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Abstract 
In this paper we estimate the incubation period of a possible pathology fol-
lowing exposure to dioxins during a poor diet. The tools developed for this 
purpose include the probabilistic extremal model and the stochastic behavior 
of the distribution tails of the contamination. We propose a cumulative dis-
tribution function for a random variable that follows both a Gaussian distri-
bution and a GPD. A global optimization method is also explored for the effi-
cient estimation of parameters of GPD. 
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1. Introduction 

It happens that food can have the unexpected opposite effect on the body when 
it is full of dangerous toxic substances. Cardiovascular diseases, diabetes, im-
mune system degradation, cancer, etc. are among the consequences of consum-
ing these foods. These events are qualified to be “extreme” insofar as the primary 
objective of the food is to maintain the health of the consumer. A good diet is, 
therefore, an essential element in the management of our health. It must be 
noted that most products or foods consumed today present a danger or risk of 
contamination, whether related to their composition or their conservation. This 
poses a public health problem. Faced with this observation, it noticed that in this 
work we set up a risk indicator that allows decision-makers to take reliable risk 
management measures for food and human safety. Increasingly, researchers are 
taking a particular interest in the modeling of extreme events in many fields, 
such that hydrology for flood analysis, meteorology, physics, finance, etc. How-
ever, we have developed a joint probability density of a random variable follow-
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ing both the generalized Pareto distribution (GPD) and the normal distribution. 
In medicine, decision-makers are throwing a lot of money into clinical trials 

to determine the delay between contamination and the onset of symptoms of a 
disease in order to circumscribe the pandemic and take appropriate measures. 
The new estimate of the average incubation period of the SARS-CoV-2 corona-
virus, i.e. the time between infection with the virus and the onset of the first 
symptoms of COVID-19, is based on data from patients who contracted the vi-
rus in China or through contact with an infected person. This update of clinical 
data, proposed in the Annals of Internal Medicine [1] and reported in the New 
England Journal of Medicine Journal Watch, confirms that most patients who 
become symptomatic develop the first symptoms within 11 or 12 days and the 
vast majority within 14 days of infection. This allows health authorities to qua-
rantine infected people to break the chain of contamination. Hence this indica-
tor in health management and safety is needed. Also, a team of researchers from 
Cornell University (New York) was able to show in the journal eLife that the in-
cubation periods of infected patients are normally distributed. Their study con-
tributed to the understanding of this variability in that many diseases take much 
longer to develop in some affected individuals than in others using the formal-
ism of evolutionary graph theory. 

The paper is organized as follows. Section 2 reminds the materials and me-
thods used for the study within the framework of the extreme values theory and 
the concept of Optimization Preserving Operator (OPO). Section 3 presents the 
main results of the study. It provides the estimation of the extreme quantile, the 
incubation period, and a joint probability density function. Specifically the GPD 
parameters are estimated using the maximum likelihood method (MLM) and 
the numerical Alienor method (AM). 

2. Materials and Methods 

In this section, we remind an overview of extreme value tools, threshold deter-
mination, extremal index, and then a survey of the Alienor approach. 

2.1. An Overview of Extreme Value Tools 

The Peaks-Over-Threshold (POT) approach has the advantage to take into ac-
count all the observations that exceed a given threshold u large enough in the 
sample and not only the maximums per block (BM), see [2] for more details. 

Let { }, 1, 2, ,iX i n= �  be a sequence of random variables independent and 
identically distributed (i.i.d) of common law F and density f. According to Gne-
denko [3], for ( ), 1maxn n i n iX X≤ ≤=  if there exist two real normalizing sequences 
( ) 1

0n n
a

≥
>  and ( ) 1n n

b
≥
∈  and a non-degenerated law γ , such that:  

( ) ( ),lim lim ;n n n n
n nn n

n

X b
P x F a x b x

a γ→∞ →∞

− 
≤ = + = 

 
            (1) 

then,   is one of the three limits which are the Fréchet type laws, the Weibull 
type laws, and the Gumbel type laws, for more see in [4]. A parametrization of 
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these three distributions into a single formula called Generalized Extreme Values 
(GEV) distribution is given by 

( )

1

exp 1 si 0

exp exp si 0.

