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Abstract 
Penalized spline has largely been applied in many research studies not limited 
to disease modeling and epidemiology. However, due to spatial heterogeneity 
of the data because different smoothing parameter leads to different amount 
of smoothing in different regions the penalized spline has not been exclusive-
ly appropriate to fit the data. The study assessed the properties of penalized 
spline hierarchical model; the hierarchy penalty improves the fit as well as the 
accuracy of inference. The simulation demonstrates the potential benefits of 
using the hierarchical penalty, which is obtained by modelling the global 
smoothing parameter as another spline. The results showed that mixed model 
with penalized hierarchical penalty had a better fit than the mixed model 
without hierarchy this was demonstrated by the rapid convergence of the 
model posterior parameters and the smallest DIC value of the model. There-
fore hierarchical model with fifteen sub-knots provides a better fit of the data.  
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1. Introduction 

Penalized splines have become a popular nonparametric smoothing technique 
[1] [2] using a global smoothing parameter in order to control the amount of 
smoothing in a function. Flexible methods that allow the smoothing parameter 
to vary over the domain as a penalty function of independent variables have 
been proposed [3] [4]. Adaptive smoothing method has also become increasing-
ly important in statistics and it involves allowing the smoothing parameter, the 
bandwidth or the placement of knots to vary across the domain, adapting to the 
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change of roughness [5]-[14]. Modelling the smoothing parameter as a penalty 
function of independent variable can also be used to achieve adaptiveness. This 
involves formulating the adaptive smoothing as a minimization problem with a 
new penalty function in which the estimate has the same form as the smoothing 
spline and method developed for classical smoothing splines can be used. [4] de-
rived the reproducing kernels for a generic penalty function and suggested mod-
elling it by B-splines. [3] studied the solution of the penalized least square esti-
mate in which the smoothing parameter is a varying function across the domain 
under the Reproducing Kernel Hilbert Space approach. [15] proposed to model 
the penalty function by a step function where the segmentation is data driven 
and estimate it by maximizing the generalized likelihood. A complexity penalty 
was added to the generalized likelihood in selecting the best step function from a 
collection of candidate. This approach was very computational expensive due to 
the large number of candidate models and proposed search algorithm and thus 
has a serious limitation. In this research, we aim at developing a Hierarchical 
penalty model using p-splines which will result in more adaptive smoothing. In 
penalized regression splines, [2] modelled the penalty function by a linear inter-
polation on the logarithmic scale, [16] modelled the penalty function from full 
Bayesian approach and used Markov chain Monte Carlo for computation, [17] 
developed a fast and simple algorithm for the Bayesian p-spline based on Laplace 
approximation for the marginal likelihood. To accommodate a flexible class of 
functions, a number of works have been constructed through the smoothing spline 
estimator of the non-parametric distribution function ( )m ⋅ . These include [18] 
[19] [20]. [4] [21] considered a mixed-effects model with a fixed smoothing pa-
rameter. 

The study’s primary objective was to assess the properties of the mixed model 
with penalized hierarchical penalty developed in [22] under Bayesian approach 
by simulation study and compared it with the mixed model without penalized 
hierarchical penalty. Therefore, the study’s main contribution was to investigate 
the developed model fit performance when hierarchy penalty is added to mixed 
model. 

The paper is organized as follows: Section 2 describes the methods of the 
study; Section 3 presents the main results, simulation study results, and Section 4 
presents conclusion and suggestions for further research. 

2. Methods 

In applied statistics, data normally plays an important role. However it can have 
different and complex shape that will result in parametric modeling being unfa-
vorable. Non parametric modeling provides a solution to this in that the shape of 
the functional relationships is not determined before but is driven by the data. 
This means that it can adjust to capture unusual or unexpected features in the 
data. Penalized spline is a non parametric regression that is commonly used for 
scatter plot smoothing. Suppose we consider smoothing a scatter plot where the 
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data are denoted ( ),i ix y  for 1, ,i n= � . The underlying trend would be a 
function m where ( )xβ  is the vector of known spline basis functions and β  
is the vector of unknown coefficients. P-spline is low order basis spline with a 
penalty to avoid under smoothing. Such splines are typically not spatially adap-
tive and hence have trouble when function is varying rapidly. 

