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Abstract 
In this paper, the problem of Nonparametric Estimation of Finite Population 
Totals in high dimensional datasets is considered. A robust estimator of the 
Finite Population Total based on Feedforward Backpropagation Neural Net-
work is derived with the aid of a Super-Population Model. This current study 
is motivated by the fact that Local Polynomials and Kernel methods have in 
preceding related studies, been shown to provide good estimators for Finite 
Population Totals but in low dimensions. Even in these situations however, 
bias at boundary points presents a big challenge when using these estimators 
in estimating Finite Population parameters. The challenge worsens as the di-
mension of regressors increase. This is because as the dimension of the Re-
gressor Vectors grows, the Sparseness of the Regressors’ values in the design 
space becomes unfeasible, resulting in a decrease in the fastest achievable 
rates of convergence of the Regression Function Estimators towards the target 
curve, rendering Kernel Methods and Local Polynomials ineffective to ad-
dress these challenges. This study considers the technique of Artificial Neural 
Networks which yields robust estimators in high dimensions and reduces the 
estimation bias with marginal increase in variance. This is due to its Mul-
ti-Layer Structure, which can approximate a wide range of functions to any 
required level of precision. The estimator’s properties are developed, and a 
comparison with existing estimators was conducted to evaluate the estima-
tor’s performance using real data sets acquired from the United Nations De-
velopment Programme 2020. The estimation approach performs well in an 
example using data from a United Nations Development Programme 2020 on 
the study of Human Development Index against other factors. The theoretical 
and practical results imply that the Neural Network estimator is highly rec-
ommended for survey sampling estimation of the finite population total.  
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1. Introduction 

In Surveys, extrapolation reduces the accuracy of information since the sample is 
a subset of an entire population and therefore, does not contain information on 
units that are not represented in the selected sample. In such cases of unob-
served units therefore, use of Auxiliary Information on the characteristic under 
study is usually effective in predicting unobserved units if the model is correctly 
specified. In general, when using Auxiliary Information, it is assumed that there 
is a finite population of N distinct and identifiable units; { }1,2, ,U N= � . Let 
each population unit have the variable of interest as Y. It is assumed that there is 
an auxiliary variable dX ∈ , closely correlated with Y, which is known for the 
entire population (i.e. 1 2, , , NX X X� ) that is known as iY∀ . Researchers are 
frequently faced with the task of estimating a population function, (i.e. a func-
tion of Y’s), such as the Population Total;  

1

N

i
i

T Y
=

= ∑                          (1) 

or the population distribution functions  

( ) ( )
1

1 N

i i
i

F y I Y y
N =

= ≤∑                    (2) 

In estimating the Population Totals T for instance, a sample S is usually cho-
sen such that the pair ( ), , , 1, 2, ,i j ix y i n= �  and 1,2,3, ,j d= �  is obtained 
from the variable X and corresponding variable Y. It can then be employed in 
the design, estimation, or both stages. In the presence of such Auxiliary Va-
riables, Super-Population Models at the estimation stage of inference may be 
used, [1] and [2]. However, regarding the underlying relationship between the 
Survey and Auxiliary Variables, all of these techniques refer to Simple Statistical 
Models (Linear Regression Models). In an Empirical Study, [3] show that miss-
pecification of the model can lead to substantial mistakes in the Parametric Su-
perpopulation. To solve this problem, Nonparametric Regression involving ro-
bust estimators in Finite Population Sampling has been proposed [4] [5] [6]. 

As a result, the reason for using a nonparametric approach in this research is 
that a regression curve created this way serves four key functions, as explained 
by [7]: It provides a versatile method of exploring the general relationship be-
tween two variables, enables one to make prediction of observations without any 
reference to fixed parametric model, is a tool for finding spurious observations 
by studying influence of isolated points and is a flexible method for interpolating 
between adjacent values of auxiliary variable. 

Usually, a major problem that is encountered when using Nonparametric 
Kernel based Regression Estimators over a finite interval such as the estimation 
of finite population quantities is the bias at the boundary points, ([8]). It is also 
known that Kernel and Polynomial Regression Estimators provide good esti-
mates for the population totals when dx∈  and 1d = , [5] [9]. 

