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Abstract 
Once invertibility for a causal TARMA series is defined and accompanied by 
conditions on the probability parameters of the model, all focus concentrates 
on the maximum likelihood estimators. Under the coexistence of essential 
causality and invertibility, the estimators are shown to be convergent to the 
real values and asymptotically obedient to the Gaussian distribution: their va-
riance matrix identifies with a classic result. Some real-like examples are si-
mulated and simplification attempts include the derivation of the non-para- 
metric chi-square test extension for stationary TAR series. 
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1. Introduction 

The scientific progress, from defining a valid time series model to making it 
useful in practice, depends on the consolidation of inference results. With regard 
to the non-linear stationary time series, the general TARMA model ([1]) has re-
cently pledged an unprecedented flexibility: given the mild requirement to cate-
gorize the variables’ values, its competence to express any serial order condition-
al or joint probability dependence is unquestionable. So it will be the aim of this 
paper to bond the theoretical with the most deserving TARMA sample proper-
ties. Before that, a scent of other results and popular models in the field is of-
fered. 

The DARMA model undoubtedly triggered a significant number of scientists’ 
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interest for the discrete time series analysis: the reader may skim through [2] 
to get acquainted with the definition and some asymptotic properties. A recent 
fix to replication issues of the older model, can be discovered in [3]. Having to 
do with an additive model though, it should be crystal clear that its (and those 
pieces’ following it) simplicity and parsimony contribution to the discrete sta-
tionary series modelling, are due to its inarguable impairment to manage any 
better than the marginal and covariance dependence (which is not the case for 
the TARMA). 

A valuable equivalence has been established in the past between the analysis of 
Bernoulli variables and the strictly stationary series obeying any law ([4]): this 
saves the trouble of generalizing the Gaussian ARMA as in [5] for a family of in-
finitely divisible distributions. Nevertheless, most of the derivations concern the 
Gaussian stationarity, such as [6] who deals with the alternative (via 0 - 1) esti-
mation of autoregressive parameterizations: those binary data have traditionally 
benefited from a rich bibliography anyway. 

A promotion to the maximum likelihood estimation together with some solid 
statements can be found in [7], but the dense and short paper uses an approxi-
mation to the fixed Markovian or auto-regressive order; the inclusion of a mov-
ing-average part only presents itself with the Gaussian ARMA (1, 1) illustration, 
but it is exactly converting the AR to the ARMA that makes the problem chal-
lenging, ever more so when the distribution is not Gaussian. In the best estima-
tors’ properties department, it is worth reading [8] to view the well-known 
ARMA efficiency result. 

Notable attempts have taken place for count series as well; besides modelling 
as usual, [9] reproduced standard discrete-time renewal process inference re-
sults. In the other hand there are the INARMA models, for example, the INAR 
(1) (with random coefficient) asymptotic behaviour has been studied extensively 
by [10]. A recent review on the subject of count time series is [11]. One can al-
ways incorporate a count variable into a categorical one, encouraging the reader 
to elect the TARMA model as superior for the series stationarity. For bilinear 
models (and ‘any’-valued variables) there has been a plethora of inference results 
too. 

Though a distinction wall is often raised between the time series and the 
Markov chain schemes, the causal TAR model embodies the homogeneous Mar-
kov dependence attached to a unique stationary distribution. Hence, [12] were 
the original contributors for the sake of the Markov chain inference. Later, [13] 
restricted the derivations to two states basic chain dependence managing explicit 
efficiency-related results, when (for two parameters only) the inverse of a square 
matrix can be computed with ease. 

In this paper, the main objective is to perform the TARMA parameters infe-
rence, filling the gap of estimation for the infinite Markovian dependence: Sec-
tion 2 summarizes the TARMA definition together with some raw statements 
concerning the use of the model parameters for a stationary series. Then Section 
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3 newly defines the invertible TARMA series and Section 3.1 invents a condition 
that safeguards invertibility, using a parallel with the existing definition and 
condition for causality. Section 3.2 continues with the invertibility topic, deli-
vering news on the limit of probabilities based on a finite to the countably infi-
nite past. Then all Section 4 is to establish the two grand properties of the max-
imum likelihood estimators: the weak convergence to the parameters is in Sec-
tion 4.1, while Section 4.2 uses numerous lemmas and a theorem to conclude 
with the asymptotic normality, as this is explicitly stated in the beginning of Sec-
tion 6; there, the normally distributed estimator vector transforms to a chi- 
square statistic to test a null hypothesis on the specified TARMA model fitting 
stationarity. The purely theoretical presentations are quickly reminded (Sections 
2, 3), established (Sections 3, 4 and 6) or discussed (Section 6). In addition, the 
simulation Section 5 examines the performance of TARMA estimators (or how 
to compute the estimates) for small sample sizes, and returns favorable conclu-
sions as well. 

