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Abstract 
Cox Proportional Hazard model is a popular statistical technique for explor-
ing the relationship between the survival time of neonates and several expla-
natory variables. It provides an estimate of the study variables’ effect on sur-
vival after adjustment for other explanatory variables, and allows us to esti-
mate the hazard (or risk) of death of newborn in NICU of hospitals in River 
Nile State-Sudan for the period (2018-2020). Study Data represented (neonate 
gender, mode of delivery, birth type, neonate weight, resident type, gestation-
al age, and survival time). Kaplan-Meier method is used to estimate survival 
and hazard function for survival times of newborns that have not completed 
their first month. Of 700 neonates in the study area, 25% of them died during 
2018-2020. Variables of interest that had a significant effect on neonatal death 
by Cox Proportional Hazard Model analysis were neonate weight, resident 
type, and gestational age. In Cox Proportional Hazard Model analysis all the 
variables of interest had an effect on neonatal death, but the variables with a 
significant effect included, weight of neonate, resident type and gestational 
age.  
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1. Introduction 

Survival data is a term used for describing data that measure the time of a certain 
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event. In survival analysis, the event may be death, the occurrence of disease (or 
complication), time to an epileptic seizure, time it takes for a patient to respond 
to therapy, or time from response until disease relapse (i.e., disease returns). In 
demography, the event can be entering marriage. 

The event is a transition from one state to another. Death is a transition from 
state alive to state dead. Time to an event is a positive real-valued variable having 
continuous distribution. It is necessary to define the starting time point, say 0, 
from which times are measured. When we measure age, the starting time point 
may be the date of birth. In biomedical applications, the data are collected over a 
finite period of time and consequently the “time to event” may not be observed 
for all the individuals in our study sample [1]. 

If the endpoint is the death of a patient, the resulting data are literally survival 
times. However, data of a similar form can be obtained when the end-point is 
not fatal, such as the relief of pain, or the recurrence of symptoms. In this case, 
the observations are often referred to as time-to-event data [1]. 

Data are censored when we do not know their precise value, but only have 
some bounds on them. An observation t is left-censored if we only know that t < 
c for some c, it is right-censored if we only know that t > c and it is inter-
val-censored if what we know is that a < t < b for some numbers a and b. Cen-
sored observations occur also for data that are not time-to-event data [2]. 

In essence, censoring occurs when we have some information about individu-
al survival time, but we don’t know the survival time exactly. Left censoring oc-
curs when the event proceeded during the observation period. Right censoring 
arises when the event either never occurred or took place after the period of ob-
servation, and can come about due to a loss-to-follow-up, refusal to participate 
after initial enrollment, or the end of the observation period. In a study of mor-
tality, however, death constitutes the event, not a reason for censoring. In sur-
vival analysis the measure of effect typically obtained is called a hazard ratio [3]. 

The neonatal period (from birth to the 28th day of life) is normally considered 
to be the most vulnerable and high-risk time in neonate life because of the high-
est mortality and morbidity incidence in human life during that period. During 
this period the neonate risk of death is almost 15 times more than at any other 
time before the first birthday [4]. 

Criteria for admission to the normal newborn nursery or couplet care with the 
mother vary among hospitals. The minimum requirement typically is a well-ap- 
pearing infant of at least 35 weeks gestational age, although some nurseries may 
specify a minimum birth weight, for example, 2 kg [5]. 

Many communities have adapted to this situation by not recognizing the birth 
as complete, and by not naming the child until the newborn infant has survived 
the initial period. Health workers at primary and secondary levels of care often 
lack the skills to meet the needs of newborn infants, since the recognition of op-
portunity is only just emerging in countries, and their experience in this area is 
therefore limited. Each neonatal death can be further clarified into viable and 
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non-viable deaths depending on the gestational age at which they were born, and 
where they were born [4]. 

The data used for this paper is secondary data from medical statistics & 
records at hospitals of study areas which consist of nurseries in it. I was chosen 
as sample size 700 medical records of newborns admitted to nurseries of those 
hospitals. And then get the data according to the variables of interest. 

This paper is organized as follows: Introduction, Materials and methods 
(theoretical aspect, practical aspect, analysis and results), Discussion and Con-
clusion. 

This paper is related to some papers, one of them in title used Cox PH model 
for Age at First Sexual Intercourse in Nigeria & other in title ITN-Factor Impact 
on Mortality Due to Malaria. The important results of these papers are as the 
following: The median age of first sexual intercourse is 16 years which implies 
that about 50% of the respondents had their first sexual intercourse on or before 
their 16th birthday. Education, religion, region and residence significantly affect 
the age of first sexual intercourse while circumcision has no significant effect. 

Sex of patient was insignificant to deaths due to malaria. Age of patient and 
user status was both significant. The magnitude of the coefficient (0.384) of ITN 
user status depicts its high contribution to the variation in the dependent varia-
ble. 

