

2.1. An Overview of Stochastic Processes 

A stochastic process is a one or multidimensional variable that depends on ha-
zard and time. There are infinite examples of such processes. To stick to the field 
of finance, let us quote the price of a share, an interest rate, a stock market index 
or a set of variables including several rates, indices, exchange rates. Mathemati-
cally it is defined by the following. 

Let ( ), ,A PΩ  be a probability space, ( ),E ε  a measurable space and T a set, 
(for example , , dT =    ). A stochastic process is a application ( ): ,X T EΩ →  
which to the couple ( ),w t  we associate ( ),X w t  again denoted ( )tX w  such 
that, for any fixed t T∈ , ( )tX  is a random variable on ( ), ,A PΩ . In particu-
lar Brownian motion is a stochastic process which plays a key role in financial 
modelling. 

The following proposition characterizes a standard Brownian motion. 
Proposition 1. i) The standard Brownian motion ( )W t  is distributed ac-

cording to a Gaussian law ( )0,N t  with t∈ ; 
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ii) Its increase between t and t t+ ∆ , ( ) ( )W W t t W t∆ = + ∆ −  is distributed 
according to a Gaussian law ( )0,N t∆ . 

iii) W is a martingale: the conditional expectation  
( ( ) | ( )) = ( )E W t W s W s . 
An arithmetic Brownian motion ( )X t  with parameters µ  and σ  is ex-

pressed as a function of a Wiener process ( )W t  as follows 

( ) ( )
.

X t t
W t

−
=

µ
σ  

Calculation rules on Brownian motions. 
The differential calculus on Wiener processes obeys the following rules: 
i) ( ) ( )2d d dW t V W= = . 
ii) d d 0W t⋅ = . 
iii) ( ) ( ) ( )1 2 12 1 2d d d cov d ,dW t W t t W Wρ⋅ = =  if 1W  and 2W  are two Wiener 

processes correlated and 12ρ  is the instantaneous correlation coefficient be-
tween 1W  and 2W . 

iv) ( ) ( )1 2d d 0W t W t⋅ =  if 1 2t t≠ . 
Heuristic” computational rules applicable to the non-standard Brownian with 

parameters µ  and σ : 
v) 2 2d dX tσ= ; 
vi) d d 0X t = ; 
vii) ( ) ( ) ( )1 2 1 2 12 12 1 2d d cov d ,d d dX t X t X X t tσ ρ σ σ= = =  

where 12ρ  is the instantaneous correlation coefficient between 1X  and 2X . 

2.2. Homogeneous Function and Euler’s Theorem 

Euler’s theorem associated to the name of Leonhard Euler, is a multivariate 
analysis result useful in thermodynamics, economics, and finance. 

Theorem 2. [19] Let C be a cone of n  and let k be a real number. 
A multivariate function : mf C →   differentiable at any point is positively 

homogeneous of degree k if and only if the following relation, satisfy: for all 
( )1, , n

nx x x= ∈   

( ) ( )
1

.
n

i
i i

fx x kf x
x=

∂
=

∂∑                       (2) 

Let E and F be two K-normalized vector spaces ( K =   ou  ) and C a cone 
of E and k a element of K. A differentiable function :f C F→  is positively 

homogeneous of degree k if and only if: for all x C∈ , 
( ) ( )

d
d
f x

kf x
x

= . 

The three following sections provides the main results of our study and v' is 
the transpose of v. 

3. Main Results 
3.1. Hypothesis and Model 

We consider a portfolio P made up of a set of stocks. Each stock i is defined as 
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followed. iS  is the stock price, iσ  is the volatility of the stock which influ-
ences the dynamics of iS  and the option price, ir  is the interest rate. The sto-
chastic interest rate model ir  is that proposed by Hull and White ([2]). For all i 

irσ  is the annualized instantaneous deviation of changes in the rate supposed 
constant and know like a. In the same vein, the parameter θ  is a risk premium 
that is added to the interest rate. The stochastic volatility iσ  of the stock fol-
lows a process involving a recall force towards a value ( )( )i if S t  where if  is a 
decreasing function of the price iS . Morever it is assumed that the volatility and 
the interest rate are uncorrelated. The relative change in the price of iS  and the 
volatility are correlated with 1ρ . ε  is the instantaneous standard deviation of 
the volatility iσ , assumed constant. The interest rate, the volatility and the price 

iS  follow the three-dimensional diffusion process below 

( ) ( )( )