x

x
x

γ

γ

µγ γ
σ

µ γ
σ

−  
 −    − + ≠        =  

   −   − − =       

            (2) 

where { } { }, 0µ σ∈ >�  and { }γ ∈  are respectively parameters of location, 
scale, and shape. Notice that analytically the three extreme distributions are dif-
ferent from a modeling point of view, more details in [5]. In this paper, the POT 
approach is considered for the adequate estimation of quantiles in the sense that 
it is easier to obtain an excess sample. If F belongs to the catchment area of the 
distribution of extreme values (Weibull, Fréchet, Gumbel), then there is a func-
tion ( )uσ  strictly positive such as:  

( ) ( ) ( ), ,0
lim sup 0;FF u uY x uu x

F y yµ σ γ< < −
− =

↗
              (3) 

where Fx  and ( ) ( ), ,u xµ σ γ  are the right terminal point and the GPD function, 
respectively. In particular, in toxicology, the threshold of toxicity noted ( )e u  is 
derived from medical studies beyond which there may be danger to health. In 
the framework of our study, the value proposed by FAO/WHO is used for the 
efficient result. Generally, it is determined graphically by the Mean Excess Plot 
function under the R software. We call the mean function of the excesses of the 
random variable X over the threshold Fu x<  and note ( )e u , the expectation 
function of the random variable Y excess of X over the threshold u defined by:  

( ) ( )| .e u E X u X u= − >                      (4) 

The estimation of the GEV parameters, more precisely the estimation of the 
tail index γ  plays a key role in the behavior of the law of extremes. There are 
two possible approaches for estimating γ . The BM approach uses the asymp-
totic GEV law and the POT one pointed out by the GPD models. Making the 
assumption of overestimation of the food risk, we are interested in the GPD ap-
proach. We use the maximum likelihood method to estimate the parameter γ  
of the GPD of excesses, see more (3.4). Most estimators of the tail parameters by 
GPD approach rely on the use of the order statistic, the i-th value of a sample of 
size n. The Hill estimator is the most used because it has a smaller asymptotic 
variance than the others. It is defined by the following statistic:  

1 ,
, 1

,

1ˆ ln ;
1

k j nH
k n j

k n

X
k X

γ −

=

 
=   −  

∑                      (5) 

and it converges in law to the true value of the parameter for k large enough. A 
second estimator, the Pickands one is the simple and oldest of the tail estimators. 
It is defined by the statistic:  
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, 2 ,
,

2 , 4 ,

1ˆ ln ;
ln 2

k n k nP
k n

k n k n

X X
X X

γ
 −

=   − 
                   (6) 

where ,ˆP
k nγ  is the estimation of the tail index which plays an essential role in the 

behaviour of the law of extremes (refer to [6] for more details). 

2.2. A Survey of the Alienor’s Algorithm 

The algorithm of the Alienor approach is as follows: the basic idea is to trans-
form n-variable likelihood function into a single variable function θ , and the 
OPO, then, be used to obtain the global optimum (see [7] for more details). Let 
us consider n independent random variables 1 2, , , nX X X�  that are assumed to 
be identically distributed according to a given distribution ( ),F x θ , where θ  
is the vector of parameters, with density function ( ),f x θ . Let 1 2, , , nx x x�  be 
the realizations of these random variables which form the observed sample. 

Step 1: definition of the objective function. 
Let L be the likelihood function defined by 

[ ]3: 0,1nL + →  

( ) ( )1 2, , , , , , , , ,n i
i

x x x u f x uγ σ γ σ∏� �  

we look for the values of ,u γ  and σ  that maximize L. Given ix , we consider 
the likelihood L as a function of three variables ,u γ  and σ . By applying the 
following reductive transformation on the likelihood function L; 

( ) ( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )( )

1

2

2
3

min ;
1 1 cos ;
2
1 1 cos ; 2;3,
2

ih u x a a

h m

h m m

θ θ θ

θ γ θ θ

θ σ θ θ

 = = − × +

 = = − ×

 = = − ×

π

=


π


           (7) 

where [ ],min iu a x∈ , [ ), 0,γ σ ∈ +∞  and 1 2a
m

= , x denotes observations, 

The problem becomes 

( )
, ,

. max , , .
u

Glob L u
γ σ

γ σ∗  

[ ] [ )0,min , , 0, ;iu x γ σ∈ ∈ +∞  

where the notation Glob. max means the maximum global. The problem of es-
timating parameters of the GPD distribution is considered as a global optimiza-
tion problem. 