2. Reminders 

Previously in [1], a strictly stationary time series { },tX t∈  was considered: 
the variables can be of any (bounded or unbounded) range, which for the serial 
stationarity clothing must be assigned to ( )1k +  categories (for fixed k ∈ ) 
with conventional (or, natural, if that is the case) category codes, say, 0 and 

1, , 0kv v ≠ . The X-variables are built on a multivariate sequence of indepen-
dent in time and identically distributed ( )1 1p qk ++ ×  random vectors: for each 

( )1, , pi i=i  , ( )1, , qj j=j  , 1 1 1, , , , , 0, , ,p q ki i j j v v=   , a univariable  
( )|
tI i j  ( ( )|p q

t tI I≡
0 0 ) with same range as X is considered at time t, and marginally 

it has to hold ( ){ }| ~ IIDtI i j  with probabilities 
( ) ( )( ) ( ) ( )

1

| | |
1

0, , ,
0,1 , 0, , , , 1

k
x t k x

x v v
I x x v vπ π

=

= = ∈ = =∑i j i j i j




 

(and ( )|p q
x xπ π≡0 0 ). 

It is reminded that a multivariate IID time series is such that the random vec-
tors are independent in time only, or that any two univariables indexed at dif-
ferent times are independent: the variables’ dependence at the same time within 
the same vector will be referred to as interdependence with interindependence 
being a special case; hence the ( )|

xπ
i j  above are marginal probabilities that do 

not necessarily suffice to determine the joint dependence at the same timing. 
In the general setting, ( ){ }|

tI x=i j  will simplify to the event that the variable 
( )|
tI i j  belongs into the category with code 10, , , kx v v=  . The Markov chain 

terminology of a state space, say { }1: 0, , , kv v=   and ∈   will be avoided 
deliberately. Then the definition introduced in [1] is reminded here. 

For fixed 0,p q∈  (such that p q+ ∈ ), { },tX t∈  is a Table Auto- 
Regressive Moving-Average process of order ( ), ,k p q , and it is written  
{ } ( )~ TARMA , ,tX k p q , if (it is causal and invertible and) it holds that 
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( ) ( )( )1 1|
: , for every .t t p t t qX X I I

t tX I t− − − −= ∈
                (1) 

In explanation, tX  is set equal to a ( )...
tI  (at the original range); nevertheless, 

which I (out of the ( )1 p qk ++ ) contributes its value, depends on the previous 

1 1, , , , ,t t p t t qX X I I− − − −  , i.e., which category each one of these ( )p q+  varia-
ble realization falls into. 

As an example of a TARMA (1, 1), the real-valued variables may be catego-
rized into 1 3k + =  groups, say ( ], 3−∞ − , ( )3,3−  and [ )3,∞  with codes “-3”, 
“0” and “3”, respectively; then the (9 × 1) random vectors ( )|i j

tI ,  
, 3,0,3i j = −  are considered with fixed distribution for every t∈ , and then 

over time with ( )|i j
tI  being independent of ( )* *

*

|i j

t
I  for *t t≠ . The tX  is defined 

to be equal to ( )3| 3
tI − −  if both 1tX −  and ( )0|0

1tI −  are less than or equal to −3, or 
equal to ( )0| 3

tI −  if 13 3tX −− < <  and ( )0|0
1 3tI − ≤ − , or...., or equal to ( )3|3

tI  if both 

1tX −  and ( )0|0
1tI −  are greater than or equal to 3. 

Hopefully, the example above clarifies that it is not necessarily a count series 
that is under study. This is an ‘occurrence-not occurrence’ analysis of categorical 
variables and, for the serial evolution, it matters not whether tX  is set equal to 
the exact value or the relevant category code: it is a probability of occurrence 
analysis and it works subject to the categorization (together with k of course). 

