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Abstract 
Genetic association studies usually apply the simple chi-square (χ2)-test for 
testing association between a single-nucleotide polymorphism (SNP) and a 
particular phenotype, assuming the genotypes and phenotypes are indepen-
dent. So, the conventional χ2-test does not consider the increased risk of an 
individual carrying the increasing number of disease responsible allele (a par-
ticular genotype). But, the association tests should be performed with the 
consideration of this disease risk according to the mode of inheritance (addi-
tive, dominant, recessive). Practical demonstration of the two possible me-
thods for considering such order or trends in contingency tables of genetic 
association studies using SNP genotype data is the purpose of this paper. One 
method is by pooling the genotypes, and the other is scoring the individual 
genotypes, based on the disease risk according to the inheritance pattern. The 
results show that the p-values obtained from both the methods are similar for 
the dominant and recessive models. The other important features of the me-
thods were also extracted using the SNP genotype data for different inherit-
ance patterns. 
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1. Introduction 

The disease aetiology has been well understood from the blessings of the ge-
nome-wide association study (GWAS). GWAS detects the association between 
genetic variants and disease traits using samples from a given population. The 
findings of GWAS data have opened a new clinical insight. This leads to novel 
bioinformatic advances in processing and interpreting GWAS summary data 
that enabled the detection of novel disease variants and gene loci [1]-[8]. 
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Testing association is a crucial part of GWAS as the positive genes are re-
ported from this inferential procedure in a case-control study design. The con-
tingency table tests for individual single-nucleotide polymorphism (SNP) are 
carried out here, where, the individual genotype counts are handled with the 
phenotype (case-control) [3] [5] [6] [9] [10] [11] [12]. Generally, the two de-
grees of freedom (d.f.) simple chi-square (χ2)-test is applied for the contingency 
table for testing association [13]. 

But, this conventional χ2-test does not consider risk of developing disease for 
carrying a particular genotype. That is, instead of assuming that the conditional 
probability of being affected with disease having a specific genotype, an inde-
pendence association between the genotype and phenotype is assumed. For this 
independence assumption, the simple χ2-test has no logic of ordering or trend of 
genotype based on the disease risk. Because, different people having different 
genotype combinations will produce varying risks of developing a particular 
disease as frequency of risk allele will differ with respect to the difference of ge-
notype. 

Defining the penetrance function is the way to model the relationship between 
SNPs and disease risk by considering such order [14] [15] [16]. This function 
measures the probability for occurring a particular phenotype for a given geno-
type [11] [12] [17] [18]. For each inheritance pattern (recessive, dominant, addi-
tive), the penetrance can be defined by a mathematical model [10] [11] [17]. 

There are two ways to include this trend or order of genotypes in the contin-
gency table. One is to rearrange or pool of genotype counts of the table with the 
consideration of alternative model of penetrance [12] [19], and the other is ap-
plied by specifying a score vector for each of the models. 

The main objective of this paper is to demonstrate a practical application of 
the two different ways of considering the order or the trend of the genotypes in 
GWAS association tests for SNP genotype deoxyribonucleic acid (DNA) sequenc-
ing data. 

The organization of this paper is as follows. Section 2 presents how the SNP 
genotype data can be organized in a contingency table. Different ways of testing 
association for both the ordered and unordered genotype data are outlined in 
Section 3. The description of the genotype data used in this analysis is provided 
in Section 4. Section 5 presents the results obtained from the analysis of SNP 
genotype data using the tests described in Section 3. Finally, some concluding 
remarks are given in Section 6. 