Despite the fact that High Dimensional Auxiliary Information can be ac-

https://doi.org/10.4236/ojs.2022.125035


F. A. Were et al. 
 

 

DOI: 10.4236/ojs.2022.125035 583 Open Journal of Statistics 
 

counted for in the above estimators, the problem of Regressor Sparseness in the 
design space renders Kernel Methods and Local Polynomials unworkable be-
cause performance decreases quickly as the dimension increases, [9] [10] [11]. 
This problem is known as “curse of dimensionality” which is a result of the 
sparsity of data in high-dimensional environments, which leads to a drop in the 
highest feasible rates of convergence of regression function estimators towards 
their target curve as the dimension of the Regressor Vector grows. A review on 
the concept of curse of dimensionality is provided in [12]. 

Given the problem called “curse of dimensionality”, one has to use different 
Nonparametric Estimators to retain a large degree of flexibility. An attempt to 
navigate through this curse while handling Multiple Auxiliary Information is to 
consider and use recursive covering in model based perspectives [13] and Gene-
ralized Additive Modeling in Model-Assisted Framework [14]. These estimation 
methods come at a cost of reduced flexibility with the associated risk of in-
creased bias [10] [11] [12] [15].  

Consequently in this paper, robustness of the proposed Nonparametric Esti-
mator for the Finite Population Total is based on Feedforward Backpropagation 
Neural Network Approach to address the shortcomings of previously studied es-
timation methods is developed. Although Kernel and Local Approximators may 
also have the same property as Artificial Neural Networks (ANNs), they often re-
quire a high number of components to attain equivalent approximation accuracy 
[16]. The high number of components presents a challenge to feasibility in usage 
of the methods. ANNs are thus considered to be a parsimonious approach to this 
Parametric Functional Analysis. 

2. Estimation of Finite Population Totals Using Artificial  
Neural Networks 

Let Y be the Survey Variable associated with an Auxiliary Variable X assumed to 
follow a Superpopulation Model under a Model-Based Approach. A commonly 
used working model for the Finite Population is  

( )i i iy m x ε= +                       (3) 

with d
ijx ∈ , 1 2, , , Nε ε ε�  i.i.d with mean zero and  

, 1, 2, , ; 1, 2, ,ijx i N j d= =� �  are the auxiliary information. 
Also, let  

i i
i s i r

T y y
∈ ∈

= +∑ ∑                      (4) 

be the finite population total where s is the sampled units and r are the 
non-sampled units. Assume that iy  is given according to Equation (3) with 

d
ix ∈ , 1 2, , , Nε ε ε�  i.i.d. Consider estimating ( )m x  based on a Feedfor-

ward Backpropagation Neural Network. As a basic building block, consider the 
Neurons as a Nonlinear Transformation of a Linear Combination of the input 

( )1, , dx x x ′= � .  

https://doi.org/10.4236/ojs.2022.125035


F. A. Were et al. 
 

 

DOI: 10.4236/ojs.2022.125035 584 Open Journal of Statistics 
 

Feedforward networks with multiple layers of hidden units are more complex 
networks that enable information feedback to be specified. Its study will only 
deal with the presented structure 5, which is widely used for a range of applica-
tions and has the appealing characteristic of being implemented in statistical 
software, but the results herein are straightforward to extrapolate.  

In this simplest case of one hidden layer with 1H ≥  Neurons, the Network 
can be written to represent the Network Function as follows  

( ) ( )T
0 0

1
, ,

H
d

H h h h
h

f x v v w x w xθ ψ
=

= + + ∈∑ �               (5) 

with ( )1 , , d
h h dhw w w= ∈� �  and 

( ) ( )TT T
01 0 1 0, , , , , , , , M H

H H hw w w w v vθ = ∈� � � �             (6) 

where ( ) ( )1 1M H d H H= + + +  represents the vector of all parameters of 
weights of the network. :ψ �   is a given Activation Function. For regres-
sion problems, functions of the sigmoid shape. Therefore, depending on the re-
quired output, one could choose between widely used sigmoid functions, the lo-
gistic sigmoid and the bipolar sigmoid. The Logistic Function is preferable when 
the objective is to approximate functions that map into probability space. In par-
ticular, the Activation Function is a smooth counterpart of the Indicator Func-
tion if the input signals are “constrained” between zero and one. For instance, 
logistic function described as  

( ) ( )
1 ,

1 exp
u u

u
ψ = −∞ < < ∞

+ −
                 (7) 

is a leading example of which it approaches one (zero) when its arguments go to 
infinity (negative infinity). Thus, the Logistic Activation Function produces par-
tially on/off signals following the received input signals. This function ( );Hf x θ  
specifies a mapping from the input space d  to the output space which for this 
study is one-dimensional. Such a class of all network output function  

( ) ( ){ }; , , 1M H
HO f x Hθ θ= ∈ ≥�  has several uniform approximation properties 

[17] [18] [19]. Important for the current study is that for any continuous func-
tion m, any 0ε >  and any compact set dC ⊆   there exist a function Hf O∈  
with  

( ) ( )sup ;H
x C

m x f x θ ε
∈

− <  

These imply that any Regression Function ( )m x  may be approximated well 
enough using a large enough number of neurons and appropriate parameters 
θ . 