2. Materials and Methods 
2.1. Theoretical Aspect 

The survivor function S(t) gives the probability that a person survives longer 
than some specified time t that is, S(t) gives the probability that the random va-
riable T-exceeds the specified time t. The survivor function is fundamental to a 
survival analysis, because obtaining survival probabilities for different values of t 
provides crucial summary information from-survival data. In practice, when us-
ing actual data, we usually obtain graphs that are step functions, as illustrated 
here, rather than smooth curves. Moreover, because the study period is never in-
finite in length and there may be competing risks for failure, it is possible that 
not everyone studied gets the event. The estimated survivor function, denoted by 
a caret over the S in the graph, thus may not go all the way down to zero at the 
end of the study [6]. 

The basic quantity employed to describe time-to-event phenomenon is the 
Survival Function S(t), and it is defined as:  

( ) ( ) ( )1S t P T t P T t= > = − ≤                  (2.1) 

the probability of an individual survives beyond time t. 
Since a unit either fails, or survives, and one of these two mutually exclusive 

alternatives must occur, we have: 

( ) ( )1S t F t= − , ( ) ( )1F t S t= −                 (2.2) 

where F(t) is the cumulative distribution function (CDF). If T is a continuous 
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random variable, then S(t) is a continuous, strictly decreasing function. The sur-
vival function is the integral of the probability density function (pdf), f(t), that is: 

( ) ( )d
t

S t f x x
∞

= ∫                        (2.3) 

Thus, 

( ) ( )d
d
S t

f t
t

= −  

The probability distribution of survival times can be characterized by three 
functions, one of which is known as the hazard function. Given a set of data, the 
users of statistics would like to calculate the mean and standard deviation. Inves-
tigators have learned that the problem with survival time data is that the mean 
survival time depends on when the data is analyzed. The unique feature of sur-
vival data is that the subjects typically join the study at different time points, may 
withdraw from the study, or may be lost to follow-up. Thus, the value of the av-
erage survival time will change as time elapses until the point at which the life-
times of all of the implants in the study have been observed. In survival analysis, 
it is often unrealistic to expect a set of data without any censored observations 
[7]. 

The procedure, called the hazard function, is defined as the probability that an 
implant fails in a time interval between t and t + ∆t, given that the implant has 
survived until time t. In statistics, this concept is known as the conditional 
probability. In engineering, the term instantaneous failure rate and in epidemi-
ology, the term force of mortality is more commonly used. The hazard function 
is a measure of the likelihood of failure as a function of the age of the individual 
implants. The hazard function reflects the risk of failure per unit time during the 
aging process of the implant. It plays an important role in the study of survival 
times [7]. 

The next instant the failure rate may change and the individuals that have al-
ready failed will play no further role since only the survivor’s count. The failure 
rate (or hazard rate) is denoted by h(t) and is defined by the following equation: 

( ) ( )
0

/
lim
h

P t T t h T t
h t

h→

≤ ≤ + ≥
=                (2.4) 

The failure rate is sometimes called a “conditional failure rate” since the de-
nominator S(t) (i.e., the population survivors) converts the expression into a 
conditional rate, given survival past time t. From Equation (2.4), by the theorem 
of conditional probability and omitting suffix T, we get expression of hazard 
function as: 

( ) ( )
( ) ( )instantaneous conditional failure rate

f t
h t

S t
= =       (2.5) 

So, hazard at time t is potential per unit time for the event to occur given that 
the subject has survived till t. basically, it the rate of event at time t. 

It is clear from the expression and definition that hazard is a rate rather than 
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being a probability. Its value ranges from zero to infinity [1]. 
The Kaplan-Meier curve is a nonparametric estimate of the survival curve, 

and it is an estimator based on the products of conditional probabilities, it is also 
sometimes called the product-limit estimator. The Kaplan-Meier curve starts out 
with S(t) = 1 for all t less than the first event time (such as a death at t1) [8]. 

The tools that will be used in this paper are depicted in Diagram 1. 
We introduce the product-limit (PL) method of estimating survival rates, also 

called the Kaplan-Meier method. Let t1 < t2 < … < tk, be the distinct observed 
death times in a sample of size n from a homogeneous population with survival 
function S(t) to be estimated (k ≤ n; k could be less than n because some subjects 
may be censored and some subjects may have events at the same time). Let ni be 
the number of subjects at risk at a time just prior to ti (1 ≤ i ≤ k; these are cases 
whose duration time is at least ti), and di the number of deaths at ti. The survival 
function S(t) is estimated by 

( )
ˆ 1

i

i
t t t

i

d
S

n≤

 
= − 

 
∏                      (2.6) 

 

 

Diagram 1. The methodology flow diagram. 
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This is called the product-limit estimator or Kaplan-Meier estimator with a 
95% confidence given by 

( ) ( )
ˆ ˆexp 1.96t tS s ±                       (2.7) 

The explanation could be simple, as follows: i id n  is the proportion (or es-
timated probability of having an event in the interval from 1it −  to it , and 
1 i id n−  represents the proportion (or estimated probability of surviving that 
same interval), and the product in the formula for ( )

ˆ
tS  follows from the prod-

uct rule for probabilities [9]. 
A natural way of estimating hazard function for unground survival data is to 

take the ratio of the number of deaths at a given death time to the number of in-
dividuals at risk at that time. If the hazard function is assumed to be constant 
between successive death times, the hazard per unit time can be found by further 
dividing by the time interval [3]. 