( )( ) ( ) ( )

( ) ( )( )

1

2
1 2

2 2
1 1

2 322

d d d

d
d d 1 d

1
d d d d

11

i i i i ir

i
i i i

i

i i i

r k t a r t t B

S
r t t t B t B

S

b f S t t B B

σ

θ ρσ σ ρ

ρ ε ρ ρ
σ σ ε

ρρ

 = − +

 = + + + −



− − = − + +
 −−

      (3) 

The standard Brownian motions 1B , 2B  and 3B  are independent. 
In the following subsection we calculate the VaR, the ES, the incremental VaR 

and ES and the contributions of each asset to the portfolio risk. 

3.2. Computation of the Portfolio’s VaR and ES 

In actuarial and financial sciences, the Value at Risk (VaR) quantifies numeri-
cally the size of the loss for which there is a low probability of being exceeded. It 
is characterized by the confidence level, the time horizon chosen and the distri-
bution of profit or loss. The VaR is a risk measure mainly used to measure the 
large portfolio market risk. For a confidence level ] [0;1α ∈  Value-at-Risk is 
the lower α -quantile, given by 

( ) ( ){ } ( )1; inf , ;X XVaR X x F x Fα α α−= ≥ =              (4) 

where 1
XF −  is the right continuous inverse of XF . 

Loyara et al. [19] showed that the VaR is also intrinsically linked to this func-
tion, making it possible to bridge the copula function with the VaR. While 
Yaméogo and al. [20] pointed out that VaR makes it possible to manage a large 
portfolio divided into several sectors each comprising two sub-sectors. More 
generally in multivariate study, for a random vector X satisfying the regularity 
conditions, one defines the multidimensional VaR at probability level α  by: 

( ) ( )| ;VaR X X X Lα α= ∈∂                     (5) 

where ( )L α∂  is the boundary of the α -level set of tF , the univariate com-
ponent of the vector. 

As for the Expected Shortfall it corresponds to the average size of losses above 
VaR. In the case of continuous variables, the definition of the Expected Shortfall 
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coincides with that of Conditional Value at risk. This measure is very sensitive to 
the tail of the distribution and therefore it is more conservative than the VaR. 

( ) ( ) ( ) ( )
,

1, | , d ;
1 LVaR T p

ES T p E L L VaR T p xf x x
p

+∞
= ≥ =   − ∫        (6) 

where ( )Lf x  is the density function of the loss and ( )LF x  will denote its dis-
tribution function. 

The following proposition gives results one these risk measures. 
Proposition 3. For all realization ( )1, , nx x x ′=   of the random vector X, 

the VaR and ES associated with of the portfolio P are given respectively by: 

( ) 2
1

1
, ,

n

P n p i i
i

VaR x x x xα ζ µ
=

′= −∑                 (7) 

and 

( )
1

2
1

1

1, , , d ,
1

n

P n p i i p u
i p

ES x x x x u
p

ξ ζ µ ξ α
=

′= − =
−∑ ∫         (8) 

where pα  is the p-quantile of the standardized distributed Gaussian and µ  is 
the mean of X. 

Proof. The return of the portfolio is 
1

n

P i i
i

R x R
=

= ∑  where 
d i

i
i

S
R

S
=  is the re-

turn of each asset. The mathematical expectation being linear, the expected re-

turn of the portfolio ( ) ( )
1 1 1

n n n

p p i i i i i i
i i i

E R E x R x E R xµ µ
= = =

 = = = = 
 
∑ ∑ ∑  where 

( )i iE R µ= . Under the assumption of independence, the variance ma-

trix-covariance is diagonal of elements ( )iV R , 1 i n≤ ≤ . So, it comes that 

( ) ( )( )d
d d .i

i i i
i

S
E R E E r t t t

S
 

= = + = 
 

θ µ
 

Furthermore by using the computations rules on the Brownian motion of the 
section 2.1 one has 