Then (1) can be re-arranged as 

( ) ( )( ) ( ) ( )
1 1 1

|

, , , , , 0, , , 1 1

1

: ,

for 0, , , ,

l n
p q k

p q

x t x t i t l j t n
i i j j v v l n

k

f X f I f X f I

x v v

− −
= = =

=

=

∑ ∏ ∏i j

  



     (2) 

where for 1, 0, , , kx y v v=  , the index functions 

( )
( )
( )

* *
1

* *
1

*
0, , , ,

*
10, , , ,

1, if
0, if 0, , , ,

k

k

x v v x x
x

kx v v x x

y x y x
f y

y v v y xx x
= ≠

= ≠

− =
= =  = ≠− 

∏
∏







 
have been set. 

For (2) to hold for every t∈ , at the very least the assumption of uniqueness 
of a stationary distribution solution should be applicable; in fact, { },tX t∈  
should not be considered at all, unless it is a (table) causal process (based on 
{ }tI ) according to the definition in [1]. The causality element will be revisited 
here together with the new element of invertibility. 

Since the definition of this model has been the focus of past work, the reader 
is encouraged to look for examples and form a clearer picture from there ([1]). 
The understanding and appreciation of the TARMA definition must have al-
ready taken place to proceed with this paper’s inference related goals. For the 
reader that wishes to derive the auto-covariance function of TARMA series, it is 
highlighted that the second moments stationarity is a special case of the all mo-
ments stationarity: the work of [1] has handed over a methodology to compute 
all joint probabilities, and hence the auto-covariance function is a special case, as 
it demands the joint probabilities of two variables. Not only are those derivations 
outside the scope of this paper, but also taming the all- rather than just second- 
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order stationarity is the great TARMA contribution over other models. 
From this point on, it will be taken for granted (and without a formal proof) 

that the TARMA construction may represent any strictly stationary time series, 
particularly under the convention- if there needs to be one- of tabulating the va-
riables’ values. Together with a solution on identification (of k and p, q) issues, 
the TARMA theory is a contribution to the non-parametric version of statistical 
science. When 0q =  the dependence is pth order Markovian, while for 1q ≥  
a valid Markovian dependence of infinite order is achieved; when 0p = , a 
q-dependent strictly stationary series is concerned, and the joint dependence 
limits to infinity for 1p ≥ . Hence it will be considered ([1]) that, subject to the 
categorization, the TARMA can be the all-moments stationary analogue to the 
ARMA model for the covariance stationary series. 

Some Basic Requirements 

The probabilities π  will be taking the role of parameters of the model, for 
which the estimation results will be established. The conditions in [1] are re-
membered: 

(C1): ( ){ }| ,tI t∈i j   are jointly interindependent series, i.e., it holds that 

( ) ( )( ) ( )( )1 1 | ||
1

1
, , ,n n m m

n

t t n t m
m

I x I x I x t
=

= = = = ∈∏i j i ji j
  

 
for any ( )2, , 1 p qn k += + , ( ) ( ),1 , ,1 ,, , , , , ,m m m m p m m qi i j j=i j   ,  

,1 , ,1 , 1, , , , , 0, , ,m m p m m q ki i j j v v=   , 1, ,m n=  , ( ) ( )1 1 2 2
, ,m m m m≠i j i j ,  

1 2, 1, ,m m n=   ( 1 2m m≠ ) and 1 1, , 0, , ,n kx x v v=  . 
Condition (C1) enforces the ( )...

tI  variables (at the same time t) to be inde-
pendent: otherwise, the form of their interdependence should accompany (1), in 
order to properly define a TARMA process. Under an interdependence scenario, 
the computation of all joint TARMA probabilities heavily relies on 

( ) ( )( ) ( )* | |
| 1: | , , 0, , , , ,x y t t k p qI x I y x y v vπ += = = = ≠i j i j i j 0

 
(as well as π ) according to [1]. Hence in this case, *π  are also parameters 

for an apposite TARMA definition. 
In the absence of (C1), an “h to h + 1” way to plex the interdependence may 

work by first considering xπ  and then gradually building for 1, ,n p q= +  
and every 1, , 1, ,nl l p q= +   ( 1 nl l< < ), 

1 1, , , ,
nl l ki i v v=  , the condi-

tional probabilities ( )11 1 | ,l l l p q ln ni i
t n tI x I x− + − = = 

 


 0 0 : “” in the condition 

sets all 
* * * *11 1 * *l l l p q l

n n
i i

tI
− + −

 
 
 
 

0 0

, * 1, , 1n n= − , *
* *
1 1, , , , nn
l l l l=   ( *

* *
1 n
l l< < ). 