Thus if there are dj deaths at jth death time ( )jt  1,2, ,j T= � , and jn  at risk 
at time ( )jt , the hazard function in the interval from ( )jt  to ( )1jt +  can be esti-
mated by Kaplan-Meier estimator as follows: 

( )
ˆ j

t
j j

d
h

n T
=                         (2.8) 

We note that since ( )
ˆ

th , ( ) ( )1j jt t t +≤ < , is an estimate of the risk of death per 
unit time in the jth interval, the probability of death in that interval is ( )

ˆ
jth T  that 

is j jd n . Hence an estimate of the corresponding survival probability in that 
interval is ( )1 j jd n−  [3]. 

There are two broad reasons for modeling survival data. One objective of the 
modeling process is to determine which combinations of potential explanatory 
variables affect the form of the hazard-function. In particular, the effect that the 
treatment has on the hazard of death can be studied, as can the extent to which 
other explanatory variables affect the hazard function. Another reason for mod-
eling the hazard function is to obtain an estimate of the hazard function itself for 
an individual [10]. 

The basic model for survival data to be considered in this paper is the propor-
tional hazards model. This model was proposed by Cox (1972) and has also 
come to be known as the Cox regression model. Although the model is based on 
the assumption of proportional hazards, no particular form of probability dis-
tribution is assumed for the survival times. The model is therefore referred to as 
a semi-parametric model [10]. 

The purpose of the model is to evaluate simultaneously the effect of several 
factors on survival. In other words, it allows us to examine how specified factors 
influence the rate of a particular event happening at a particular point in time 
[11]. 

The cox proportional hazards model can be generalized to the situation where 
the hazard of death at a particular time depends on the values 1 2, , , px x x�  of p 
explanatory variables. The values of these variables will be assumed to have been 
recorded at the time origin of the study.  
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An extension of the model is to cover the situation where the values of one or 
more of the explanatory variables change over time. The set of values of the ex-
planatory variables in the proportional hazards model will be represented by the 
vector X , so that 1 2, , , px x x=X � . Let ( )0h t  be the hazard function for an 
individual for whom the values of all the explanatory variables that make up the 
vector x are zero [10]. 

For a categorical explanatory variable, a reference level (usually the first or last 
level of the variable) will be chosen and the other levels of the explanatory varia-
ble will be compared with the chosen reference level. The Cox model assumes 
that the hazard ratio of any two individuals is constant over time [12]. 

Under the proportional hazards models, the hazard h(t) is modeled as: 

( ) ( ) ( )0 1 1 2 2, exp k kh t x h t x x xβ β β= + + +�             (2.9) 

where 1 2, , , kx x x�  are a collection of independent variables, and ( )0h t  is 
baseline hazard at time t, rerenting the hazard for a person with the value 0 for 
all the independent variables, kβ  are the coefficients of the parameters and t 
survival time. The hypothesis 1 # 1kH β =  versus 1 # 1kH β ≠  can be tested as 
follows: 
 Compute the test statistics ( )ˆ ˆ

k kZ seβ β= . 
 To conduct a two sided level α significant test, if 2Z Zα<  or 1 2Z Z α−>  

[13]. 
Consider an observed sample ( )1, , ny y y= �  and likelihood function  
( ) ( );L L yβ β=  Recall that the likelihood associated with a particular parame-

ter value 0β  is the probability (density) of obtaining the sample y, assuming 
that the true value of the parameter is 0β . This measures the support that the 
data has for the parameter value 0β , and the most supported parameter value 
β̂  will be the value for which ( ) ( )0

ˆL Lβ β>  whenever 0
ˆβ β= .  

The most supported parameter value is therefore the value that achieves the 
highest likelihood possible based on the likelihood function ( )L β , or in other 
words maximizes the likelihood function. Since this value has more support 
from the data than any other parameter value it makes sense to use it as our es-
timate. This approach to estimation is referred to as maximum likelihood esti-
mation and can be interpreted as providing the parameter value that makes the 
observed sample the most likely sample among all possible samples. The esti-
mate that arises from using this approach, which will be a function of the ob-
served sample ( )ˆ yβ = ∅ , is referred to as the maximum likelihood estimate. As 
with any estimate, it is the observed value of a random variable, the maximum 
likelihood estimator ( )ˆ yβ = ∅ . The abbreviation MLE is used interchangeably 
to refer to either the maximum likelihood estimates or the maximum likelihood 
estimator, depending on the context [14].  