( ) ( )( ) ( )( )i i iV R V r t V r t= + =θ
 

and 

( ) ( )( ) 1d d d .i i i i irr k t a r t t W= − +σ
 

By integration, one obtain 

( ) ( ) ( ) ( ) ( )
0 0

e 0 e d e e dii i i
t t

a s ta t a t a u
i i i irr t r k s s W uσ−− −= + +∫ ∫          (9) 

where ( )ir t  is a Gaussian process since a sum of normal variables. So, we have 

( )( ) ( )22 1 e 2ia t
i ir iV r t aσ −= −                   (10) 

and 
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( ) ( )( ) ( ) ( ) ( )
0

d
d d e 0 e d d .ii

t
a s ta ti

i i i i i
i

S
E R E E r t t t r k s s t

S
θ µ θ−−  

= = + = = + +  
   

∫ (11) 

Therefore iR  is Gaussian distributed, which implies that 

( )1 2, , , ;n p p PVaR x x x α σ µ= +                  (12) 

where p x Mxσ ′= , M is the variance-covariance matrix given by 

1

2

1

0 0 . 0
. . . . .

. . 0 . 0
=

0 . 0 .
. . . . 0
0 . 0 0 0

n

n

M

ζ
ζ

ζ
ζ

−

 
 
 
 
 
 
 
  
 



                (13) 

where 
( )22 1 e

2

i
i

a t
r

i
ia

σ
ζ

−−
= . 

From these result, one have 

( ) 2
1

1
, ,

n

P n p i i
i

VaR x x x x
=

′= −∑ α ζ µ
 

which gives 

( ) ( ) ( )( )2
1

1 1
, , e 0 , , .

n n
at

P n p i i i i i
i i

VaR x x x x r I a s k−

= =

= − + +∑ ∑ α ζ θ
 

Furthermore; it comes that 

( ) 2
1

1
, ,

n

P n p i i
i

VaR x x x xα ζ µ
=

′= −∑  that is 

( ) ( ) ( )( )2
1

1 1
, , e 0 , ,i

n n
a t

P n p i i i i i
i i

VaR x x x x r I a s kα ζ θ−

= =

= − + +∑ ∑     (14) 

In the case where the returns are Gaussian distributed 

( )1, ,P n pVaR x x x Mx x′ ′= − α µ  

where ( )1, , nx x x ′=   and ( )1, , nµ µ µ ′=  . So, by setting 
11 d

1p u
p

u
p

ξ α=
− ∫ , 

one have 

( )1, ,P n pES x x x Mx xξ µ′ ′= −  which gives 

( ) ( ) ( )( )2
1

1 1
, , e 0 , , .i

n n
a t

P n p i i i i i
i i

ES x x x x r I a s kξ ζ θ−

= =

= − + +∑ ∑     (15) 

So, the result is proved as disserted. 

3.3. Computation of Incremental Risks and Marginal Risks 

To calculate the incremental value at risk, an investor needs to know the portfo-
lio’s standard deviation, the portfolio’s rate of return, and the asset in question’s 
rate of return and portfolio share. 
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Incremental value at risk (incremental VaR) is the amount of uncertainty 
added to or subtracted from a portfolio by purchasing or selling an investment. 
Investors use incremental value at risk to determine whether a particular in-
vestment should be undertaken, given its likely impact on potential portfolio 
losses. Incremental VaR tells you the precise amount of risk a position is adding 
or subtracting from the whole portfolio, while marginal VaR is just an estima-
tion of the change in the total amount of risk. The idea of incremental value at 
risk was developed by Kevin Dowd in his 1999 book [21], “Beyond Value at 
Risk: The New Science of Risk Management.” Incremental VaR is closely related 
to, but differs from, marginal VaR. 

The following result gives expressions of VaR and ES as a function of their 
first partial derivatives. 