That way one gets a feel of how (C1) can be replaced, especially when other 
attributes need to be accomplished. 

Other conditions in [1] are listed below: 
(C2): { },tX t∈  is not a deterministic process, i.e., 

( ) ( )1 1 2 2| , , 0,1t t tX x X x X x− −= = = ∈  
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for all 1 ,, 0, ,n kx v vx =  , n∈ . 
(C3): { },tX t∈  is not overparameterized, i.e., in the simplest of cases, it 

cannot be that ( ) ( )| |
x xπ π ′ ′=i j i j , 10, , , kx v v=   for ( ) ( ), ,′ ′≠i j i j . 

It would be misleading that the process { }tX  is of order ( ),p q  with  
( )1k +  categories, when in fact there are fewer parameters that are active (due 
to identical distributions), so this is preserved by (C3): the reader may reflect 
on the extreme example that all distributions are identical and { }tX  is in fact 
an IID process! Nevertheless, the usual (opposite) notion that the different 
I-distributions should be as alike as possible, will be fundamental for the process 
validity according to other conditions (causality/invertibility) as in the next section. 

Finally, it is stressed that the assumption of a convoluted multivariate IID 
time series, which is attached to the definition of the TARMA, is the necessary 
block for the inference that will be presented in this paper, the same way that the 
univariate error IID series is for the well-known ARMA. 

3. Invertibility 

In [1], the process { },tX t∈  was called table causal (based on { },tI t∈ ) 
also implying that it is strictly stationary. After setting 

( )

( ) ( )

( ) ( ) ( ) ( )

1 11 1 2 1 2

1 1 1 11 1 2 1 2 1 1 1 1 1 1

1

, , , , , , , ,

1

, ,1

=1

:

1 1

l l l l l l p q lh h

l l l l l l p q l l l l l l l l p q lh h n n n n h h

l l p q ln n n

i i ih
x t

hi i i i i i i
x t x t

n
h ih h

x t x t
n

d f I

f I f I

f I f I

− − − + −

− − − + − − − − + −− + − +

− + −

=

−

  
 

   = −   
   

 + + − + − 
 

∑

∑



  



0 0 0

0 0 0 0 0 0

0 0

 
for 1, ,h p q= + , 1, , 1, ,hl l p q= +   ( 1 hl l< < ), 

1 1, , , ,
hl l ki i v v=  , it 

can be derived from (2), that 

( ) ( )

( )

11 1

1 11

1

1 1 1 1

1 1

, , , , |

, , 11 , , , ,

, , 1 , , 11 0 , , , ,1

l l l p l qh hp pp

hp l l kp hp

hp

p

l rr
h hq p l l np q hp

h hp q

p p i ih
x t x t x t

l lh i i v v

l l

h q p p q

i t l
l l n nh h i i jr

l l n n

f I f X d f I

f X

− −
  
  
  

== =

< <

−
= == ==

< < < <

 
 = −
 
 

 
⋅ −  
 

∑ ∑ ∑

∑ ∑ ∑ ∑∏





 



 



 

0 0 0

( ) ( )

1

1 11 1 1 1

, , ,

, , , , | , , , ,

1 1
:

p q

n khq

q pl l l p l n n n q nh h h hp p q q

n r l rr r

h h

j v v

h hi i j j

x t j t n i t l
r r

d

f I f I f X
− − − −

+

=

    
    
    

− −
= =

   
 ⋅         

∑

∏ ∏

 

 0 0 0 0

 (3) 

similarly was done for causality ([1]) and the representation 

( ) ( ) ( ) ( )

( )

11
1 11
1

, , ,
, , , , , ,

1

, ,

.

hh
h n n kh

h

n rr

x t x t x n nt n n
n nh j j v v
n n

h

j t n
r

f X f I f j j

f I

∈∈ =
< <

−
=

= + Ψ

 ⋅ 
 

∑ ∑ ∑

∏



 

  





    (4) 

Here, a new substitution of ( )( )1
q

n rr

h
j t nr f I −=∏  and so on, will also lead to a 

countably infinite representation (of the upcoming form (5)). An adequate defi-
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nition for invertibility follows. 
Definition 3.1: The process { },tX t∈  as defined in (1) will be called in-

vertible, in the sense that it can be written 

( ) ( ) ( ) ( )

( )