Maximum likelihood estimation provides a general approach to estimating a 
parameter, and can in principle be applied in any situation where we have a like-
lihood function. Bearing in mind these potential complexities, an MLE is strictly 
speaking defined as any value β̂  that is in the parameter space and for which 
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( ) ( )0
ˆL Lβ β>  for any other parameter value 0β  that is also in the parameter 

space. In mathematical parlance, we say that the MLE is the value that maximiz-
es ( )L β  over the parameter space. In practice, however, this often simply 
amounts to taking the MLE to be the single value of θ that leads to function 
( )L β  taking on its highest possible value [14]. 
As a final point of importance in defining the MLE, if a particular parameter 

value maximizes the likelihood function, then it will also maximize the log-like- 
lihood function. Thus, the above definition of the MLE can also be made with 
respect to the log-likelihood ( )log L β  rather than the likelihood ( )L β . In prac-
tice, this fact is often used for computation purposes because the log-likelihood 
function is usually a more mathematically convenient function to deal with 
[14]. 

This is generally done by maximizing the natural log of L, which is computa-
tionally easier. The maximization process is carried out by taking partial deriva-
tives of log of L with respect to each parameter in the model, and then solving a 
system of equations. Then the Cox PH model formula after estimation can be 
written as follows: 

( ) ( ) ( )0 1 1 2 2
ˆ ˆ ˆ ˆ ˆexp P Ph t h t x x xβ β β= + + +�           (2.10) 

Once the ML estimates are obtained, we are usually interested in carrying out 
statistical inferences about hazard ratios defined in terms of these estimates. The 
estimated hazard ratio (HR) was computed by exponentiation the coefficient of a 
(0, 1) exposure variable of interest. Note that the model contained no interaction 
terms involving exposure [6]. 

The quantities ( )exp iβ  are called Hazard Ratios (HR), if HR = 1 there is no 
effect, if HR < 1 there is an effect with decrease in the risk or the hazard and if 
HR > 1 there is an effect by increase in the hazard. The Cox model assumes that 
the hazard ratio of any two individuals is constant over time. For a categorical 
explanatory variable, a reference level (usually the first or last level of the varia-
ble) will be chosen and the other levels of the explanatory variable will be com-
pared with the chosen reference level [6]. 

2.2. Practical Aspect 
2.2.1. Data Description 
The data used for this study is a secondary data from the 2018-2020 NICU in 
Hospitals of River Nile State of 700 respondents (Newborns). Six explanatory 
variables were considered to study their effect on survival time of newborn. The 
censoring nature of the data made us to use Cox Proportional Hazard Model to 
analyses the effects of factors on survival time of neonate. Some of the respon-
dents in the study were censored since they did not have the event of interest 
(newborn death). 

2.2.2. Analysis and Results 
From applied of descriptive statistics & Kaplan-Meier method of survival and 
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Hazard function, and construction Cox Proportional Hazard model to assess the 
variable of interest related to newborn data. We found that: 

From Table 1 we noticed that the mean of weight of newborn is 2.4 kg, min-
imum value of it is 0.36 kg, and maximum value is 6 kg. The mean of gestational 
age is 33 weeks, minimum value of it is 22 week, and maximum value is 47 week. 
The mean of survival time of newborns is 4 days, minimum value of it is one 
day, and maximum value is 29 days. 

From Table 2 and Figure 1 we noticed that 25% of newborns from sample of 
study area is dead, this percentage can be considered as a high percentage of 
neonatal mortality in study area, which newborns of it can be exposure to the 
risk of death with that percentage. 

From Table 3 & Table 4 and Figure 2 we notice that the KM curve for group 
2 is consistently higher than the KM curve for group 1. These figures indicate  
 

 

Figure 1. Case processing summary for the study sample of newborn’s data. source: Pre-
pared by the researcher using Excel. 
 
Table 1. The mean, minimum and maximum for the variables, weight of newborn by kg, 
Gestational age by weeks and Survival Time by days. 

Variables 
Descriptive Statistics 

Mean Minimum Maximum 

Weight of Newborn (Kg) 2.4 0.36 6 

Gestational Age (weeks) 33 22 47 

Survival Time (days) 4 1 29 

Source: Prepared by the researcher using SPSS. 
 
Table 2. Case processing summary for the study sample of newborn’s data. 

Cases available in analysis Number of Cases Percentage 

Event (Death) 174 25% 

Censored (Alive) 526 75% 

Total 700 100% 

Source: Prepared by the researcher using SPSS. 
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Table 3. Survival function for male. 

Survival time Survival Probability Standard Error N. of Cumulative Event 

1 0.878 0.016 54 

2 0.807 0.020 80 

3 0.770 0.022 91 

4 0.736 0.024 99 

5 0.725 0.025 101 

6 0.704 0.027 104 

7 0.667 0.031 108 

8 0.646 0.034 110 

9 0.621 0.036 112 

10 0.594 0.040 114 

11 0.578 0.042 115 

12 0.560 0.044 116 

21 0.497 0.071 117 

24 0.331 0.143 118 

Source: Prepared by the researcher using SPSS. 
 