We have a maximization problem that can be transformed into a minimiza-
tion problem as follows 

[ ]
( )

[ ]
( )( )

0,10,1
max minL L

θθ
θ θ∗ ∗

∈∈
= − − , 

with 

[ ] [ ]: 0,1 1,0L∗− → −  
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( ).Lθ θ∗−�  

The sequence of steps in the algorithm is as follows:  
Initialization  
  one randomly chooses 0θ  in [ ]max0,θ  then, 
  We build the function  

( ) ( ) ( ) ( ) ( )*
* * * *

0 0
1 .
2L

T L L L Lθ θ θ θ θ = − + −              (8) 

Step 2: Solving algebraic equation 
  one solves ( )* 0

L
T θ =  then,  

  The solution set is built  

( ){ }*, 0L L
S I Tθ θ= ∈ =                      (9) 

If { }LS θ ∗= , then  
θ ∗  is the global minimizer of L; 
Otherwise go to the next step. 
Step 3: modification of step i  
  one chooses iθ  in ( ) ( ) ( ){ }* 1, 0 and ;L i iL

S I T L Lθ θ θ θ −= ∈ = <  
Then 

  the function ( ) ( ) ( ) ( ) ( )*
* * * *1

2 i iL
T L L L Lθ θ θ θ θ = − + −  , 

Then, 
  one starts again at step 1; 
The following section deals with our results. 

3. Main Results  

In estimating the parameters of the GPD and GEV distribution, the most popular 
and conditionally most efficient method is the maximum likelihood method. How-
ever, this method is biased towards small sample sizes. To overcome this drawback 
we propose an approach based on a global optimization method so called Alienor 
method. 

3.1. Estimation of Extreme Quantile and Incubation Period 

In this subsection, the estimation of extreme quantiles and the incubation period 
for chronic dioxin exposure are discussed. Let 1 2, , , nX X X�  be a sample of i.i.d 
random variables with distribution function F and Fx  a terminal point. Then, 
for a fixed threshold Fu x< , consider the n observations ,1 ,, ,i i nx x�  exceeding 
the threshold u large enough. Let j ijY X u= − , 1, ,j n= � , be the excess variables 
above the threshold u. Recall that the law of excesses beyond a sufficiently high u is:  

( ) ( ) ( ) ( )
( )

/ ;u

F u y F u
F y P X u y X u

F u
+ −

= − ≤ > =           (10) 

where F  is the survival function of F given by ( ) ( )1F u F u= − . 
Proposition 1. Let F be the common distribution of a sequence of i.i.d ran-
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dom ( )i i
X

∈ . Then, for all , 0y u >   

( ) ( ) ( );uF u y F u F y+ =                      (11) 

where F  is the GEV distribution of ( )i i
X

∈   
Proof. It is easy to see that  

( ) ( ) ( ) ( )
( ) ( )
( ) ( )

( ) ( )

1 1

1 1

.

uF y F u F u y F u

F u y F u

F u y F u

F u y F u

= + −

= − + + + −

= − − + + −      
= − + +

 

Furthermore, it follows that  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 .u u uF u y F u F y F u F u F y F u F y+ = − = − =      (12) 

Application 1. By using (3) it comes that 

( ) ( ) ( ) ( ) ( ) ( ), , , ,and .u uu uF y y F y yµ σ γ µ σ γ≈ ≈            (13) 

For u large enough and 0y ≥ . Therefore, an empirical estimator of ( )F u  is 

( ) { }
1

1ˆ ;
i

n
u

X u
i

N
F u I

n n>
=

= =∑                    (14) 

where { }iX uI >  is an indicator function defined as 

{ }
1 if for all 1, ,
0 elsei

i
X u

X u i n
I >

> =
= 


�
              (15) 

and uN  is the number of excesses above the threshold u. Notice that the law of 

uF  excesses can be uniformly approximated by a generalized Pareto distribu-
tion defined as follows,  

( )
1

0 and 1 0, 1 1  for all 0.u
x xx F x

γ
γ γ γ
σ σ

−
 ∀ > + > = − + ≠ 
 

      (16) 