2. Tabular Presentation of SNP Genotype Data: Contingency 
Table 

The contingency table is the most popular tabular method for presenting the 
genotype data obtained from a case-control study. For any SNP, the data can be 
summarized in a 2 × 3 contingency table as in Table 1. Assume that, “M” and 
“m” are the two alleles for a SNP. The generated data consist of six counts of the 

https://doi.org/10.4236/ojs.2022.124031


T. Basak 
 

 

DOI: 10.4236/ojs.2022.124031 523 Open Journal of Statistics 
 

numbers of genotypes (M/M, M/m and m/m) in a case control study, where, n1, 
n2, n3, n4, n5, n6 are the genotype counts observed in the cases and controls, re-
spectively. Here, sample size (table sum) =N, total of cases = ncases, total of con-
trols = ncontrols and the total number of M/M genotypes observed is nM/M and so 
on. Thus, Table 1 is a tabular presentation of the genotype data with the binary 
status of any particular phenotype (case-control: disease status) [11]. 

 
Table 1. Contingency table for any SNP (For “M” and “m” alleles). 

 M/M M/m m/m 

Cases n1 n2 n3 

Controls n4 n5 n6 

3. Contingency Table Analysis 
3.1. Testing for the Unordered Genotypes 

The 2 × 3 contingency table of genotype counts (Table 1) can be directly ana-
lyzed by a statistical test that is applied to sets of categorical data to evaluate how 
likely it is that any observed difference between the sets arose by chance. This 
observed-expected test statistic has a chi-squared χ2-distribution with two (2) d.f. 
[13] [20]. 

This χ2-statistic tests for the deviations from the expected values across cells of 
the table. Here, the comparison is made between the observed values of a partic-
ular genotype with its expected values. For example, the observed value for M/M 
genotype in cases ( 1 1O n= ) is compared with its expected value given the total 
number of cases (ncases) and the total number of M/M genotypes, and hence, 

1 cases /M ME n n N= . Now, the test statistic is, 

( )2
2

1
i

n i i
i

O E
E

χ
=

−
= ∑                       (1) 

The statistic in Equation (1) follows χ2-distribution with 2 d.f., where, 
1, 2,3, 4,5,6n =  presents the number of cells in the table (Table 1). The test sta-

tistic defines (Equation (1)) the summation over all the six cells of the table, 
where, Oi represents the observed cell counts for each of the six cells: n1, n2, n3, 
n4, n5, n6. Here, under the null hypothesis of no association, the test statistic 
compares the observed number of M/M genotypes in cases with the corres-
ponding expected assuming that the relative allele (or genotype frequencies) to 
be the same in case and control groups for the M/M genotype [4] [20]. 

Usually GWAS emphasis on the associations between single SNP and a trait 
viz. major human diseases. The association study includes 2× 3 contingency ta-
ble (Table 1) tests by the simple χ2-test (Equation (1)) [13] for each of the SNP 
for a gene. A gene is reported as associated with a particular phenotype if any of 
the SNPs of the gene is significant in comparison of the test p-values with the 
GWAS threshold, 085 10p −= ×  [9]. 
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3.2. Testing for the Ordered Genotypes 

Pooling the genotype counts: For dominant and recessive models 
The concept of ordering genotypes based on the disease risk is not considered 

in the above χ2-test (Section 3.1). The disease risk for an individual is defined 
from the genotype or allele at a specific marker. In the above χ2-test, the inde-
pendence between the binary phenotype and the individual genotypes was as-
sumed. But, in practice, the risk of developing a particular disease for each per-
son is not the same as different person have different genotype combination, 
where the frequency of the disease responsible allele would not be the similar. 

This order or trend of genotypes can be included in the association tests of 
contingency tables by specifying the disease penetrance with respect to a pene-
trance model. Rearrangement or pooling of the genotype counts is one way to 
consider this order in association studies [19]. 

The full genotype table for a general genetic model provides the unordered 
genotype counts for a single SNP (Table 1). Let us demonstrate how to include 
the concept of penetrance by rearranging the counts of Table 1, which specifies 
a genetic model at prior, where, “m” is the disease responsible allele. 

If the hypothesis is, carrying any number of copies of allele “m” increases the 
disease risk, then the assumed model is dominant. This implies that one or two 
copies of disease responsible allele are required to increase the risk of an indi-
vidual. Hence, the counts for the M/m and m/m genotypes are to be pooled in 
Table 1, and thus produce a 2 × 2 table of genotype counts for the dominant 
model (Table 2). 