Table 4. Survival function for female. 

Survival time Survival Probability Standard Error N. of Cumulative Event 

1 0.861 0.021 36 

2 0.822 0.024 44 

3 0.800 0.026 48 

4 0.778 0.029 51 

7 0.761 0.032 52 

11 0.729 0.044 53 

16 0.669 0.071 54 

18 0.594 0.094 55 

22 0.446 0.147 56 

Source: Prepared by the researcher using SPSS. 
 
that group 2, which is the female group, has better survival prognosis than group 
1, the  male group. However, the KM curves are very close during the first five 
days, but are quite separate after five days, although they appear to come close 
again around seventeen days. The males of newborns were more exposure to the 
risk of death. 
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Figure 2. Kaplan-meier estimates of survival & hazard functions for gender of newborn. 
Source: Prepared by the researcher using SPSS. 
 

From Table 5 & Table 6 and Figure 3 we found that group 1 (normal deli-
very) appears to have consistently better survival prognosis than group 2 (caesa-
rian section delivery). However, the KM curves are very close from the first days 
until day twenty, but are quite separate after twenty days. The newborns which 
delivered with caesarian section were more exposure to the risk of death.  

From Table 7 & Table 8 and Figure 4 we notice that the KM curve for group 
2 (twin+) is consistently higher than KM curve for group 1 (singleton). These 
figures indicate that the twin+ group has so better survival prognosis than the 
singleton group. KM curves are very close from the first days until day fifteen. 
After ten days to twenty days the curve of two groups had a same probability of 
survival approximately. Singleton type of birth for newborns was more exposure 
to the risk of death. 
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Figure 3. Kaplan-meier estimates of survival & hazard functions for mode of delivery. 
Source: Prepared by the researcher using SPSS. 
 
Table 5. Survival function for normal delivery. 

Survival time Survival Probability Standard Error N. of Cumulative Event 

1 0.858 0.018 52 

2 0.795 0.022 71 

3 0.767 0.023 78 

4 0.737 0.026 84 

6 0.719 0.028 86 

7 0.685 0.033 89 

9 0.671 0.035 90 

10 0.641 0.040 92 

11 0.620 0.043 93 

12 0.597 0.047 94 

21 0.512 0.089 95 

Source: Prepared by the researcher using SPSS. 
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Table 6. Survival function for caesarian delivery. 

Survival time Survival Probability Standard Error N. of Cumulative Event 

1 0.886 0.017 38 

2 0.831 0.021 53 

3 0.795 0.024 61 

4 0.767 0.026 66 

5 0.752 0.028 68 

6 0.743 0.029 69 

7 0.718 0.033 71 

8 0.687 0.038 73 

9 0.668 0.041 74 

11 0.645 0.046 75 

16 0.609 0.056 76 

18 0.558 0.070 77 

22 0.419 0.132 78 

24 0.209 0.162 79 

Source: Prepared by the researcher using SPSS. 
 
Table 7. Survival function for singleton newborn. 

Survival time Survival Probability Standard Error N. of Cumulative Event 

1 0.876 0.013 80 

2 0.816 0.016 112 

3 0.784 0.017 126 

4 0.758 0.019 135 

5 0.750 0.019 137 

6 0.734 0.021 140 

7 0.700 0.025 145 

8 0.684 0.027 147 

9 0.665 0.029 149 

10 0.655 0.031 150 

11 0.629 0.034 152 

12 0.616 0.036 153 

16 0.593 0.041 154 

18 0.566 0.047 155 

21 0.519 0.063 156 

22 0.454 0.82 157 

24 0.363 0.104 158 

Source: Prepared by the researcher using SPSS. 
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Figure 4. Kaplan-meier estimates of survival & hazard functions for birth type. Source: 
Prepared by the researcher using SPSS. 
 
Table 8. Survival function for twin+ newborn. 

Survival time Survival Probability Standard Error N. of Cumulative Event 

1 0.811 0.054 10 

2 0.765 0.060 12 

3 0.736 0.064 13 

4 0.674 0.072 15 

10 0.618 0.085 16 

Source: Prepared by the researcher using SPSS. 
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From Tables 9-11 and Figure 5 we conclude that KM curves are quite differ-
ent with group 3 (weight more than 4.35) having consistently better survival 
prognosis than group 2 (weight in period 2.35 - 4.35), as the group 3 (weight 
more than 4.35) had a few cases, we can just say the group 2 (weight in period 
2.35 - 4.35) having consistently better survival prognosis than group 1 (weight in 
period 0.35 - 2.35). Note also the difference between group 1 and 2 is about the 
same over time until before 25 days, whereas group 2 appears to diverge from 
group 3 as time increases. we found about 36% of newborns with weight in pe-
riod (0.35 - 2.35 kg) were exposure to the event of death, also 16% of newborns 
were exposure to the event of death when their weighs of in period (2.35 - 4.35 
kg), and then the newborns which their weight are more than 4.35 kg, exposure 
to the event of death with 10%. That means the weight of newborn in period 
(0.35 - 2.35 kg) had a high risk of death.  
 