2.1. Bayesian Model 

Bayesian approach allows the use of objective data or subjective opinion in spe-
cifying a prior distribution. Bayesian inference is the process of fitting a proba-
bility model to a set of data and summarizing the result by a probability distri-
bution on the parameters of the model and on unobserved quantities as predic-
tions for new observations. It is a process of using observed data to infer proper-
ties of the statistical distributions that generated that data. Given data ( ),i ix y  
where ix  is univariate, our parametric model is defined by  

( )i i iY M x ε= +  

where ( )M  is unknown function, the i sε ′  are independent conditional on 

ix  and normally distributed with mean zero and variance 2
εσ . To estimate 

( )M ⋅  we use regression P-splines. The basis function will be piecewise poly-
nomial function whose highest order derivative take jumps at fixed “knots”. 

( ) ( )0 1
1

r qq
p k k

k
M x x x xβ β β ρ τ

+
=

= + + + + −∑�  

where 0 1 1, , , , , ,p rβ β β ρ ρ� �  is a vector of regression coefficients and 1, , rτ τ�  
are fixed knots. 

To model the unknown function ( )M ⋅  we can use regression spline of any 
degree but here the study used degree 2 for convenience so that, 

( ) ( )0 1
1

r q
k k

k
M x x xβ β ρ τ

+
=

= + + −∑                   (1) 

r the number of knots is taken to be large but much less than the number of 
data points n. We use knots that are equally spaced sample quantiles of X. The 
number of knots are specified by the user although the choice is not crucial [2] a 
minimum number of knots is needed to capture the spatial variability in the da-
ta. 

Equation (1) can be interpreted as a Bayesian linear model and rewritten as  

k k kY R P ε= +                            (2) 

where ( )T
1 1, ,n nY Y Y× = � , ( )T

0 1 1, , , ,k rR β β ρ ρ= �  is ( )2 1r + ×  vector of re-
gression coefficients. ( )T

1, ,k nε ε ε= �  is 1n×  error vector and the design 
matrix kP  is defined as  

( ) ( )
( ) ( )

( ) ( )

1 1 1 1

2 2 1 2

1

1
1

1

r

r
k

n n n r

x x x
x x x

P

x x x

τ τ
τ τ

τ τ

+ +

+ +

+ +

 − − 
 − − =  
 

− −  

�
�

� � � � �
�
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Suppose 1, , nε ε�  are independent and identically distributed ( )20, kN σ . 
The terms involving ( )0 1,β β  can be considered as fixed effects in the model. 
Normal prior on ( )0 1,β β  with mean 0 and variance 100 was assumed. This ef-
fectively acts as a non informative uniform prior on the fixed effects. The ran-
dom variables in the vector of spline coefficient are assumed a priori indepen-
dent and normally distributed ( )( )2~ 0,k kN ρρ σ τ  where 1, 2, ,k r= � . ( )2

kρσ τ  
is the smoothing parameter that shrinks all the coefficient of the spline hence a 
global smoothing parameter. The ( )2

kρσ τ  is all constant as a function of k that 
the smoothing is not spatially adaptive. In order to develop a spatially adaptive 
technique we need to model ( )2

kρσ τ  so as to capture the spatial heterogeneity 
of the data because different smoothing parameter leads to different amount of 
smoothing in different regions. 

The study developed a Hierarchical model for ( )2
kρσ τ  where ( )2 .ρσ  is a 

function evaluated at the knots ( kτ ). By taking the functional form of ( )2 .ρσ  as 
another linear regression i.e. 