Therefore, a nonparametric estimate for ( )m x  is gotten if H is first chosen 
in a manner which serves as a tuning parameter and determines the smoothness 
of the estimate, then estimation of the parameter θ  from the data by nonlinear 
least squares is done to yield  

( )
( )ˆ arg min

M Hn nD
θ

θ θ
∈ℜ

=                       (8) 
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with  

( ) ( )( )2
;n i H

s
D y f xθ θ= −∑  

Under appropriate conditions, n̂θ  converges in probability for n →∞  and 
a constant H to the parameter vector Hθ ∈Θ  which corresponds to the best 
approximation of ( )m x  by a function of type ( ); ,H Hf x θ θ ∈Θ  with  

( )
( ) ( ) ( ) ( ){ }arg min with ;

M H HD D E m x f x
θ

θ θ θ θ
∈ℜ

= = −  

Also, under some stronger assumptions, the Asymptotic Normality of n̂θ  
and thus the estimator of ( ) ( )ˆˆ ;H nm x f x θ=  also follows for the regression 
function ( )m x . Therefore, the immediate consequence of these is that  

( ) ( )ˆ; ;H n Hf x f xθ θ→  as n →∞ . 
The estimation error n̂θ θ−  can be divided into two asymptotically inde-

pendent subcomponents: ( ) ( )ˆ ˆ ˆ ˆ
n n n nθ θ θ θ θ θ− = − + − , where the value 

( )
( ) ( ){ }2

1
arg min ,

M H

n

n H
i

m x f x
θ

θ θ
∈ℜ =

= −∑  

minimises the sample version of ( )D θ , [20]. Thus, by Universal Approxima-
tion Property of Neural Networks, ( );Hf x θ  converges to the Regression Func-
tion ( )m x  as H →∞ . Therefore ( )ˆ;H nf x θ  is a consistent Estimate of ( )m x  
if H increases with n as is herein imposed, and with an appropriate rate. From 
these results, the corresponding estimate of the finite population total is there-
fore, given as  

( )ˆ ˆNN j n j
j s j r

T y m x
∈ ∈

= +∑ ∑                      (9) 

which is the proposed estimator for the Finite Population Total, with 

( ) ( )ˆˆ ;n j H nm x f x θ=  

Regularity Notes on the Proposed Estimator 

1) NNT  is a Model-Based Estimator, so that all the inference is with respect to 
the model for the iy s′ , not the Survey Design.  

2) This estimator is identical to that proposed in [4], except that the NN is re-
placed by a Kernel-Based Regression.  

3) This estimator can be used to estimate the population totals of a finite pop-
ulation so long as the assumption is that each of the unsampled elements has the 
same distribution as the sampled elements.  

4) For fixed H, this work just fits a Nonlinear Regression Model to the data. 
However, it is known that this model can be misspecified and therefore one has 
to select a decent H, determining the form of the nonlinear regression function 
and the dimension of its parameter, to get a reasonable balance between bias and 
variance of ( )ˆ nm x  as an estimate of ( )m x .  

5) The parameter vector θ  of [5] is not uniquely determined (identified) by 
the function ( ),Hf x θ . i.e. for different values of θ , the same function ( ),Hf x θ  
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is realised. If, for example the activation function is antisymmetric,  
( ) ( )x xψ ψ− = − , then changing the enumeration of hidden units and multiply-

ing all weights , 1, 2, ,ihw i d= � , going into hidden units and simultaneously the 
weight hv  going out of the neuron by −1 do not change the function. To avoid 
this ambiguity and the related problems of estimation, this study considered on-
ly parameter vectors in a subset ( )M H

HΘ ⊂   chosen such that for each func-
tion in [5] with H neurons, there exists exactly one corresponding parameter 

HΘ . For antisymmetric ψ  one can choose for example  
( ){ }1 2;M H

H Hv v vθΘ = ∈ ≥ ≥ ≥� , that is, the last h coordinates of θ  are in 
decreasing order. For more details on the identification of parameters see [21]. 