By using (11) and by posing ( ) ( )F u y F x+ = , and considering that  
1u uF F= − , the form of the tail estimator is 

( )
1

ˆ 1 .uN xF x
n

γ
γ
σ

−
 = + 
 

                      (17) 

Since the upper part of the tail is estimated of F , in addition the restriction 
of the domain of Fréchet and by inversion, the extreme quantile estimator ptx  
is obtained by the following Formula (see [8] for a new approach) 

( )
ˆ

ˆ ˆˆ 1 1 , for all 0.
ˆ

GPD
pt

u

nx u pt
N

γ
σ γ
γ

−  
 = + − − ≠ 
   

          (18) 

1 − pt is equivalent to a confidence level of typically 95% or 99%, n is the sam-
ple size; uN  is the number of observations above the threshold u; γ̂  and σ̂  
are the estimators of the parameters of the GPD distribution. We, therefore, es-
timate the incubation period for the extreme value distribution GPD by:  
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( )ˆ ˆ,

1ˆ ˆ ˆ, for all , 0.
1

GPD

d pt

nT
N xγ σ

γ σ= ∈ >
−

�


           (19) 

3.2. Estimation of a Joint Probability Density Function 

The calibration of the female contamination data shows that the distribution of 
the observations simultaneously follows the Laplace-Gauss law and the   
law. It is therefore necessary to reflect on the search for a joint law allowing a 
better appreciation of the phenomena. A joint probability density function based 
on the composite density function is a new way in modeling of the dependence 
of a random vector. 

Proposition 2. Suppose that X and Y be two random variables from  
( )1,γ σ  and ( )2,m σ , respectively. Under some convergence conditions, 

the joint random variable U converges almost surely to the law whose probabili-
ty density function is defined by:  

( ) 1 e for all 0.ug u u
u

−π= >                   (20) 

where 
2

2

y mu
σ

 −
=  
 

, m the mean and 2σ  the standard deviation of the ran-

dom variables Y. 
Proof. Let X be a GPD random variable whose bi-parametric density [9] is 

given by 

( ) 1

1 1 ln 1

1

1 e   for all 0.
x

Xf x x
γ

γ σ

σ

  
− − +  
   = ≥               (21) 

According to the relation (21), we assume that 

( ) ( ) ;X Y X Yf f y f f y=   �  

where ( )
2

2

1
2

2

1 e
2

y m

Yf y σ

σ

 −
−  

 =
π

 is probability density function of the normal 

distribution. It follows that, for all y∈  

( )

21
2 2

1 1 2

1 11 ln 1 e
2

1

1 e .

y m

X Yf f y

σγ
γ σ σ σ

σ

 −
−   

 

  
      − − +       π     =�  

By setting 
2

y mz
σ
−

= , it comes that 

( )
2

111
2

1
1 2

1 .

1 e
2

Z

z

f z
γγσ

σ σ

+
−

=
 
+  π 

 

Let’s set now 1 2 2γ σ σ= π , it is easy to find that, 
2 21 1

22 4 11 e 2e cosh .
4

z z
z

− −  + =  
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Finally, on obtains, for all z∈  

( )
22

11

1 11 . 1
44

2
1

1 e e .
12 cosh
4

p s zz

Zf z
z

γ

γ

σ

+

 
− + −

 

 
 
 =

  
    

�������

  

Then, notice that for all z∈ ,  

2

2 1
1

1 1 1cosh 1 1.
14 22 cosh
4

z
z σσ

  ≥ ⇔ ≤ <    
 
 

 

By setting 1 11
2

ξ
γ

 
= + 

 
, one has ( )

21
2e

z
f z

ξ−
= . Let’s now, show for which 

value of ξ , ( )f z  is a probability density function. 