 
 

 

Figure 5. Kaplan-meier estimates of survival & hazard functions for weight of newborn 
by kg. Source: Prepared by the researcher using SPSS. 
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Table 9. Survival function for weight of newborn in period (0.35 - 2.35 kg). 

Survival time Survival Probability Standard Error N. of Cumulative Event 

1 0.837 0.021 49 

2 0739 0.026 74 

3 0.693 0.028 85 

4 0.647 0.030 94 

5 0.635 0.031 96 

6 0.627 0.031 97 

7 0.610 0.033 99 

8 0.601 0.034 100 

9 0.590 0.035 101 

10 0.567 0.037 103 

11 0.554 0.038 104 

12 0.539 0.040 105 

16 0.516 0.044 106 

21 0.470 0.060 107 

22 0.411 0.076 108 

24 0.329 0.095 109 

Source: Prepared by the researcher using SPSS. 
 
Table 10. Survival function for weight of newborn in period (2.35 - 4.35 kg). 

Survival time Survival Probability Standard Error N. of Cumulative Event 

1 0.897 0.015 40 

2 0.868 0.018 49 

3 0.852 0.019 53 

4 0.840 0.021 55 

6 0.816 0.026 57 

7 0.766 0.037 60 

8 0.743 0.042 61 

9 0.716 0.049 62 

11 0.676 0.060 63 

18 0.541 0.130 64 

Source: Prepared by the researcher using SPSS. 
 
Table 11. Survival function for weight of newborn more than 4.35 kg. 

Survival time Survival Probability Standard Error N. of Cumulative Event 

1 0.900 0.095 1 

Source: Prepared by the researcher using SPSS. 
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From Table 12 & Table 13 and Figure 6 we notice that the KM curve for 
group 1 is consistently higher than KM curve for group 2. These figures indicate 
that the group 1, which is Urban Resident, has better survival prognosis than 
group 2 the Rural Resident. However, the KM curves are very close from the first 
days until day twenty, but are quite separate after twenty days. We found 30% of 
the newborns in Rural Resident were exposure to the event of death, and 19% of 
them in Urban Resident were exposure to the event of death in the study area. 
That let us to say newborns in Rural Resident had a high risk of death.  
 
Table 12. Survival function for urban resident. 

Survival time Survival Probability Standard Error N. of Cumulative Event 

1 0.898 0.016 37 

2 0.849 0.020 51 

3 0.824 0.022 57 

4 0.803 0.024 61 

5 0.796 0.024 62 

6 0.787 0.026 63 

7 0.764 0.030 65 

9 0.746 0.034 66 

11 0.696 0.046 68 

12 0.671 0.051 69 

16 0.623 0.066 70 

18 0.567 0.081 71 

Source: Prepared by the researcher using SPSS. 
 
Table 13. Survival function for urban resident. 

Survival time Survival Probability Standard Error N. of Cumulative Event 

1 0.844 0.020 53 

2 0.774 0.023 73 

3 0.736 0.025 82 

4 0.698 0.028 89 

5 0.691 0.029 90 

6 0.672 0.031 92 

7 0.635 0.036 95 

8 0.608 0.039 97 

9 0.594 0.041 98 

10 0.562 0.044 100 

21 0.491 0.076 101 

22 0.369 0.121 102 

24 0.184 0.144 103 

Source: Prepared by the researcher using SPSS. 
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Figure 6. Kaplan-meier estimates of survival & hazard functions for resident type. 
Source: Prepared by the researcher using SPSS. 
 

From Tables 14-16 and Figure 7 we notice that the KM curves for group 3 
(gestational age more than 42 week) having consistently so better survival prog-
nosis than the KM curve for group 2 (gestational age in period 32 - 42 week), as 
the group 3 (gestational age more than 42 week) had a few cases, we can just say 
the group 2 (gestational age in period 32 - 42 week) having consistently better 
survival prognosis than group 1 (gestational age in period 22 - 32 week). Note 
also that the difference between group 1 and 2 is about the same over time. we 
noticed about 48% of newborns were exposure to the risk of death when their 
gestational age in period (22 - 32 week), also 21% of newborns with gestational 
age in period (32 - 42 week), were exposure to the risk of death, and then the 
newborns which their gestational age more than 42 week had a very few cases, so 
they cannot be exosured to risk of death. This means that the gestational age 
with period (22 - 32 kg), had a high risk of death. 
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Table 14. Survival function for gestational age in period (22 - 32 week). 