Theoretically, Feedforward Neural Network which has one hidden layer suf-
fices by the Universal Approximation Property. For practical purposes, networks 
with more than one hidden layer may provide a better approximation to ( )m x  
with fewer parameters, see [9] [17] [18] [22] [23]. 

3. Theoretical Properties of the Proposed Estimator 
3.1. Assumptions 

To be able to prove the theoretical results, the following assumptions are made;  
1) The errors iε  are Identically Independently Distributed (IID) with mean 0, 

finite variance 2σ  satisfying  

( ) { }0 1exp for all 0ipr t a a t tαε > ≤ − ≥  

and for some 0 1,a a  and 0α > .  
2) The Auxiliary Measurements d

ix ∈  are i.i.d. with an absolutely conti-
nuous distribution F having a finite second moment.  

( )1 2
1, , ddx x x

df t t t
−∞ −∞ −∞∫ ∫ ∫� �                    (10) 

where ( ).f  is strictly positive density whose support is a compact subset of 
d . Moreover,  

( ) { }0 1exp for all 0ipr x t b b t tβ> ≤ − ≥              (11) 

and for some 0 1,b b  and 0β > . 
3) ( )m x  is a bounded function.  
4) For each sequence of finite population indexed by v, conditioned on the 

value ix , the super population model (3.1), where iε  satisfies A1, then, the ix  
is considered fixed with respect to the super population model ξ .  

5) The survey variable has a bounded moment with ξ-probability 1. Moreover, 
it is noted that (A1), …, (A3) immediately imply for some 0 1, 0c c >   

( ) { }0 1exp , for all 0iPr y t c c t tα> ≤ − ≥               (12) 

6) The sampling rate is bounded, that is  

( )lim sup , where 0,1
v

n
N

π π
→∞

= ∈  

7) The parameter space Θ  is a compact set, θ  an interior point of Θ  and 
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it is irreducible; that is for , 0h h′ ≠  none of the following three cases holds 
[21].  

a) 0hv = , for some 1, ,h H= � . 
b) 0hw = , for some 1, ,h H= � . 
c) ( ) ( )0 0, ,h h h hw w w w′ ′′ ′= ± , for w w′≠ . 
8) The activation function ψ  in 7 is asymmetric sigmoid function that is 

differentiable to any order. Additionally, it is assumed that the class of functions 
( ){ } { }0, , 0 1tb b bψ ψ> ∪ ≡  is linearly independent. Such function can easily be 

represented using an indicator (threshold) function,  

( )
( )
( )
( ) ( )

0, as

1, as

1

u u

u u u

u u

ψ

ψ ψ

ψ ψ

→ → −∞


= → → +∞
 + − =

                  (13) 

The logistic activation function in 7 fulfills these requirements.  
To prove for consistency of the proposed estimator, the rate which determines 

how the complexity of the networks and therefore the possible roughness of the 
function estimate ( )ˆ nm x  increases with the sample size n has to satisfy some 
conditions. We follow [19] and restrict the number H of neurons and the overall 
size of the network weights ,h khv w  simultaneously. For some sequences  

,n nH ∆ →∞ , let 

( )
0 1 0

, ; ,
n nH H d

n n n h n kd n n
h h k

H Hθ υ ω
= = =

 
Θ = Θ ∆ = ∈Θ ≤ ∆ ≤ ∆ 

 
∑ ∑∑        (14) 

For given sample size n, we consider only network functions in  

( ) ( ) ( ){ }, , ; ,
nn n n H n nO O H f x Hθ θ= ∆ = ∈Θ ∆              (15) 

as an estimate for ( )m x . Therefore, we redefine the parameter estimate as  

( )( )2ˆ arg min ;
n

n i H
s

y f x
θ

θ θ
∈Θ

= −∑                   (16) 

and the network estimate for ( )m x  is therefore given by  

( ) ( )ˆˆ ,
nn H nm x f x θ=                        (17) 

which is a kind of sieve estimate in the sense of [24] or [25].  
To prove consistency of N̂NT , it needs to be shown that the Neural Network 

Based Regression Function ˆ NNm  is also consistent.  
Theorem 3.1. Let ( ) ( )1 1, , , ,n ny x y x�  be i.i.d variable with iy ∈ , and  

d
ix ∈ . Let the distributions of iy  and 

ixx  satisfy A2 and Equation (12). Let 
( ), , 1n n nO O H n= ∆ ≥  be the set of neural network output functions given by 