11
1 11
1

, , ,
, , , , , ,

1

, ,
hh

h l l kh
h

i rr

x t x t x l lt l l
l lh i i v v
l l

h

i t l
r

f X f I f i i

f X

∈∈ =
< <

−
=

= + Φ

 ⋅ 
 

∑ ∑ ∑

∏



 

  





     (5) 

for 1, , kx v v=   and t∈ ; the random variable ( ) ( )11, , , , ,
hhx l lt l lf i iΦ



 ,  
( )1h ≥  is independent of ( )...

t nI + , n∈ , ( )...
t lI − , hl l≥ , l∈  (it is a function of 

( )|
t lI −

i j , 0 1hl l≤ ≤ − ) and remains unchanged for t∈ . 
Additionally, it must hold that the probabilities 

( ) 1| , , 0, , , ,t t l l l kX x X i l i v v l−= = ∈ = ∈              (6) 

can be uniquely determined from (5). 
Remark 1: For *, , Lh h h ∈ , *

Lh h h≤ ≤ , 1, , hl l ∈  , ( 1 hl l< < ), con-
sider { } { }*

* *
1 1, , , ,

Lh hh
l l l l l≡ ⊆  , * *

1 Lhl l< <  and any 
1 1, , , ,

hl l ki i v v=  , 
and write the events 

( ) ( ) ( )( ) { }1 11 1
1, , , , , , ,

: , , , 0, , , , ,
h hh l lh

t l l t l l t l ht h l l i i
I i I i I l l l l− − −= = = = ∈ ≠

 

  
 

( ) ( ) ( )( ) { }1 11 1
1, , , , , , ,

: , , , 0, , , ,
h hh l lh

t l l t l l t l ht h l l i i
X i X i X l l l l− − −= = = = ∈ ≠

 

  
 

and the probability of interest 

( ) ( ) ( ) ( ) ( )( )* ** *
1 11 1, , , , , , ,, , ,

, , | .
h h l lh L hL

x l l t h l l i it l l
f i i y Φ ≤ 

  

 
 

As opposed to the probability 

( ) ( ) ( ) ( ) ( )( )

( ) ( )
* ** *
1 11 1

* ** * 1 1 * *11

* *

, , , , , , ,, , ,

, , ,

1

, , |

, , | , , ,

0, 1 , , ,

h h l lh L hL

h h hh LL

x l l t h l l i it l l

x t l l t l ll lt l l

t l h h

f i i y

f i i y I i I i

I l l l l l

− −

−

 Ψ ≤ 
 
≡ Ψ ≤ = =


= ≤ < ≠ 


 





 









 
from the “causality” topic in [1] when it is used that ( ){ }| ~ IIDtI i j  ( ( )1, , , hx t l lf Ψ



 
are functions of ( )|

t lI −
i j , 0 hl l≤ < ), in the case of “invertibility” { }tX  is a serially 

dependent series. Nevertheless, a simplification is in order, i.e., it holds that 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )

* ** *
1 11 1

* ** *
1 11 1

1 11 11 2 1 1 2

, , , , , , ,, , ,

*
1, , 1, , 1 , , ,, , ,

* *
,1 , ,, 1 , , , , , ,

, , |

, , | 0,

, , ,

h h l lh L hL

h h l lh L hL

hh h h lh l l hh

x l l t h l l i it l l

x l l t h l l i it l l

l lt l l l it l h l l l l i i

t

f i i y

f i i y

i i
−− −

− − −

− −− − − −

 Φ ≤ 
 
= Φ ≤ Φ =


Φ = Φ =

Φ

 

 

 



 

 







( ) ( )
*

1,1 , 1,
0,

h hh lh
t l ll i

I i−− +
= = 


     (7) 

as it can be shown (together with the notation *Φ ). 
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3.1. Conditions Relating to Causality and Invertibility 

To perform the TARMA parameters inference, there will be the need to some-
how “squeeze” the random coefficients ( )1, , , hx t l lf Φ



 to become smaller as  

hl →∞ . 
To manage convergence results, first set the remainder 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

1 2 1 21 2 1 2
1 2 11 2

1 2 1 21 2 1 2
1 2 11 2

1 2

, ,
1 , ,

, ,
1 1 , , ,

, ,
, 1 , , ,

:

,

,

r
r k

r r
r r k

r r
r r k

x t l x t r r i t r
r l i v v

l

x r r i t r i t rt r r
r r l i i v v

x r r i t r i t rt r r
r r l i i v v

r r

f R f i f X

f i i f X f X

f i i f X f X

∞

> −
= + =

∞

− −
= = + =

∞

− −
= + =
<

= Φ ⋅

+ Φ ⋅

+ Φ ⋅ +

∑ ∑

∑ ∑ ∑

∑ ∑









 
from the “invertible” representation (5). Similarly, it has been set by [1] that 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

1 2 1 21 2 1 2
1 2 11 2

1 2 1 21 2 1 2
1 2 11 2

1 2

, ,
1 , ,

, ,
1 1 , , ,

, ,
, 1 , , ,

:

,

,

r
r k

r r
r r k

r r
r r k

x t l x t r r j t r
r l j v v

l

x r r j t r j t rt r r
r r l j j v v

x r r j t r j t rt r r
r r l j j v v

r r

f r f j f I

f j j f I f I

f j j f I f I

∞

> −
= + =

∞

− −
= = + =

∞

− −
= + =
<

= Ψ ⋅

+ Ψ ⋅

+ Ψ ⋅ +

∑ ∑

∑ ∑ ∑

∑ ∑









 
from the “causal” representation (4). 

Consider generic constants 0C >  and ( )0,1α ∈ . The condition is presented 
below: 

(C4): The parameters of the TARMA equation are such that it holds that 

{ } 1
, 1

0 1

| , , for , , ,

, and any 0, , , , .

l
x t l t n n k

n k

f R X x n C x v v

t l x v v n

α +
> − = ∈ ≤ ⋅ =

∈ ∈ = ∈





 

  
        (8) 

(C5): The parameters of the TARMA equation are such that it holds that 
1

, 1 0, for , , , , .l
x t l kf r C x v v t lα +

> ≤ ⋅ = ∈ ∈              (9) 

To justify (C4), see that it can be written that 

( ) ( ) ( )
0

, , 1 ,x t x t x t l x t l
l

f X f I f R f R> > +
∈

= + −∑
  

so that the conditional probability of interest (6) is bounded by 

( )
0

* 1| , ,l
t t n n

l
I x X i n C α +

−
∈

= = ∈ + ⋅∑



 

where a converging geometric series is involved and, under causality, it is  
( )| ,t t n n xI x X i n π−= = ∈ ≡ ; straight from (8), it holds that  

{ }
{ } { }

, , 1

, , 1

| ,

| |

x t l x t l t n n

x t l t n n x t l t n n

f R f R X i n

f R X i f R X i

> > + −

> − > + −

− = ∈

≤ = + =



 
, so that it has been inserted 

( )* : 1C C α= ⋅ + . 

Regarding (C5) and how it secures that all joint probabilities can be safely 
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bounded, the answer is easy to show. 
Since (C4) (as opposed to (C5)) involves conditional expectations, it might be 

wished for ,x t lf R >  given “...” to simplify the condition “...” from  
{ },t n nX x n− = ∈  to { }, 1, ,t n nX x n l− = =  . According to the argument laid 
out above, it is in fact the absolute value of 

( ) ( )( )

( ) ( ) ( ) ( )( )
1

1 1

1 2 1 11 1
1 1 11

, , 1 , 1 1 1
, ,

, , 1 1
1 , , ,

,

l
l k

r l
r l k

x t l x t l x t l l i t l
i v v

l

x r r i t r it r l t l
r i i v v

f R f R f i f X

f i i f X f X

+
+

+
+

> > + + + − +
=

−+ − +
= =

− ≡ Φ ⋅

+ Φ ⋅ +

∑

∑ ∑







 
(instead of that of ,x t lf R > ) that is needed, which is “contained” within the 

random coefficients ( )1, , , hx t l lf Φ


, 1 1hl l l< < ≤ +  (that are functions of ( )...
t nI − , 

0,1, ,n l=  ). In the case that 0t nX − = , 1n l≥ + , it is clear from Remark 1 that 
(under causality) a simplification is possible, though not concerning the variables 
X in the condition: otherwise, it’d better not be attempted. The interested reader 
may look at Section 3.2 to verify what happens in the general case given the re-
quirement in (C4) as it is. 

For causality, due to the difficulties in determining the random coefficients 

x tf Ψ  (as functions of ( )...
t lI − , 0l∈ ), [1] resorted to an alternative (to (4)) re-

presentation: then based on the new (rather than (4)) form, salvaged a condition 
relating to causality. The equivalent representation for invertibility may be 
demonstrated with a Proposition 1 and Propositions 2 and 3 may lead to an in-
vertibility-related condition. Nevertheless, it might be stressed here that Propo-
sition 2 (and, consequently, Proposition 3) is established using the prerequisite 
of causality; this is because an “invertible” representation relies on the index va-
riables ( )t lf X −  (not ( )t lf I − ) and, under causality, it can be certified that 

t lX − , l∈  is independent of ( )...
tI . 