 
Table 2. For the dominant genetic model (M/M versus both M/m and m/m combined). 

 M/M M/m + m/m 

Cases n1 n2 + n3 

Controls n4 n5 + n6 
 

On the other hand, if the hypothesis is, carrying two copies of disease respon-
sible allele “m” increases the disease risk for an individual, then the assumed 
model is recessive. So, the counts for the M/M and M/m genotypes are to be 
pooled in Table 1, and thus produce a 2 × 2 table of genotype counts for the re-
cessive model (Table 3). 

 
Table 3. For the recessive genetic model (m/m versus both M/M and M/m combined). 

 M/M + M/m m/m 

Cases n1 + n2 n3 

Controls n4 + n5 n6 
 

A χ2-test with one (1) d.f. is used for these 2 × 2 tables (Table 2 and Table 3) 
of case-control allele counts, which is the widely used allelic association test. 
This 1 d.f. allelic test is more powerful than the genotypic test with 2 d.f. (Section 
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3.1), under certain conditions of the penetrance parameter [19] [20]. 
Association testing based on the allelic counts gives an alternative method in 

case-control association studies. This approach splits the genotypes and hence 
compares the total number of M and m alleles in cases and controls, regardless 
of the genotypes from which these alleles are being counted [19] [20]. 

Using score vectors: For dominant, recessive and additive models 
The trend of disease risk can be quantified using the penetrance models of ad-

ditive, dominant and recessive, according to number of increase of disease re-
sponsible alleles [19] [20] [21]. The association of trends is tested by the Coch-
ran-Armitage trend test. This trend test leads the χ2-test to the comparatively 
narrower alternatives [19] [22] [23]. Here, the trend or ordering of genotype is 
implemented by specifying a score vector for each of the models. The scores are 
to be chosen to construct this trend test. Let us represent Table 1 as in the form 
of Table 4, for the notational convenience of defining the Cochran-Armitage 
trend test statistic with the scores for each of the genotypes. 

 
Table 4. Scores assigned for each of the genotypes in a contingency table for any SNP. 

 
Genotypes 

Total 
M/M M/m m/m 

Cases n10 n11 n12 N1 

Controls n00 n01 n02 N0 

Total N+0 N+1 N+2 N 

Scores x0 x1 x2  

 
For testing association of the contingency table (Table 4), the Armitage’s 

trend test statistic is [22], 

( )
( ){ }

2
1 12

A 22
1 0

j j j j

j j j j

N N n x N N x

N N N N x N x
χ +

+ +

−
=

−

∑ ∑
∑ ∑

               (2) 

The statistic in Equation (2) is approximately distributed as χ2 with 1 d.f., and 
the validity of the test will not be affected regardless the choice of the scoring 
system. 

For defining the values of the score vector for different models (additive, do-
minant and recessive), the disease penetrance associated with a given genotype 
are to be considered by defining a probabilistic function [11] [17] [18]. This 
function provides an approach to define an appropriate model from the rela-
tionship between a particular SNP, and the disease risk by considering the trend 
or order of the genotype [12] [14] [15] [16]. 

It is known that the risk of developing disease for an individual increases for 
having any number of copies or two copies of disease responsible allele, for the 
case of dominant or recessive inheritance pattern. For additive genetic model, 
the risk have a clear linear trend with the increased number of disease responsi-
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ble allele. For example, the risk for the M/m genotypes is approximately half that 
for the m/m. 

Hence, for a penetrance parameter γ (γ > 1), the risk of an individual carrying 
a particular genotype (or number of the disease responsible allele) for the three 
genetic models can be rephrased. For an γ-fold increase in individual’s disease 
risk one or two copies of “m” allele are required for a dominant model, and two 
copies of “m” allele are required for a recessive model. An additive model as-
sumes γ-fold increase for the genotype M/m and 2γ-fold for the genotype m/m 
[10] [19] [20] [21]. 