Proposition 4. For all realization ( )1, , nx x x=   of X the VaR and the ES of 
the portfolio P are given respectively by: 

( ) ( )1
1

1

, ,
, ,

n
P n

P n i
i i

VaR x x
VaR x x x

x=

∂
=

∂∑


              (16) 

and 

( ) ( )1
1

1

, ,
, , .

n
P n

P n i
i i

ES x x
ES x x x

x=

∂
=

∂∑


               (17) 

Proof. The risk measures VaR and ES satisfy respectively the relations 

( ) ( )1VaR c x c VaR x⋅ = ⋅  
and 

( ) ( )1ES c x c ES x⋅ = ⋅  

where nx∈  and c1 is a positive constant. This implies that they are homoge-
neous and differentiable functions. In particular the functions pVaR  and pES  
being differentiable and positively homogeneous functions of degree 1, we can 
apply Euler’s theorem for k = 1 to them and one has: 

( ) ( )1
1

1

, ,
, , ;

n
P n

P n i
i i

VaR x x
VaR x x x

x=

∂
=

∂∑




 

and also, 

( ) ( )1
1

1

, ,
, , .

n
P n

P n i
i i

ES x x
ES x x x

x=

∂
=

∂∑




 

The following result allows to quantify the marginal risks. 
Proposition 5. The marginal risks associated to VaR and ES are given respec-

tively by: 

( ) ( ) ( )( )1

2

1

, ,
e 0 , ,iP n a ti

p i in
i

i i
i

VaR x x x
r I a s k

x
x

α θ
ζ

−

=

∂
= − + +

∂
∑



     (18) 

and 
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( ) ( ) ( )( )1

2

1

, ,
e 0 , , ;iP n a ti

p i in
i

i i
i

ES x x x
r I a s k

x
x

ξ θ
ζ

−

=

∂
= − + +

∂
∑



     (19) 

where ( ) ( ) ( )
0

, , e di
t

a s t
i i iI a s k k s s−= ∫ . 

The contributions of each asset to risk are given by 

( ) ( ) ( )( )
2

1

2

1

, ,
e 0 , ,iP n a ti

i p i i in
i

i i
i

VaR x x x
x x r I a s k

x
x

α θ
ζ

−

=

∂
= − + +

∂
∑



   (20) 

and 

( ) ( ) ( )( )
2

1

2

1

, ,
e 0 , ,iP n a ti

i p i i in
i

i i
i

ES x x x
x x r I a s k

x
x

ξ θ
ζ

−

=

∂
= − + +

∂
∑



    (21) 

The discrete marginal contributions of each asset to risk are given by: 

( ) ( )

( ) ( )( )
1 1

2

2 2

1 1,

, , , , , ,0, ,

e 0 , ,i

P i n P n

a ti i
p i i in n

l l j j
l j i j

VaR x x x VaR x x

x
x r I a s k

x x

ζ
α θ

ζ ζ

−

= = ≠

−

= − + +

+∑ ∑

   

     (22) 

and 

( ) ( )

( ) ( )( )
1 1

2

2 2

1 1,

, , , , , ,0, ,

e 0 , , .i

P i n P n

a ti i
p i i in n

l l j j
l j i j

ES x x x ES x x

x
x r I a s k

x x

ζ
ξ θ

ζ ζ

−

= = ≠

−

= − + +

+∑ ∑

   

     (23) 

Proof. The relations (16) and (17) are obtained by deriving  
( )1, , , ,P i nVaR x x x   and ( )1, , , ,P i nES x x x   from relations 12 and 13. Fi-

nally (18) = xi∙(16) and (19) = xi∙(17).  

4. Model of VaR and Optimization of Portfolio P 

In this section we try to optimize the portfolio P under certain constraints. 

4.1. Optimization of Portfolio P According to the VaR Model 

In this subsection, it is a question of determining the composition of the portfo-
lio which minimizes the VaR, for a given profitability. The corresponding opti-
mization problem is as follows: 

( )

( )
1

and 1

p

n

i
i

Min VaR x

sc E X c x
=





= =


∑
                  (24) 

where ( )E X  is the expected return of the portfolio. The solution to this prob-
lem is given by the following proposition. 