Equation (15) with an activation function ψ  which is Lipschitz continuous on 
 , strictly increasing and satisfying Equation (13). Let ( ) ( )ˆ |n i im x E y x x= =  
be in the closure of 

1 nn
O∞

=∪  in ( )2L F  that is, in the space of functions square 
integrable with respect to the distribution of the ix . Then ( )ˆ nm x  is a consis-
tent estimate of ( )m x  in the ( )2L F -sense, that is  
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( ) ( )( ) ( )2ˆ d 0nm x m x F x− →∫  in probability           (18) 

provided that ,n nH ∆ →∞  such that  

1
4

n o n
 

∆ =   
 

 

( )4, logn nH n o n∆ =  and ( )logn nH n o α= ∆  

where α  determine the rate of decrease of the tail of the distribution of the iy  
by Equation (12).  

Proof. Theorem 1 can be proven exactly as Theorem 2.1 of [26] for stationary 
processes satisfying an α -mixing condition and also as Theorem 3.1 of [27] for 
fixed data. As here the data are independent, the Bernstein inequality for statio-
nary processes may be replaced by a Bernstein inequality for independent data 
like that one in Section (2.5.4), Lemma A of [28] [29]. Therefore, the right hand 
side of Equation (5.1) of [26] changes to  

2

1 2 1 22 2
exp instead of exp

N N

c c c c
NM N M

  ∆ ∆
− −       

 

Then the proof proceeds exactly as in [19] and results in slightly different 
condition for the rates of ,n nH ∆  in the independence case. 

We remark that for bounded random variables ( ),i iy x , the last condition on 
,n nH ∆  involving α  can be dropped. In that case, Theorem 1 essentially is 

equivalent to Theorem 3.3 of [19]. We also remark that by Theorem 3.4 of [19], 
we may determine the parameters ,n nH ∆  which determine the network com-
plexity and therefore the smoothness of the function estimate, adaptively from 
the data by Cross Validation without changing the consistency of ( )ˆ nm x . For 
the detail on the proof of these theorems, see the work of [26] [27]. 

Note that, to prove the consistency of N̂NT  we need Equation (13) with a 
simple mean over the unobserved ,ix i r∈  instead of the integral. The follow-
ing results show that the difference between the integral and the sample mean is 
negligible.  

Theorem 3.2. Let ( ) ( )( )1 1, , , ,N Ny x y x�  be i.i.d with 3 for some bounded 
( )m x . Let F denote the distribution of ix . Let ( ) 1uψ ≤ . Let 1, ,s n= �  be 

the index set of the observed data and 1, ,r n N= + �  the index of unobserved 
data. Let n̂θ  be defined as in Equation (13) with ( )ˆ nm x  defined as in Equa-
tion (17) with ( ) ( )ˆˆ ,

nn H nm x f x θ=  denote the estimate of ( )m x  based on the  

sample ( ), ,i iy x i s∈ . Let ,n N →∞  such that ( )0,1n
N

π→  and let ,n nH ∆  

satisfy conditions in Theorem 3. Then for 0δ >   

( ) ( )( )

( ) ( )( ) ( ) ( )

2

22

1 2 4

1 ˆ

ˆ d | , , exp

j n j
j r

j n j i i
n

Pr m x m x
N n

Nm x m x F x y x i s d d δδ

∈


− −

   − − > ∈ ≤ −  
∆   

∑

∫
  (19) 
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for all 0δ >  and all N large enough where 1 2,d d  are some constants inde-
pendent of ,N n  and ( ), ,i iy x i s∈ .  

Proof. From assumption A3, let C be the upper bound of ( )m x . By definition 
of ( ) ( )ˆˆ ,

nn H nm x f x θ=  and ( ),n nO H ∆ , we immediately have  

( ) ( )ˆ a.s 1n nm x uψ≤ ∆ ≤  

setting  

( ) ( )( ) ( ) ( )( ) ( )
2 2

ˆ ˆ d ,
iN j n j j n jV m x m x m x m x F x i r= − − − →∫       (20) 

these therefore result to  

( )
( ){ }
( ){ } ( )

2 2

2 4 4

4

| , , 0

| , , 32

i

i

i

N n

N i i

N i i n

V C

E V y x i s

E V y x i s C

≤ + ∆

∈ =

∈ ≤ + ∆

               (21) 

note that ( )ˆ nm x  is independent of ( ), ,i iy x i r∈ , and completely determined 
by ( ), ,i iy x i s∈ . Now apply Bernstein’s inequality (Lemma A, Section 2.5.4) of 
[28] and get  