( ) ( )2
0 1

1
exp

l qp
k j j

j
hρσ τ γ γ τ τ α

+
=

 
= + + − 

 
∑                (3) 

which is rewritten as  

( ){ } ( )2
0 1

1
log

l qp
k j j

j
hρσ τ γ γ τ τ α

+
=

− = + + −∑               (4) 

where 1, , lα α�  are fixed knots. The number of sub knots l  is user specified 
and typically less than r (the number of knots in the original spline). The knots 

{ } 1

l
j j

α
=

 are also taken to be equally spaced quantiles of τ . Rewriting Equation 
(4) as a Bayesian linear model we have  

h hD R P=                           (5) 

where ( ){ } ( ){ } T2 2
1log , , log rD ρ ρσ τ σ τ = − − � , ( )T

0 1 1, , , ,h lP h hγ γ= �  is an  
( )2 1l + ×  vector and hP  is the design matrix given by  

( ) ( )
( ) ( )

( ) ( )

1 1 1 1

2 2 1 2

1

1
1

1

l

l
h

r r r l

P

τ τ α τ α
τ τ α τ α

τ τ α τ α

+ +

+ +

+ +

 − −
 − − =  
 

− −  

�
�

� � � � �
�

 

The random variables in the Equation (4) are also assumed to be priori inde-
pendent and normally distributed i.e. ( )2~ 0,j hh N σ  where 1, ,j l= �  and the 
parameters ( )0 1,γ γ  are also independent and normally distributed with mean 
zero and large variance. 

2.2. MCMC Methods 

MCMC has become a very important computational tool in Bayesian statistics, 
since it allows for Monte Carlo approximation of complex posterior distribu-
tions where analytical or numerical integration techniques are not applicable. 
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These methods are commonly used in exploration of joint posterior distribution. 
A Markov chain is basically a sequence of random variables generated from a 
transition distribution q() constructed such that the distribution of the next 
random variables to be generated depends only on the current state of the chain 
[23]. The aim of Bayesian analysis is to construct a Markov chain that converges 
to a stationary distribution which is the target posterior distribution. The Mar-
kov chain is then simulated until the point where the simulated draws resembled 
draws from the target distribution. 

2.3. Model Diagnostics 

The models were compared using the Deviance Information Criterion (DIC). 
The best fitting model is one with the smallest DIC given by DIC D pDθ= + , in 
which D  is the posterior mean of the deviance that measures the goodness of 
fit, and pD gives the effective number of parameters in the model which pena-
lizes for complexity of the model. Lower vales of D  indicate a better fit while 
small values of pD indicate a parsimonious model. To compare two models, It is 
observed how big the difference the Deviance Information Criterion (DIC) val-
ues of the models need to be so that one can declare that one model is better 
than the other one is not clearly cut. Studies have describe that a difference of 3 
in model DIC between two models is difficult to distinguished but a DIC differ-
ence greater than 3 can be losely distinguished [24]. 

3. Main Results 
Simulation Study 

The model Equation (1) was fitted in Bayesian approach, and simulation was 
done using WinBUGS, four chains was run with a burn-in of 1000 iterations a 
thinning to every 1 step (in order to reduce the auto-correlation of the chain) 
until we obtained a sample of 16,000. The mean function m() for the model (5) 
was simplified to  

( ) 2
0 1

1
,

r

k k
k

m x x xθ β β ρ τ
=

= + + −∑                    (6) 

where ( )0 1 1, , , , rθ β β ρ ρ Τ= �  is the vector of regression coefficients, and  

1 2 rτ τ τ< < <�  are fixed knots. The spline degree q = 2, number of knots as p = 
20, sub-knots t = 10, 15, 17, sample sizes N = 50, 100 and 500, ( )~ 10,100x Unif , 

( )~ 200,300y Unif  and the following priors distribution were assumed  

( )6
0 1, ~ 0,1 10Nβ β −× , ( )2~ 0,k N ρρ τ , ( )2 ~ 0.01,0.01k IGτ . 4 chains were run 

for MCMC. To prevent over-fitting, then we minimize  

( ){ }2

1

1,
n

i i
i

y m x θ θ θ
ρ

Τ

=

− +∑ P                     (7) 

where ρ  is the smoothing parameter and P is a known positive semi-definite 
penalty matrix.  
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The posterior distribution of the parameters for the model is given by  

( ) ( ) ( )2 2 2, , | | , , , ,post priorP y L y Pβ ρ τ β ρ τ β ρ τ=  

For each model run, 5000 Markov chain Monte Carlo (MCMC) iterations 
were ran, with the initial 1000 discarded to cater for the burn-in period and the-
reafter keeping every tenth sample value. The iterations left were used for as-
sessing convergence of the MCMC and parameter estimation. We assessed 
MCMC convergence of all models parameters by checking trace plots of the 
MCMC output. 