2 21 1
2 2

0
e d 2 e d .

z z
z z

ξ ξ− −+∞ +∞

−∞
=∫ ∫                    (22) 

Let’s perform the following change of variable, by posing 

21 2 dd .
2 2

tt z z t z
t

ξ
ξ ξ

= ⇒ = ⇒ =  

The relation (22) becomes  
1
2

0 0

d 2 2 1 22 e e d ;
22 2 2 2

t tt t t
tξ ξ ξ ξ

−+∞ +∞− −  = = Γ = 


π
∫ ∫  

Γ  is gamma function. So, f is a probability density function when  

( ) 2
2 et e .z

Zf zξ −π=π=  

The proof is completed by substituting 2u z= , the probability density func-
tion of u is obtained by the following 

If 0u > , 

( ) ( ) ( )2 .F u U u Z u= ≤ = ≤   

F is the cumulative distribution function. Which yields  

( ) ( ) 2
e d .

u z
u

F u u Z u z−

−

π= − ≤ ≤ = ∫  

Thus,  

( ) ( )2

0
2 e d and 0 if 0.

u zF u z F u u−π= = <∫  

The derivative of the cumulative distribution function is given by the proba-
bility density function as follows 

( ) ( ) ( )
.

F u
g u F u

u
∂

′= =
∂

 

Recalling the following result 

( ) ( )( ) ( ) ( )
0

d .
w u

g x x w u g w u
u
∂ ′=   ∂ ∫  

https://doi.org/10.4236/ojs.2022.125041


K. E. Adedje, D. Barro 
 

 

DOI: 10.4236/ojs.2022.125041 699 Open Journal of Statistics 
 

This leads to the desired result.  
The previous proposition is interesting in practice because it allows to obtain 

the joint probability density resulting from a convex combination of   and 
Laplace-Gauss law. This gives us the following statement.  

Proposition 3. Let X be a random variable with a joint probability density 
from GPD and a Gaussian distribution. Then, the expectation and the variance 
are given respectively  

( ) ( ) 2

1 1and .
2 2

X X= =
π π

                    (23) 

Proof. According to the above proposition 2, one has, 

( )
1 e if 0

0 else

x x
g x x

π− >= 


                   (24) 

( ) ( )
0

1d e dxE x xg x x x x
x

+∞ +∞ −

−

π

∞
= = ×∫ ∫  

By setting u x= π , which leads to the following result 

( )
3 1
2

2 20 0

1 e d e du uE x u u u u
u

−+∞ +∞− −= × =
π π
π π∫ ∫  

We finally obtain 

( ) 2 2

3 1 1
2 2 2

E x  = Γ = × × = 
π
π

π


π
ππ

 

where Γ  is the gamma function. Knowing that  

( ) ( ) ( )( )22 ,V X E X E X= −                   (25) 

one has 

( )2 2
0

1 e d .xE X x x
x

+∞ π−= ×∫  

Proceeding as above, one obtains 

( )
5 12 2 2

3 30 0

1 e d e du uE X u u u u
u

π π −+∞ +∞− −

π
= ×

π
=∫ ∫  

One finally obtains 

( )2
3 3 2

5 3 1 3 .
2 2 2 4

E X
π π = Γ = × × × = 


π

π π π
 

Finally, an elementary calculation allows us to obtain the following result  

( ) 2

1 .
2

X =
π

  

Remark. The Fisher dispersion index of the resulting density function is less 
than 1. Such a variation is referred to as underdispersion. 

Based on this remark, we propose a density of probability that fits un-
der-dispersed data. 
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3.3. The Poisson Mixture Law 

The occurrence of certain phenomena may follow a Poisson law with parameter 
λ  considered as a random variation. We will show that the Poisson law mixed 
with the joint law obtained previously gives an over-dispersed law. Since the 
prevalence of a condition differs from one stratum to another in a population, 
we arrive at the following definition. 

Definition 1. Let Xλ  be a Poisson random variable of parameter λ  which 
is the realization of a random variable u of continuous density g. We call the re-
sulting law of a Poisson mixture by Xλ , the law of a random variable Y of 
probability density function, for all ; 0, 0, 0y uλ θ∈ > > >�   

( ) ( ) ( )
0

, , , d ,  with p y P X y g u
uλ
λθ λ λ λ θ

+∞
= = =∫           (26) 

where ( ) e
!

y

P X y
y

λ
λ

λ −= =  and ( )
1
21, e

u
g u

u
λ

λ
−

=  is a probability density 

called a mixing law.  
It may be noted that similar work can be found in [10]. The following result 

may now be formulated. 
Proposition 4. Let Y be a positive random variable with the probability mass 

function p resulting from the Poisson mixing law and joint probability density 
from GPD and Laplace-Gauss. Then, for any positive constant θ , one has 