( )

( ) ( )

2

4 4 2 2

1 | , ,

2exp
264 4
3

jN i i
j r

n

n n

Pr V y x i s
N n

N

C C

δ

δ

δ

∈

 
> ∈  − 

 
 

≤ − 
 + ∆ + + ∆
 

∑

            (22) 

Now the results follow as n∆ →∞  and therefore 4
n∆  dominates the deno-

minator of the exponent for N large enough and as N n−  coincides asymptotically  

with ( )1 Nπ− . Moreover, as 
1
4

4,n
n

No n
 

∆ = →∞   ∆ 
, that is, the right hand side 

of the inequality converges to zero (taking limits as n∆ →∞ ).  

3.2. Asymptotic Consistency 

Theorem 3.3. If (A1)-(A8) are satisfied and if the activation function ( )uψ  is 
Lipschits continuous and strictly increasing and also Theorem 1 holds, then the 
neural network estimate N̂NT  of the population total T given by 6 with  

( ) ( )ˆˆ ,n nm x f x θ=  and n̂θ  given by [8] is consistent in the following sense.  

( )

1 ˆ 0

, 0,1

NNT T in probability
N

nwhere N n with
N

π

− →

→∞ → ∈
                (23) 

provided that the number nH  and the bound n∆  of the network weights sa-
tisfy ,n nH ∆ →∞  such that  

( )
( )

1
4

4 log
log

n

n n

n n

o n

H n o n
H n o α

 
∆ =   

 
∆ =

= ∆

                        (24) 
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where α  determines (by A1) how fast the tail probability of the iε  and iy  
decreases. [19] showed that, the appropriate choice for n∆  is such that n∆ →∞   

as n →∞  and 
1
4

n o n
 

∆ =   
 

, i.e. 
1
4 0nn ∆ →  as n →∞   

Proof.  

( )( )

( ) ( )( )

( ) ( )

( ) ( )( )2

1 1ˆ ˆ

1 ˆ

1 1ˆ

1 1ˆ

NN j n j
j r

j n j j
j r

j n j j
j r

j n j j
j r

T T y m x
N N

m x m x
N

N nm x m x
N N N n

N nm x m x
N N N n

ε

ε

ε

∈

∈

∈

∈

− = −

= − +

−
≤ − +

−

−
− +

−

∑

∑

∑

∑

        (25) 

by Jensen’s inequality. 
Now the last term converges to  

( ) ( )1 1j j
j r

N n E
N N n

ε π ε
∈

−
= −

− ∑  

where ( ) ( )1 0jEπ ε− =  since ( ) 0jE ε =  by law of large numbers. The first 
term of 25 decomposes into  

( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

2 2

2

1 ˆ ˆ d

ˆ d

j n j j n j
j r

j n j

N n m x m x m x m x F x
N N n
N n m x m x F x

N

∈

 −
− − − − 

−
+ −

∑ ∫

∫
   (26) 

The right hand terms of 26 converge to 0 by Theorem 1 and as 1N n
N

π−
→ − . 

The proof is completed by using Theorem 2 to cope with left hand terms 

where we drop the factor 
N n

N
−

 converges to 1 π−  anyhow.  

( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ( )

2 2

2 2

1 2 4

1 ˆ ˆ d

1 ˆ ˆ d | , ,

exp 0 0 as ,

j n j j n j
j r

j n j j n j i i
j r

n
n

Pr m x m x m x m x F x
N n

E Pr m x m x m x m x F x y x i s
N n

Nd d n

δ

δ

δ δ

∈

∈

 
− − − >  − 

   = − − − > ∈  
−    

  ≤ − → ∀ > →∞ ∆ →∞ 
∆  

∑ ∫

∑ ∫  (27) 

hence the proof.  