The three common choices for the scoring system with the reference of the 
model definition as given above in terms of the penetrance parameter (γ) are: 
Additive score: 0 0x = , 1 1x = , 2 2x = ; Dominant score: 0 0x = , 1 1x = , 

2 1x =  and recessive score: 0 0x = , 1 0x = , 2 1x = . 

4. Genotype Data Preparation 

First, the SNP genotype data for single SNP was generated via computer simula-
tion in R programming language for 3,000 individuals. Individuals were then as-
signed at random to the cases and controls with the equal probabilities of cases 
and controls: (0.5, 0.5) (Data 1). Then, another data for each of the gene was 
generated through the simulation in R for the same number of individuals with 
the random assignment of the equal probabilities to the cases and controls as for 
Data 1 (Data 2). 

5. Application to Genotype Data: For Single SNP 
5.1. For Unordered Genotypes 

The following 2 × 3 contingency table (Genotype Table 1) is presenting geno-
type counts for a randomly selected gene with single SNP, constructed from Da-
ta 1 (Section 4). 

 
Genotype Table 1. For single SNP (“m” is disease responsible allele). 

 M/M M/m m/m 

Cases 578 278 606 

Controls 774 314 450 

 
Testing association for the null hypothesis of no association using the 2 d.f. 

χ2-test (Section 3.1) for Genotype Table 1, produces the p-value = 5.769914 × 
10−12. Hence, this SNP is significant as compared with the GWAS threshold, 

085 10p −= ×  [9]. 

5.2. For Ordered Genotypes 

Using pooling for dominant and recessive models 
In order to include the ordering of the genotypes in association tests for the 
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genetic models dominant and recessive, respectively, the counts of the columns 
of Genotype Table 1 are rearranged (Genotype Table 2 and Genotype Table 3) 
according the definition given in Section 3.2. 

 
Genotype Table 2. For the dominant genetic model. 

 M/M M/m + m/m 

Cases 578 884 

Controls 774 764 

 
Genotype Table 3. For the recessive genetic model. 

 M/M + M/m m/m 

Cases 856 606 

Controls 1088 450 

 
The 1 d.f. χ2-tests are applied for testing association of the above two tables 

(Genotype Table 2 and Genotype Table 3), and the recorded p-values are 
summarized in Table 5. 

Setting score vectors of penetrance models 
Assigning score vectors according to the mode of inheritance is the alternative 

way to include the trend in association testing (Genotype Table 4). The Coch-
ran-Armitage trend test is applied here for testing genetic association (Section 3.2). 

 
Genotype Table 4. Scoring genotypes. 

 M/M M/m m/m 

Cases 578 278 606 

Controls 774 314 450 

Scores (Additive) 0 1 2 

Scores (Dominant) 0 1 1 

Scores (Recessive) 0 0 1 

 
The p-values obtained from these tests are summarized in Table 5 along with 

the p-values from the above tests of pooling genotypes. 
 

Table 5. The p-values from the pooling and scoring tests of trend for single SNP. 

Models 
Tests 

Using pooled genotypes Using score vectors 

Scores (Dominant) 3.625972 × 10−09 2.900783 × 10−09 

Scores (Recessive) 3.646926 × 10−12 2.779008 × 10−12 

Scores (Additive)  1.598713 × 10−12 

p-value ( 2
2χ ) = 5.769914 × 10−12 
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The SNP is significant for all the cases shown in Table 5 as compared with the 
GWAS threshold of 085 10p −= × . But, different p-values are producing for all 
the cases. As trends are considering in both methods such as polling genotypes 
and the score vector cases, the dominant model tests are producing almost similar 
p-values. The scenarios are the same for the recessive model. The p-value from 
the test for the unordered genotypes ( 2

2χ ) is the most different from the model 
tests for trend. Overall, the p-values from the recessive model tests are smaller 
for the scoring case, and the Cochran-Armitage trend test for the additive model 
is giving smallest p-value among all the tests. 