Furthermore, remember that the causality consideration is attached to the de-
finition of a TARMA process, as it guarantees probability stationarity, which is 
what this theory is about: so this is before the results for the inference are seeked. 
In the contrary, the contribution of invertibility will shine, when the weak con-
vergence (consistency) of the maximum likelihood estimators for the relevant 
TARMA probabilities is established. Nevertheless, it is not wished to undermine 
the value of invertibility as compared to that of causality: after all, both type 
coefficients x tf Ψ  and x tf Φ  are built as functions of the ( )...I  variables from 
present and past, using a similar mechanism. The conditions obtained seem to 
complete rather than contradict each other too, so it is clear that causality and 
invertibility need to work together for the TARMA body to stand straight. 

The reader needs to acquaint themselves with the following notation: it is set 
for 1= , , kx v v , that 

( )

( )( )

( ){ }

11 1|

|

,

max , if 1, ,
: ,

max , if 0

p n n n q nj j
x t

x

x

d f I qν νν

ν
ν

γ
π ν

− −    =      = 
 =

i j

i j




0 0 0
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as well as for each 1, ,ph p=  , 0,1, , qν =  , that 

( ) ( ) ( )1 11 1 1 1|

, : max ,
l l l p l n n n q nh hp pp

i i j jh
p x p x th d f I ν νννγ

− − − −
  
  +   

    =      

 


0 0 0 0

 
where both maximums take place for any 1, , 1, ,n n qν =   ( 1n nν< < ), 

1 1, , , ,n n kj j v v
ν
=  ; the second also taking place for any 1, , 1, ,

phl l p=   
( 1 phl l< < ), 

1 1, , , ,
hpl l ki i v v=  . It is defined for 1, , kx v v=   

( ) ( ) ( ),1, , 1
: max

p

p

x x p x pq h p

p
h

h
ν ν

ν
γ γ γ

= =

   = +   
   

∑


 and 

( ) ( ) ( )
1 1

*
,0, , , , 1 , ,

: max .
k p k

p

x p x pq x v v h x v vp

p
h

h
ν ν

ν
γ γ γ

= = = =

      = +     
      

∑ ∑ ∑


   
By relaxing the sum of maximums into a maximum of sums, ( )

1

0
, , k xx v v γ=∑


 is 
replaced by ( ){ }|

, 0max 1 π− i j
i j . More research is welcome on the subject of the 

equivalence with (C4), which was demonstrated to be sufficient for invertibility. 
Remark 2: (i) Under (C4) and (C5), all joint probabilities and all probabilities 
( )| ,t t n nX x X x n−= = ∈ , 1, 0, , ,n kx x v v=   are contained (away from in-

finity): it can be concluded that any joint probability is away from zero (hence 
away from one as well), because if any such probability, say ( )( )a

t  , was 0 it 
would have to be that any conditional probability as above- with  

( ) { }* ,a
t n nt

X x n−⊆ = ∈  for some *t - would not be bounded and properly 
defined; then it can be concluded (by division of a joint non zero probability 
over a joint non infinity probability) that all conditional probabilities are strictly 
larger than zero (hence smaller than one as well). Consequently, it will be taken 
that (C4) and (C5) can suffice for (C2). 

(ii) For the π  that yield a causal and invertible TARMA series { }tX , it can 
be arranged under (8) in (C4) (or, (9) in (C5)) that 

( ) ( )1 1
, ,| , , orl l

x t l t n n x t lf R X x n C f r Cα α
π π

+ +
> − >

∂  ∂ 
= ∈ ≤ ⋅ ≤ ⋅ ∂ ∂ 

   (10) 

for some 0 C< < ∞  and ( )0,1α ∈ , and 

( ) ( )
2 2

1 1
, ,| , orl l

x t l t n n x t lf R X x n C f r Cα α
π π π π

+ +
> − >

 ∂ ∂
= ∈ ≤ ⋅ ≤ ⋅  ∂ ∂ ∂ ∂ 

  (11) 

under (8) (or (9)): this can be shown. 