3.3. Mean Squared Error 

Mean Squared Error is used to measure the accuracy of the estimator among 
other measures of performance. The MSE is defined by ( )2

NNE T T−  where T 
denotes the true population total. To estimate ( )2

NNE T T− , first, we consider  
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( ) ( ) ( )( )

( ) ( ) ( )( ) ( )

( )
( ) ( ) ( ) ( ) ( )
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1 1
1 1 1

22
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1 1 1
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1 1
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= = + = +

+
= = + = +

= = +

     − = − +      
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−
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−

∑ ∑ ∑

∑ ∑ ∑
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( ) ( ) ( ){ } ( )

2

2 2 11 | ,

i

D
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N

ff E T D X E T var
H N

ε

τ
ε

  −  +     
−
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 (28) 

where the ( )1 , ,n Nj x xX
+= �  is a set of unsampled auxiliary units. kT  denotes the 

total of the unsampled elements and ( ) ( )1
N

k j nE T m x
= +

= ∑ . 
The last approximation of Equation (28) follows from Equation (15) of [30], 

that is  

( ) ( ) ( )
2 2

1 1

1 ˆ , 1 | ,
H N

D
k j

i j n
E m x f E T D X

HN H
τ

θ
= = +

 
− − ≈ 

 
∑ ∑  

for some positive constant 2
Dτ .  

The term ( ) ( )| ,k j kE T D X E T−  is the predictor bias due to randomness or 
sampling bias of D. Now from Equation (28), we have  

( ) ( ) ( )( ){ } ( )
2 22 2ˆ 11 | ,D

NN k j k i
fE T T E f E E T D X E T var

H N
τ

ε
  −

− = + − − + 
 

 (29) 

As noted in [30], the quantity 2
Dτ  can be estimated by batch method. There-

fore,  

( )22
,

1

ˆˆ
1

r

D NN t NN
t

s T T
r

τ
=

= −
− ∑                     (30) 

for details see [30]. Equation (30) can be substituted in 29 in lieu of ( )2
DE τ . 

Now, under the assumption that the ( )~i t v
ε
σ

, then the estimate of ( )ivar ε  

is given as 

( ) 2

1

1ˆ ˆ
2

H

i i
i

vvar
v H

ε σ
=

=
− ∑                      (31) 

Under the assumption that the population is made up of exact copies of the 
sampled (training) data, we have ( ) ( ) ˆ| ,k j kE T D X E T T T− −  where T̂  the 
fitted sample totals and  

( ) ( )
2

2

1

ˆ ˆ ˆ
n

i i
i

E T T Varε ε
=

 − = = 
 
∑                  (32) 

Under the true model, we have ( ) ( )î iVar varε ε= . Hence the  
( )( ){ }2

| ,k j kE E T D X E T−  can be estimated by 

( )2 1ˆ ˆ iBias var
n

ε=                        (33) 
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Thus, ( )2
NNE T T−  can be estimated by  

( ) ( ) ( )

( )

2
2 2

2

ˆ 1ˆ ˆ ˆ1

ˆ 1 ˆ=

D
NN i

D
i

fE T T f Bias var
H N

f var
H n

τ
ε

τ
ε

−
− = + − +

−
+

          (34) 

As H →∞  Equation (34) reduces to  

( ) ( )2 1ˆ ˆNN i
fE T T var

n
ε−

− =                   (35) 

4. Empirical Results 

To illustrate our estimation approach, the following data will be utilized. A pop-
ulation of size 188 will be obtained from the United Nations Development Pro-
gramme 2020 report. The UN studied the development in 1889 countries. It 
grouped development in the countries as either very high human development, 
high human development, medium human development or low human devel-
opment. Kenya was classified in countries that fall under medium development 
and ranked number 143 among the 188 countries studied. The UN study used 
attributes such as Human Development Index (HDI), Life expectancy at Birth, 
Expected years of schooling, Mean years of schooling, Gross national income 
(GNI) per capita and GNI per capita rank minus HDI to rank human develop-
ment index in the 189 countries. In this study, a relationship between Human 
Development Index (HDI) which is considered as the survey variable and the 
auxiliary variables; Life expectancy at Birth, Expected years of schooling, Mean 
years of schooling and Gross National Income (GNI) per capita is considered. 

In order to understand how the proposed estimator compares against other 
existing non-parametric regression estimators, we compared the performance of 
our estimator to that of identified estimators based on Multivariate Additive Re-
gression Splines (MARS), Generalized Additive Models (GAM) and Local poly-
nomial (LP) which can handle high dimensional data. We compare the perfor-
mance of the proposed estimator of the population totals, with L̂PT , M̂ARST , 

ĜAMT  and ŜAMT , using the bias, mean squared error (MSE), mean absolute error 
(MAE), and mean absolute percentage error (MAPE). 