5.3. Features for the Genes with Multiple SNPs 

To extract the gene wise features of the two ways (pooled; scoring), the domi-
nant and recessive models were applied for the genotype data (Data 2). Three 
genes having multiple SNPs were selected randomly from Data 2 (Section 4). 
There are 3, 5 and 1,000 SNPs in the selected 3 genes, GENE1, GENE2 and 
GENE3, respectively. Individual SNP tests were performed for each of the three 
genes using 1 d.f. tests by considering both of the above mentioned methods that 
is pooling the genotypes and assigning the score vectors for the genotypes ac-
cording to the definition of the dominant and recessive models, respectively. The 
p-values for GENE1 and GENE2 are shown in Table 6. 

 
Table 6. The p-values for the two genes with 3 and 5 SNPs from the pooling and scoring 
tests of trend. 

Models 

GENE1 GENE2 

Tests Tests 

Using pooled 
genotypes 

Using score 
vectors 

Using pooled 
genotypes 

Using score 
vectors 

Dominant 

3.766438 × 10−11 2.936793 × 10−11 2.907425 × 10−07 2.391704 × 10−07 

1.919598 × 10−06 1.599422 × 10−06 5.427484 × 10−10 4.294702 × 10−10 

6.438253 × 10−08 5.242511 × 10−08 7.449102 × 10−04 6.512162 × 10−04 

  3.792536 × 10−09 3.032072 × 10−09 

  2.135144 × 10−07 1.751733 × 10−07 

Recessive 

2.376526 × 10−11 1.830878 × 10−11 1.008278 × 10−09 7.920639 × 10−10 

3.033727 × 10−07 2.476262 × 10−07 7.357196 × 10−14 5.489098 × 10−14 

7.558394 × 10−08 6.103088 × 10−08 2.458697 × 10−05 2.073627 × 10−05 

  4.959689 × 10−11 3.840915 × 10−11 

  3.488981 × 10−09 2.763850 × 10−09 

 
From Table 6, it is observed that the obtained p-values from both of the me-

thods are almost similar for the dominant model for the two genes having mul-
tiple SNPs. This scenario is also same for the recessive model. Generally, the 
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p-values from the recessive model tests are smaller for the scored vector case for 
both of the two genes. 

Gene wise features for the methods were also investigated for the GENE3 that 
has huge numbers of SNPs (1000). The p-values from this investigation are pre-
sented in Figure 1. Here, the p-values are plotted in the negative-log-transformed 
scale (−log10(p)). The p-values obtained from the two methods are plotted in the 
two panels of Figure 1, where, Figure 1(a) for the dominant model and Figure 
1(b) for the recessive model. 

 

 
Figure 1. The plot of the p-values obtained from the tests using pooled genotypes along 
with the tests using score vectors for GENE3 having 1000 SNPs. (a) Dominant model. (b) 
Recessive model. 

 
From the Figure 1, it is observed that each of the two panels is showing al-

most straight lines. Hence, the p-values obtained from two methods for each 
model are nearly similar having almost perfect positive relation. This feature is 
the same as observed for the GENE1, GENE2 (Table 6), and also for the single 
SNP cases (Table 5). 

6. Conclusion 

This paper presents the possible ways of considering genotype ordering in con-
tingency table tests of genetic association by applying trend test. Though, this 
research used simulated genotype data, but, the methods could also be applied 
for the real genotype data. As the basic structure of the simulated and the real 
data are the same, so, the directions or pattern of the obtained results would be 
the same in both cases. Both the mathematical and practical demonstrations are 
provided here. Polling of the genotype counts and assigning the score of the ge-
notypes of a contingency table are two possible ways to consider the trend or 
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order of genotypes according to the mode of inheritance (additive, dominant, 
recessive). The dominant and recessive model tests can be performed in either 
way that is by pooling genotypes and using scoring of the genotypes. The addi-
tive model could be tested by the method of scoring genotypes. The results show 
that the two ways are producing almost similar p-values for the dominant and 
recessive cases regardless of the number of SNPs. 
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