( ) ( )1
, ,

! 1
2

y

y
p y

y
θ λ

λ λ
θ θ

Γ +
=

 + 
 

                   (27) 

with a known parameter λ . 
Proof. Indeed, from (26), it is easy to show that  

( )
11
2

0

1, , e d .
!

u
yp y

y u

λ
θ λ λ λ

 − + +∞  = ∫                 (28) 

At this point, observe that by setting  

11 ;
12 1
2

tt u
u

λ λ = + ⇒ = 
  +

 

we find the probability mass function as follows 

( )
0 0

1 1 1, , e d e d .
1! ! 11 12 2

y

t y t
y

tp y t t t
y u y uu u

θ λ
+∞ +∞− −

 
 

= = 
  +  +    

∫ ∫  

By posing u λ
θ

= , this leads to the following form 

( ) ( )1
, , .

! 1
2

y

y
p y

y
θ λ

λ λ
θ θ

Γ +
=

 + 
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3.4. Estimation of the GPD Parameters by Maximum Likelihood  
Approach 

The generalized Pareto distribution (GPD) is a two-parameter family of distri-
butions that can be used to model exceedances over a threshold. Maximum like-
lihood estimators of the parameters are used, since they are asymptotically nor-
mal and asymptotically efficient. Numerical methods are required for maximiz-
ing the log-likelihood. The density of GPD function being [11] 

( )
1 1

1 1 , for 0 if 0.xf x x
γ

γ γ
σ σ

− −
  = + > >  

  
 

We then deduce the log-likelihood function of the GPD distribution  
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i
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By deriving the log-likelihood function with respect to each parameter, one 
obtains the following system 
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∑
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          (29) 

By numerical algorithms, of the GPD function of the R software, one obtains 
the parameters in Table 1 based on data from dietary intake of dioxins of men 
exposure, such as (note that data is taken from Table 3) 

( )181.8,137.7,230.7,178.2,181.5,192.6,113.1,75.6,59.4,45,38.1Male =  

3.5. Estimation of the GPD Parameters by Alienor’s Method 

We now investigate the Alienor approach for efficient estimation of the parame-
ters. Considering the bi-parametric probability density function of GPD law 
whose analytical expression is given by 

( )
1 1

1 1 ;xf x
γ

γ
σ σ

− −
  = +  

  
 

where , , xγ σ  are the shape parameter, the scale parameter, and the excess va-
riable, respectively. By section (2.2), one has the steps as follows:  

Step 1. Definition of the objective function. 
The likelihood function associated with probability density function of GPD 

gives 
 
Table 1. The parameters MLM. 

γ̂  σ̂  

0.3576522 106.5762338 
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The objective function noted  
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We have a maximization problem that we can transform into a minimization 
problem as follows:  

[ ]
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Step 2. Application of O.P.O* 
Let’s arbitrarily choose ( ) [ ]*

0 1,0oy L θ= − ∈ −  and let’s apply . .
LTO P O

−

∗  to 

the point 0y . By Choosing 0
1
4

θ = , m = 2 and for n= 8 distribution of contaminant  

observations (32) above the 70 kg/body weight threshold, by using (30), one ob-
tains 
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we obtain after the previous calculation, the value of the objective function of the 
sample 

( )* 23
0 2.069063 10L θ −= ×                     (31) 

By applying the operator (8) and (9) of (2.2), one has 10
0 7.749788eθ −= , the 

one that maximizes likelihood, this gives the following estimators (Table 2) 

4. Some Technical Results 

Using the method of maximum likelihood estimation encounters difficulties in-
cluding lack of solutions of the likelihood. Moreover, in the case where solutions 
exist, the numerical resolution of the equations requires an iterative method 
which is often not convergent. Thus, to solve these difficulties, the concept of 
OPO is introduced. 
 
Table 2. The parameters obtained by AM. 