Survival time Survival Probability Standard Error N. of Cumulative Event 

1 0.750 0.042 26 

2 0.634 0.048 37 

3 0.599 0.050 40 

4 0.531 0.052 45 

7 0.505 0.056 46 

10 0.466 0.064 47 

16 0.399 0.082 48 

21 0.299 0.106 49 

24 0.200 0.108 50 

Source: Prepared by the researcher using SPSS. 
 
Table 15. Survival function for gestational age in period (32 - 42 week). 

Survival time Survival Probability Standard Error N. of Cumulative Event 

1 0.892 0.013 64 

2 0.844 0.016 87 

3 0.813 0.017 99 

4 0.793 0.019 105 

5 0.785 0.019 107 

6 0.767 0.021 110 

7 0.738 0.025 114 

8 0.720 0.028 116 

9 0.700 0.030 118 

10 0.688 0.032 119 

11 0.661 0.036 121 

12 0.646 0.038 122 

18 0.608 0.052 123 

22 0.506 0.102 124 

Source: Prepared by the researcher using SPSS. 
 
Table 16. Survival function for gestational age more than 42 week. 

Survival time Survival Probability Standard Error N. of Cumulative Event 

1 1 0 0 

2 1 0 0 

Source: Prepared by the researcher using SPSS. 
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Figure 7. Kaplan-meier estimates of survival & hazard functions for gestational age by 
weeks. Source: Prepared by the researcher using SPSS. 
 

Table 17 explain that the result of Maximum Likelihood Ratio Test to test the 
significant of the model overall, when the sig (p-value) for the test statistics is 
0.00 which less than 0.05 then that was evidence of significant of the estimated 
model. 

From Table 18 we found that: 
There is no significant difference for the risk of death on the Gender of new-

born, because Wald test value is 1.80 with p-value 0.180 which it is greater than 
0.05, there is no significant difference in Mode of Delivery to the risk of death 
for newborn, because Wald test value is 0.015 with p-value 0.902 which it is 
greater than 0.05, and there is no significant difference on Birth Type to the risk 
of death for newborn, because Wald test value is 0.046 with p-value 0.830 which 
it is greater than 0.05. 

There is a significant effect Weight of newborn on the event of death for 
newborn, when the Wald test 9.464 with p-value 0.002 which it is less than 0.05,  
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Table 17. Tests of model coefficients. 

−2 log likelihood 
Overall (Score) 

Chi-square Degree of Freedom Sig (p-Value) 

2028.79 81.76 6 0.00 

Source: Prepared by the researcher using SPSS. 
 
Table 18. Cox proportional hazard model on risk factors of neonatal mortality. 

Variables in the Model β̂  SE Wald DF Sig ( )ˆExp β  
95.0% CI for ( )ˆExp β  

Lower Upper 

Gender of Newborn 0.219 0.163 1.800 1 0.180 1.245 0.904 1.713 

Mode of Delivery 0.019 0.154 0.015 1 0.902 1.019 0.753 1.380 

Birth Type 0.057 0.265 0.046 1 0.830 1.059 0.629 1.781 

Weight of Newborn −0.499 0.162 9.464 1 0.002 0.607 0.442 0.834 

Resident −0.463 0.155 8.946 1 0.003 0.629 0.464 0.852 

Gestational Age −0.724 0.175 17.173 1 0.000 0.485 0.344 0.683 

Source: Prepared by the researcher using SPSS. 
 
the hazard of event of death for newborns which their weight in period (0.35 - 
2.35 kg), decrease by [(1 − 0.607) × 100] 39.3% respectively when compared with 
weight of newborn in periods (2.35 - 4.35 kg & more than 4.35 kg). As weight of 
newborn decreases, the hazard of event of death increased (1 ÷ 0.607) = 1.6 
times, respectively that of weight of newborn in period (0.35 - 2.35 kg). That 
means the weight of newborn in period (0.35 - 2.35 kg), is more exposure to the 
risk of death than other weights of newborn periods (2.35 - 4.35 kg & more than 
4.35 kg).  

There is a significant effect of Resident type on newborn death, according to 
Wald test value 8.946 with p-value 0.003 which it is less than 0.05, the hazard of 
event of death for newborns which living at Urban Resident decrease by [(1 − 
0.629) × 100] 37.1% respectively when compared with Rural Resident. As the 
Resident Type changes, the risk of death for newborn increased (1 ÷ 0.629) = 1.5 
times, respectively that of Rural Resident.  

There is a high significant effect of Gestational Age on newborn death, ac-
cording to p-value 0.000 is less than 0.05, the hazard of event of death for new-
borns with Gestational Age in period (22 - 32 week), decrease by [(1 − 0.629) × 
100] 37.1% respectively when compared with Gestational Age periods (22 - 32 
week & more than 42 week). As Gestational Age- decreases, the hazard of event 
of death for newborns increased (1 ÷ 0.485) = 2.06 times or twice, respectively 
that of Gestational Age in period (22 - 32 week & more than 42 week).  