Proposition 6. The composition of the efficient portfolio is given by:  
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( )1 2, , ,opt opt opt opt
nx x x x=   where 
1 1 1 2

1 1 1 1 1 1

1 22

1 1 1

1 1 1

1

1

n n n n n n
j j j

i
j j j j j jj j j j j j

opt
i

n n ni j j

j j jj j j

c c

x

µ µ µ
µ

ζ ζ ζ ζ ζ ζ

ζ µ µ
ζ ζ ζ

− − −

= = = = = =

−

= = =

            
 − − +                                   =

   
−       
   

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑
(25) 

and ( ) ( ) ( )
0

e 0 e dii
t

a s ta t
i ir k s sµ θ−−= + +∫  for 1, ,i n=  . 

Proof. Assume VaR and ES be the portfolio P returns. 
( )

( )
1

and 1

p
n

i
i

Min VaR x

E X c x
=





= =
∑

 equivalently 
( )

( )
1

and 1

p
n

i
i

Min x

E X c x

δ

=





= =
∑

 which 

gives also 
( )

1
and 1

n

i
i

Min x Mx

sc E X c x
=

′

 = =

∑
 By replacing E(X) by its expression, one 

has 

( ) ( )( )
1 1

e and 1i
n n

a t s
i s i

i i

Min x Mx

sc x b b c xα θ− −

= =

′

 − + + = =

∑ ∑
         (26) 

Let us use the method of Lagrange multipliers. The Lagrangian is given by: 
( ) ( )1 2 1 2, ,L x x Mx x c x Iλ λ λ µ λ′ ′ ′= − − − ⋅  where  

( ) ( )( )
1

e i
n

a t s
i s

i
x u x b bα θ− −

=

′ = − + +∑  the vector of n components ( )1,1, ,1I ′=   

and 1λ  and 2λ  are Lagrange multipliers. 

By differentiating the Lagrangian with respect to x we have 

( )
1 2

, ,
2 .

L x
Mx

x
∂

′= − −
∂
θ α

λ µ λ
 

( ), ,
0

L x
x
θ α∂

=
∂

 equivalently it follows that 1 22 0Mx λ µ λ′ − − =  So, one ob-

tains easily ( )1 2
1
2

Mx λ µ λ′ = + . 

Finally 

( )1
1 2

1 .
2

x M λ µ λ−  ′ = + 
 

                    (27) 

From the system 
( )

1
1

n

i
i

x

E X c
=

 =

 =

∑ , one obtain the Lagrange multipliers such as 

1

1 1

1 1 22

1 1 1

12

1

n n
j

j jj j

n n n
j j

j j jj j j

c
µ

ζ ζ
λ

µ µ
ζ ζ ζ

−

= =

−

= = =

    
 −            =

   
−       
   

∑ ∑

∑ ∑ ∑
                (28) 
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for the first and the second is given by 

1

1
=1 =1

2 1 22=1 =1

=1 =1 =1

1

1 1 ;
1

n n
j

j jn nj j j

n n nj jj jj j

j j jj j j

c
−

−

−

       −                 = −              −            

∑ ∑
∑ ∑

∑ ∑ ∑

µ
ζ ζ µ

λ
ζ ζµ µ

ζ ζ ζ
 

1 1 2

1 1 1 1

2 1 22

1 1 1

1 1

.
1

n n n n
j j

j j j jj j j j

n n n
j j

j j jj j j

c
− −

= = = =

−

= = =

      
− +                     =

   
−       
   

∑ ∑ ∑ ∑

∑ ∑ ∑

µ µ
ζ ζ ζ ζ

λ
µ µ
ζ ζ ζ

 
Furthermore the extrema are given by  

1 1 1 2

1 1 1 1 1 1

1 22

1 1 1

1 1 1

1

1

n n n n n n
j j j

i
j j j j j jj j j j j j

i
n n ni j j

j j jj j j

c c

x

µ µ µ
µ

ζ ζ ζ ζ ζ ζ

ζ µ µ
ζ ζ ζ

− − −

= = = = = =

−

= = =

            
 − − +                                   =

   
−       
   

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑
  

for 1, ,i n=  . 