γ̂  σ̂  

0.143527 98.717793 
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4.1. Description of the Data 

The data were provided by Health Canada, which is an active participant in the 
international assessments of chemical contaminants in foods conducted by the 
Joint FAO/WHO Expert Committee on Food Additives. Dioxins are currently 
on the CODEX priority list for evaluation by JECFA, which is driving our inter-
est in this area of research. The tolerable threshold for dioxins in humans, the 
recent JECFA evaluations is 70 pg/kg/month and the dioxin intake by age and 
sex is shown in the table which represents the extreme values observed in males 
and females. Our study determines the incubation period and the probability of 
occurrence of the event if we assume that exceeding the tolerable threshold for 
the organism (70 pg/kg/month) is dangerous for the health. Of course, the ap-
plication is done on two cohorts. The first investigation points out the evolution 
of the quantity of the contaminant in the man’s body and the second is based on 
the woman’s one. Table 3 shows that women of childbearing age between 15 and 
45 years old are daily exposed to dioxins between 1.21 and 1.78 pg/kg/day. 

Table 3 shows that the newborn of 4 - 6 months is much more exposed to the 
effects of dioxins followed by those who are 1 - 4 years old. According to Figure 
1, some foods contain large amount of dioxin (pg/g body weight), namely butter, 
poultry, chicken, milk then ground beef, egg, etc. And an excessive  
 
Table 3. Daily and Monthly intake of dioxin. 

Age-Gender Groups DDI MDI 

0 - 1 month, boys and girls 6.06 181.8 

2 - 3 months, boys and girls 4.59 137.7 

4 - 6 months, boys and girls 7.69 230.7 

7 - 9 months, boys and girls 5.94 178.2 

9 - 12 months, boys and girls 6.05 181.5 

1 - 4 years, boys and girls 6.42 192.6 

5 - 11 years, boys and girls 3.77 113.1 

12 - 19 years, boys and girls 2.52 75.6 

20 - 39 years, men 1.98 59.4 

40 - 64 years, men 1.5 45 

65+ years, men 1.27 38.1 

12 - 19 years, girls 1.78 53.4 

20 - 39 years, women 1.53 45.9 

40 - 64 years, women 1.21 36.3 

65+ years women 0.99 29.7 

DDI: is Daily Dioxin Intake (pg/kg bw/day) and MDI: is Monthly Dioxin Intake (pg/kg 
bw/month). bw: body weight. 
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Figure 1. Toxin levels in food. 

 
consumption of these foods can be dangerous for your health (the data pre-
sented in this Figure 1 are available on request from the authors). The objective 
of this section is to assess exposure by means of two indicators, the probability 
that the exposure process exceeds a threshold based on the extreme value theory 
and the incubation period of the event. The ruin probability is obtained by GPD 
model. 

4.2. Digital Application 

One has used the intake of dioxin in the diet, an extreme distribution by age 
group and gender. Let us point out that the investigation was conducted based 
on two cohorts, male and female. 

4.2.1. Male Gender 
Cancers are diseases that are usually detected at the end of a person’s life. How-
ever, carcinogenic pathologies (what we consider extreme events) are the body’s 
response to contamination processes. Our approach is a probabilistic approach 
in modeling the risks incurred by a population in the exposure to food risks, 
telling when a person is at risk and developing a pathology following regular 
consumption of food contaminated by dioxins. We have the dietary intake of 
dioxin in males from 0 to 65 years of age and over. According to Table 3, we 
have the following data: (Figure 2) 

( )181.8,137.7,230.7,178.2,181.5,192.6,113.1,75.6,59.4,45,38.1Male =   (32) 

The data on the evolution of the contamination of men show according to the 
visual diagnosis that from 0 to 100 pg/kg/month the distributions of the obser-
vations are stationary and from 100 to 250 pg/kg/month the behavior is Gaus-
sian. This brings us to a normality test to see if the observations converge to a 
normal distribution in order to generate a sample size of 1000. We adjust our 
data by normal law and follow Shapiro’s test. The adjustment of the data of our 
sample by the normal distribution gives 0.91263 representing a high rate of  
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Figure 2. Evolution of dioxin contamination. 
 
compatibility between our data and the normal distribution and a p-value equal 
to 0.263. This last value is thus higher than the significance threshold 0.05α = , 
so the sample follows a normal distribution. The choice of the threshold is very 
important because it induces a great variability in the estimation of extreme 
quantiles and parameters of the law of excesses. There are different approaches 
for the choice of the threshold of the POT method. Usually, the threshold is de-
termined graphically by the Mean Excess Plot (meplot function) in R software 
(Figure 3). 