The unconditional results for the estimators were computed that are used in 
the analysis that acts as performance indicators of the estimators. The results in-
clude; Bias, Mean Square Error (MSE), Mean Absolute Error (MAE) and mean 
absolute percentage error (MAPE) respectively. These criteria are defined as fol-
lows; Bias of a Population total estimator refers to the deviation of the expected 
value of the estimator from the true Total value. Table 1 provides the results for 
performance of the estimators when applied to the data obtained from the 
United Nations Development Programme 2020 report. All of the population to-
tal estimators considered here are biased but comparatively NNT  exhibits a 
smaller bias. NNT  can be seen to be a very efficient estimator of the finite popu-
lation total since it has smaller RMSE, followed closely by LPT  and MARST . 

GAMT  proved to be a very inefficient estimator of all other estimators. 
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Table 1. Unconditional bias, mean square error, relative root mean square error, mean 
absolute error and mean absolute percentage error for real data set. 

  Bias MSE RMSE MAE MAPE 

n = 50 

N̂NT  0.0289 0.0013 0.0023 0.0001 0.0132 

M̂ARST  0.0541 0.0046 0.0043 0.0003 0.0346 

ĜAMT  0.0580 0.0052 0.0046 0.0004 0.0371 

L̂PT  0.0331 0.0017 0.0026 0.0002 0.0211 

n = 100 

N̂NT  0.0145 0.0003 0.0012 0.0001 0.0103 

M̂ARST  0.0279 0.0012 0.0022 0.0002 0.0178 

ĜAMT  0.0319 0.0016 0.0025 0.0002 0.0204 

L̂PT  0.0184 0.0005 0.0015 0.0001 0.0118 

 
The conditional performance of the estimator was done and compared with 

the performance of other existing population total estimators. To do this, 500 
random samples, all of sizes 100 and 50, were selected and the mean of the aux-
iliary values xi was computed for each sample to obtain 200 values of X . These 
sample means were then sorted in ascending order and further grouped into 
clusters of size 20 such that a total of 25 groups was realized. Further, group 
means of the means of auxiliary variables were calculated to get X . Empirical 
means and biases were then computed for all the estimators NNT , LPT , MARST  
and GAMT . The conditional biases were plotted against X  to provide a good 
understanding of the pattern generated. Figure 1 and Figure 2 show the beha-
vior of the conditional biases, relative absolute biases and mean squared error 
realized by all the estimators based on the real data set. 

In most cases, there are significant differences among the bias characteristics 
of the various estimators. A detailed examination of the plots reveals that NNT  
has lower levels of bias followed by LPT  as indicated by the proximity of plotted 
curves to the horizontal (no bias) line at 0:0 on the vertical axis. Interestingly, 
despite the rather entangled nature of some of the plots, estimator NNT  emerges 
clearly as the least biased for nearly every group means of the means of auxiliary 
variables.  

Plots of Conditional MSE versus group means of the means of auxiliary va-
riables similarly reveal coincident behavior for the estimators. NNT  and LPT  
produce generally the lowest MSE values. In particular, NNT  yields the lowest 
MSE in most cases among all other estimators. NNT  is consistently better than 
all other estimators for both bias and MSE. All of these estimators are asymptot-
ically unbiased and they all exhibit MSE consistency in that the MSE values tend 
toward zero as sample size increases. From the plots it can be seen that NNT  and 

LPT  performed equally better than all other estimators of the true population 
total functions. 
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Figure 1. Conditional bias, mean square error, relative root mean square error and mean absolute error based on real data with a 
sample size of 100. 
 

 
Figure 2. Conditional bias, mean square error, relative root mean square error and mean absolute error based on real data with a 
sample size of 50. 

5. Conclusion and Recommendations 

In this paper, an estimator for Finite Population Total has been developed by 
employing a Feed Forward Back Propagation Neural Network technique in 
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Non-parametric Regression. Asymptotic properties such as the Consistency and 
Mean Squared Error for the developed estimator have also been derived. When 
applied to dataset obtained from the United Nations Development Programme 
2020 report, the findings indicate that the proposed estimator has the lowest bias 
and root mean square error values compared to other existing estimators. The 
developed estimator is considered to be effective in addressing the curse of di-
mensionality that makes Local Polynomials and Kernel Estimators ineffective 
when dealing with High Dimensional Data. It should be noted that the proposed 
estimator has been considered in the case of Simple Random Sampling Without 
Replacement (SRSWoR). An extension to other sampling techniques such Strati-
fication may be done since they rely on SRSWoR, and it is hypothesised that ef-
ficiency will be improved compared to other existing estimators in literature. 
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