4.2. Application of an Optimization Problem to the Portfolio 

In this section we solve the optimization problem in the particular case where P 
contains 5 assets and for fixed values of some parameters. One has 

( ) ( ) ( ) ( )20 0 1 e ;
2

ia tir
i i t t

i

k t a g g
a
σ −′= + + −               (29) 

where ( )0tg  is the instantaneous forward rate for date t implied in the yield 
curve at 0 and ( )0tg ′  is the slope of the instantaneous forward rate curve. 

( ) ( ) ( )
0

e 0 e dii
t

a s ta t
i ir k s s−−= + +∫µ θ

 

which gives 

( ) ( ) ( ) ( ) ( )2

0

e 0 e 0 0 1 e d .
2

i
t

a s t a sat ir
i i s s

i

r a g g s
a

− −−  
′= + + + − + 

 
∫

σ
µ θ

 
Let’s choose 0.2θ = ; ( )0 0.5tg =  and ( )0 2tg ′ = . 
Table 1 gives parameters associated with the 5 stocks and shares (last column) 

of each asset to have an efficient portfolio. 
In other words, the solution of the particular optimization problem is: 

( )1 2 3 4 5, , , ,opt opt opt opt opt optx x x x x x=
 

( )0.9987551;0.9859565; 3.742564;1.759097;0.9987551 .optx = −     (30) 

A positive value of ix  represents a long position: one have bought asset i. A 
negative value represents a short position: asset i has been borrowed. 
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Table 1. Parameters ia , irσ  and shares opt
ix  of asssets in efficient portfolio. 

Stock i ia  irσ  
opt
ix  

Stock 1 0.1 0.091 0.9987551 

Stock 2 0.22 0.0710 0.9859565 

Stock 3 0.01 0.015 −3.742564 

Stock 4 0.05 0.09 1.759097 

Stock 5 0.04 0.03 0.9987551 

5. Conclusion 

This study allowed us to contribute to the management of a large complex port-
folio of assets (defined by (3)) with stochastic drifts and volatilities. It gives in-
teresting results. We have proven that when the interest rate of each asset 
evolves according to the Hull and White model, the profitability of the portfolio 
is Gaussian. In addition, the value at risk, the expected shortfall, marginal ex-
pected shortfall and value at risk, incremental value at risk and expected short-
fall, the marginal and discrete marginal contributions of a portfolio do not de-
pend on the correlation forces between assets prices and volatilities. Similarly, 
the optimal portfolio allocation does not depend on correlation forces between 
assets prices and volatilities. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this 
paper. 

References 
[1] Abba Mallam, H., Barro, D., Wendkouni, Y. and Bisso, S. (2021) Pricing Multivariate 

European Equity Option Using Gaussians Mixture Distributions and EVT-Based Co-
pulas. International Journal of Mathematics and Mathematical Sciences, 2021, Article 
ID: 7648093. https://doi.org/10.1155/2021/7648093 

[2] El Karoui, N. and Gobet, E. (2011) Les outils stochastiques des marchés financiers 
ditions de l’cole Polytechnique—Février. 

[3] Ollmer, H. and Schied, A. (2002) Stochastic Finance. An Introduction in Dis-
crete-Time. Studies in Mathematics, de Gruyter, Berlin. 

[4] Gundel, A. (2005) Robust Utility Maximization for Complete and Incomplete Mar-
ket Models. Finance and Stochastics, 9, 151-176.  
https://doi.org/10.1007/s00780-004-0148-1 

[5] Barrieu, P. and El Karoui, N. (2004) Optimal Design of Derivatives under Dynamic 
Risk Measures. In: Yin, G. and Zhang, Q., Eds., Contemporary Mathematics, Vol. 
351. 

[6] Yang, Y., Zhu, Y. and Zhao, X. (2020) Portfolio Research Based on Mean-Realized 
Variance-CVaR and Random Matrix Theory under High-Frequency Data. Journal 
of Financial Risk Management, 9, 480-493. https://doi.org/10.4236/jfrm.2020.94026 

[7] Mbigili, L., Mataramvura, S. and Charles, W. (2020) Optimal Portfolio Management 

https://doi.org/10.4236/ojs.2022.126047
https://doi.org/10.1155/2021/7648093
https://doi.org/10.1007/s00780-004-0148-1
https://doi.org/10.4236/jfrm.2020.94026


W. Yaméogo et al. 
 

 

DOI: 10.4236/ojs.2022.126047 838 Open Journal of Statistics 
 

When Stocks Are Driven by Mean Reverting Processes. Journal of Mathematical 
Finance, 10, 10-26. https://doi.org/10.4236/jmf.2020.101002 

[8] Roncalli, T. (2009) Gestion des Risques Multiples, Collection Finance, 2e Edition. 