According to Figure 4, the threshold at value u = 75. But the threshold 70 
recommended by FAO/WHO is used for the estimation of the parameters. It can 
be seen that the distribution of excesses converges towards a Generalized Pareto 
Distribution (GPD). Recall that the upward trend in 4 shows heavy tail behavior. 
In particular, a straight line with a positive gradient above a certain threshold is 
a sign of Pareto tail behavior. The survival function of the GPD law depends on 
the following parameters from Table 1. In the simulated sample size 1000, there 
are 811 observations that exceed the threshold 70. 

( )
1

0.3576522

ˆ ˆ,

0.3576522
1 1 si 0.

106.5762338
pt

PT

x
xγ σ γ

−

 
= − + ≠ 

 
  

We used (18) an approach based on the excess method by the approximation 
of GPD (knowing that 811uN =  and 1-pt is equivalent to 95%) 

ˆ 401.9712377GPD
ptx =  

The incubation period obtained using the Formula (19) based on the maxi-
mum likelihood method is:  

ˆ 13.42598873GPD
rT =  

Using the result in Table 2 based on Alienor approach, we obtain:  
ˆ 2.12058GPD
rT =  

We applied the POT approach to male dietary dioxin intake data. We esti-
mated the parameters of the GPD distribution by using the maximum likelihood 
method, then the extreme quantile and the incubation period. The estimation of  
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Figure 3. Diagnostic of threshold. 
 

 

Figure 4. Evolution of dioxin contamination. 
 
the incubation period allows us to conclude that male exposure to dioxins can 
cause serious damage to the organism approximately 13.4259 months after dio-
xin contamination, i.e. 13 months 12 days 18 hours after the man is considered 
at risk and can manifest a pathology with a probability of 0.811 but approx-
imately 2 months based on Alienor approach. 

4.2.2. Female Gender 
We need to use the dietary intake of dioxin for females from 0 to 65 years of age 
and older according to Table 3.  

( )181.8,137.7,230.7,178.2,181.5,192.6,113.1,53.4,45.9,36.3,29.7 .Female = (33) 

After diagnosis of Figure 4, we notice Pareto shape at the beginning of the 
histogram and Gaussian behavior thereafter. This has motivated the hypothesis 
of proposition 2. Figure 5 illustrates the trajectory of the joint probability law, 
by numerical resolution. 

The distribution obtained previously is used in the model. The GPD was fitted 
by the maximum likelihood method from 469 values exceeding the threshold, 
among the 1000 simulated values. We can estimate that the ruin probability is 
0.469. The estimated parameters are summarized in Table 4.  

The adequacy of the data to the GPD law allows the estimation of an extreme 
quantile by Table 4. 
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Figure 5. The trajectory of the joined probability density. 
 
Table 4. The parameters of scale and shape. 

γ̂  σ̂  

0.09576862 119.45236039 

 

ˆ 377.4350556GPD
ptx =  

And using Table 4 and the survival function gives.  

( )ˆ ˆ 0.9367358776ptxγσ =  

The incubation period of the event obtained after calculus is 
ˆ 15.83842421GPD
simT =  

Estimating the incubation period allows us to conclude that exposure of women 
to dioxins can cause serious damage to the body approximately 15.83842421 
months after exposure. That is to say that a woman who maintains a steady 
consumption pattern of dioxin-contaminated foods such as fish, poultry, and 
butter… can develop pathology in 15 months 25 days 3 hours after infection. 

In summary, one obtains that the incubation period for dioxin exposure is de-
fined as follows 

Male: 13 months 12 days 18 hours; 
Woman: 15 months 25 days 3 hours. 

5. Conclusion and Discussions 

With this paper, we have contributed to estimating the incubation period fol-
lowing exposure to dioxins, a risk indicator that will allow decision-makers to 
take measures to reduce the exposure of consumers, and waste incinerators (re-
sulting from respiratory contamination). This paper developed also instead of 
the existing law a new probability density function for a phenomenon that fol-
lows both normal and GPD distributions. In the future, it will be taken into ac-
count the different aspects of contamination which are the interaction of conta-
minants with others once they enter the body and the different compartments in 
which they are stored.  
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