Table 1 presents model diagnostics for the fitted models having hierarchy pe-
nalty and without hierarchy penalty. The results showed that for Non-hierarchical 
model (2) with mean function (6), M1 had a smallest Deviance Information Cri-
terion (DIC) 493.216 compared to M2 with DIC = 963.612 and M3 with DIC = 
4785.9 when the sample size taken was 50, however as the sample size increases 
the DIC become large. M1 provide a better fit. The credible interval for the mean 
function M(x) given the sample N = 50 was significantly large. 

For the hierarchical model represented by the Equation (5), Table 1 shows 
that the model with hierarchy penalty having 15 sub-knots had the lowest DIC = 
196.209 compared to the model with 10 sub-knots (DIC = 202.321) and 17 
sub-knots (DIC = 207.852), this indicate that the model with hierarchy penalty 
and 15 sub-knots provides a better fit for the data. The credible interval for the 
hierarchical regression function M() was 243.5 - 289.0 (Table 2). 
 
Table 1. DIC for models with and without the hierarchy penalty with sizes 50, 100, 500. 

 

Model Function without 
hierarchy Penalty 

Model Function with 
Hierarchy Penalty 

M1 M2 M3 M1 (t = 10) M2 (t = 15) M3 (t = 17) 

pD 7.628 7.628 9.494 7.805 7.607 6.981 

D  485.587 955.82 4776.410 194.516 188.602 200.871 

DIC 493.216 963.612 4785.90 202.321 196.209 207.852 

 
Table 2. 95% credible intervals for the model mean functions for models with and with-
out the hierarchy penalty with sizes 50, 100, 500. 

 

Model Function without 
hierarchy Penalty 

Model Function with 
Hierarchy Penalty 

M1 M2 M3 M1 (t = 10) M2 (t = 15) M3 (t = 17) 

CI 246.5 - 268.5 250.2 - 268.9 248.2 - 254.8 237.6 - 294.4 243.5 - 289.0 227.7 - 281.2 
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(a) 

 
(b) 

Figure 1. Traceplots plots for model parameters. (a) Beta parameter in Non-Hierarchical model; (b) Rho parameter in Non-Hie- 
rarchical model. 
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(a) 

 
(b) 

Figure 2. Traceplots plots for model parameters. (a) Gamma parameter in Hierarchical model; (b) h parameter in Hierarchical 
model. 
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Convergence of the Parameters 
In this section we checked for the convergence of the model parameters by ex-
amining their respective trace plots. The parameters ρ  and β  of the model 
without hierarchy penalty showed an acceptable convergence to the stationary 
distribution both with graphical tests shown by trace plots in Figure 1.  

Figure 2 shows that the parameters γ  and kh  of the model with hierarchy 
penalty also had an acceptable convergence to the stationary distribution both 
with graphical tests.  

4. Conclusion and Suggestions 

This study utilizes Bayesian technique to model the penalized spline smoothing 
regression model with hierarchical penalty. We build on existing model by Eilers 
[25] and Rupert [2]. The model in this study is based on the penalized regression 
spline, in a semi-parametric modeling paradigm. Many situations arise where 
the relationship between the function of the response variable and covariates is 
non-linear. Due to the high complexity and intractability of this non-parametric 
model, the maximum likelihood approaches are not viable in the estimation of 
these models. Consequently, the Bayesian inference, utilizing MCMC techniques 
is highly favoured. Based on simulation results, penalized spline smoothing with 
hierarchical penalty provides a better fit compared to penalized spline smooth-
ing without hierarchy; this was shown by the rapid convergence of the model 
posterior parameters and the lowest DIC value of the model. Therefore from the 
simulation results, the study concluded that the hierarchical model with fifteen 
sub-knots provides a better fit of the data.  

Suggestions 

Although the proposed model provides a better fit compared to the penalized 
spline without hierarchy penalty, the mean function density becomes rough as the 
sample size increases therefore the study proposes further research on the nature 
of an appropriate smoothing parameter for the model can be done.  
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