Estimated Model for Cox Proportional Hazard for the survival time of neo-
natal mortality can be written as follows:  
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( ) ( ) ( )1 2 3 4 5 6, 0
ˆ ˆ exp 0.22 0.02 0.06 0.50 0.46 0.72t th h x x x x x x= + + − − −X  (2.11) 

when x1 represent (gender of newborn take 1 = male, 2 = female), x2 represent 
(mode of delivery take 1 = normal delivery, 2 = caesarian), x3 represent (birth 
type 1 = singleton, 2 = twin+), x4 represent (weight of newborn by kg take 1 = 
weight in period (0.35 - 2.35), 2 = weight in period (2.35 - 4.35), 3 = weight more 
than 4.35), x5 represent (resident type 1 = urban, 2 = rural), x6 represent (gesta-
tional age by weeks take 1 = gestational age in period (22 - 32), 2 = gestational 
age in period (32 - 42), 3 = gestational age more than 42). 

As an example let 1 1x = , 2 2x = , 3 2x = , 4 3.8 kgx = , 5 2x = , 6 36x =  
week. 

Substitute these values in Equation (2.11) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ), 0
ˆ ˆ exp 0.22 1 0.02 2 0.06 2 0.50 3.8 0.46 2 0.72 36t th h= + + − − −X  

( ) ( ) ( ) ( ), 0 0
ˆ ˆ ˆexp 28.36 4.8t t th h h= − =X  

The baseline ( )0̂ th  can be neglect, so 

( ),
ˆ 4.8th =X  

This means the risk of death for newborn with the above values of variable of 
interest will be 4.8.  

3. Discussion 

The variables of interest concerning health variables and social variables 
representing as gender of newborn (male, female), birth type (Single, Twin+), 
weight of newborn periods by kg (0.35 - 2.35, 2.35 - 4.35 and more than 4.35), 
mode of delivery (Normal, Caesarian), gestational age period by weeks (22 - 32, 
32 - 42 and more than 42), and resident type (Urban, Rural). Various variables 
have been distinguished to be connected with neonatal mortality. Neonatal 
mortality studies can help the health sector to improve the maternal and new-
borns care, and then according to neonatal mortality rates in countries we can 
judge on that country which had a high neonatal mortality rates by developing 
country and the opposite is true.  

This paper explain that the newborns which their weight period listed as (0.35 
- 2.35) were more exposure to death than other periods (2.35 - 4.35 and more 
than 4.35), this result is reliable with a study entitle Using the Logistic Regres-
sion Model and Cox Regression to Study the Factors Affecting the Mortality of 
Infants in Palestine led in 2015, which concluded that the mother’s access to iron 
tablets during pregnancy and the results indicated that the mother’s access to 
health care during pregnancy and the low birth weight have a significant impact 
on the life of the infant. 

In our paper, we expound that the risk of death for neonates who live in rural 
area is 1.5 times neonates that live urban area; this result can be found with a 
study led in Addis Ababa in 2013, which explain that the Contextual factors in-
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cluded in the analysis were urban-rural residence and region. While the gross 
effect of urban-rural residence on neonatal death waned in the multivariate 
analysis, the effect of region was retained. Compared with neonates in Addis 
Ababa, those in Amhara (adjusted HR: 1.88; 95% CI: 1.26 - 2.83), Benishangul 
Gumuz (adjusted HR: 1.75; 95% CI: 1.15 - 2.67) and Tigray (adjusted HR:1.54; 
95% CI: 1.01 - 2.34) regions carried a significantly higher risk of dying. However, 
no similar excess net risk was noted for the other regions. And also our paper is 
reliable with a study led in Nigeria in 2016, which demonstrated that neonates 
born by mothers living in rural zones had a higher danger of neonatal mortality 
contrasted and those living in urban areas. In Nigeria, as in numerous develop-
ing nations, the dominant part of all around prepared doctor’s facilities and 
wellbeing focuses are normally situated in urban territories. 

From outcome of this paper, as Gestational Age decreases, the hazard of oc-
curring newborn death among the period (22 - 32) of gestational age is two 
times the other periods (32 - 42 and more than 42). This result is concluding that 
the mothers which didn’t complete the normal number of pregnancy month, 
their newborns were more exposed to the risk of death.  

In the present study we noticed that there was no significant effect between 
levels of variables gender of neonate (male or female), mode of delivery (normal 
or caesarian), birth type (single or twin+) and neonatal mortality.  

4. Conclusion 

Our determination of factors that affect neonatal death in River Nile State—Sudan 
detect that low neonate weight (0.35 - 2.35) with kg, living in rural areas and 
gestational age in period (22 - 32) with weeks altogether expanded the risk of 
neonatal deaths. These factors discovered connected with neonatal mortality are 
like those reported for other creating nations. Our investigation demonstrates 
the factors which affect neonatal death, which can help decision-makers in the 
health sector to prepare what they need to avoid and reduce the death of neo-
nates, as take care of maternal and newborns in rural areas.  
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