[9] Zhu, S.S., et al. (2010) Portfolio Selection with Marginal Risk Control. The Journal 
of Computational Finance, 14, 3-28. https://doi.org/10.21314/JCF.2010.213 

[10] Khodamoradi, T., Salahi, M. and Najafi, A.R. (2020) Portfolio Optimization Model 
with and without Options under Additional Constraints. Mathematical Problems in 
Engineering, 2020, Article ID: 8862435. https://doi.org/10.1155/2020/8862435 

[11] Clauss, P. (2011) Gestion de portefeuille: Une approche quantitative. Dunod, Paris. 

[12] Aftation, F. (2018) La nouvelle finance et la gestion de portefeuilles. Economica. 

[13] Jacquillat, B., Solnik, B. and Prignon, C. (2009) Marchés financiers, gestion des por-
tefeuilles et des risqué. Dunod, Paris. 

[14] Harrison, J.M. and Liska, S.P. (1981) Martingales and Stochastiques Integrals in the 
Theory of Continuous Trading Stochastic Processes and Their Applications. 

[15] Rockafellar, R.T. and Uryasev, S. (2000) Optimization of Conditional Value-at-Risk. 
Journal of Risk, 2, 21-41. https://doi.org/10.2139/ssrn.267256 

[16] Le Gall, J.-F. (2013) Mouvement brownien, martingales et calcul stochastique. 
Springer, Heidelberg. 

[17] Lamberton, D. and Lapeyre, B. (2012) Introduction au calcul stochastique appliqué 
la finance. 3 édition.  

[18] Martnez, F., Martnez-Vidal, I. and Paredes, S. (2019) Conformable Euler’s Theorem 
on Homogeneous Functions. Computational and Mathematical Methods, 1, e1048. 

[19] Loyara, V.Y.B. and Barro, D. (2019) Value-at-Risk Modeling with Conditional Co-
pulas in Euclidean Space Framework. European Journal of Pure and Applied Ma-
thematics, 12, 194-207. https://doi.org/10.29020/nybg.ejpam.v12i1.3347 

[20] Yameogo, W. and Barro, D. (2021) Modeling the Dependence of Losses of a Finan-
cial Portfolio Using Nested Archimedean Copulas. International Journal of Mathe-
matics and Mathematical Sciences, 2021, Article ID: 4651044.  
https://doi.org/10.1155/2021/4651044 

[21] Dowd, K. (1999) Beyond Value at Risk: The New Science of Risk Management 
(Frontiers in Finance Series). Wiley, Hoboken. 

 
 
 

https://doi.org/10.4236/ojs.2022.126047
https://doi.org/10.4236/jmf.2020.101002
https://doi.org/10.21314/JCF.2010.213
https://doi.org/10.1155/2020/8862435
https://doi.org/10.2139/ssrn.267256
https://doi.org/10.29020/nybg.ejpam.v12i1.3347
https://doi.org/10.1155/2021/4651044

	Management of a Complex Portfolio of Assets with Stochastic Drifts and Volatilities
	Abstract
	Keywords
	1. Introduction
	2. Materials and Methods
	2.1. An Overview of Stochastic Processes
	2.2. Homogeneous Function and Euler’s Theorem

	3. Main Results
	3.1. Hypothesis and Model
	3.2. Computation of the Portfolio’s VaR and ES
	3.3. Computation of Incremental Risks and Marginal Risks

	4. Model of VaR and Optimization of Portfolio P
	4.1. Optimization of Portfolio P According to the VaR Model
	4.2. Application of an Optimization Problem to the Portfolio

	5. Conclusion
	Conflicts of Interest
	References