It is being taken for granted that the ( )| , ,t t n nX x X x n π
π −
∂

= = ∈
∂

 ,  

( )
2

| , ,t t n nX x X x n π
π π −
∂

= = ∈
∂ ∂

  derivatives exist. 

3.2. Random Coefficient Modelling Based on the Past 

For 0,l n∈ , n l≤  and a set { } { }* *
1 , , 1, ,nl l l⊆  , it is written (for fixed 

* * 1
1

, , , , kl ln
i i v v=   but this is omitted from the symbol  ), that 

https://doi.org/10.4236/ojs.2022.123025


C. Dimitriou-Fakalou 
 

 

DOI: 10.4236/ojs.2022.123025 395 Open Journal of Statistics 
 

{ }* * * * *
1 1

* * * *
, 1: , , , 0, 1, , , , , .

n n
t n l nt l l t l l t l

X i X i X l l l l l≤ − − −
= = = = = ≠  

 
Eventually it can be shown that 

( ) ( )( )*
* 1

, ,lim | , , | 1l
t t n l t t n lt l ll

X x X l X x C α +
≤ ≤− −→∞

= ∈ − = ≤ ⋅ =      (12) 

( * *
1

* *
1, , , , , ,

n
n l l

n l l i i   remain unchanged as l →∞ ). 
Remark 3: From (10) and (11) and in the same manner, it will be considered 

occasionally that 

( ) ( )* 1
, , *lim | | , , 1 1l

t t n l t t n l t ll
X x X x X l l C α

π π
+

≤ ≤ −→∞

 ∂ ∂ 
= − = ≥ + ≤ ⋅ = ∂ ∂ 

    (13) 

and 

( ) ( )
2 2

* 1
, , *lim | | , , 1 1,l

t t n l t t n l t ll
X x X x X l l C α

π π π π
+

≤ ≤ −→∞

 ∂ ∂
= − = ≥ + ≤ ⋅ =  ∂ ∂ ∂ ∂ 

    (14) 

respectively. A justification may be offered. 

4. Maximum Likelihood Estimation 

First, the parameter space, say Θ , must be considered; the fixed k ∈ , cate-
gories 1, , kv v  and order 0,p q∈ , p q+ ∈  are attached to it: 

The parameter space Θ  is a set that includes all candidate parameter vectors 
∈Θπ  that model a process of interest { },tX t∈  using a TARMA (k, p, q) equ-

ation with a predetermined form of interdependence, such that conditions (C3), 
(C4) and (C5) are satisfied (plus any extra requirements added in this section). 

Now, suppose that { }1, , TX X  have been made available from (1), and the 
target is to estimate the true parameters of the model, say 0 ∈Θπ , based on 
these observations. The likelihood expressed as a function of π , takes the form 

( ) ( )( ), 1
1

,
T

t t
t

L p −
=

=∏ π π
 

where 

( ) ( ),0 1: ; , if , where 0, , , ,t t t kp X x X x x v v= = = =
π π  

and for the general i∈ , it is written 

( ) ( ), 1 1: | , , ; , if , where 0, , , ;t i t t t i t kp X x X X X x x v v− −= = = =
 π π  

,t ip  are functions of 1, ,t t iX X− −  as well as tX  and it is considered that 
these (conditional) probabilities result from { },tX t∈  as if those have been 
generated by ∈Θπ . Of course, the natural logarithm of the likelihood may be 
taken 

( ) ( )( ), 1
1
ln

T

t t
t

l p −
=

= ∑ π π
 

as the maximum likelihood estimators π̂  then satisfy the equations 

( ) ( ) ( ), 1
1ˆ ˆ, 1

10 or 0.
ˆ

T

t t
t t t

l p
pπ π −

== =−

∂ ∂
= =

∂ ∂∑ 

π π π π

π π
π

          (15) 
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4.1. Weak Convergence of Estimators 

For ∈Θπ  and any t∈ , it is written 

( ) ( ) 1: | , ; , if , where 0, , , ,t t t i t kp X x X i X x x v v−= = ∈ = = π π  
which is a function of t iX − , 0i∈  and the (conditional) distribution law is 
generated by ∈Θπ . 

According to (12) (thanks to invertibility) and for any ∈Θπ  and  

1 1, , 0, , ,T kx x v v=  , it holds as T →∞  that 

( )
( )

( )
( )

( )
( )

1 1 2 2 1 1

1 1 1 2 2 1 1 1

1

1 1 1 1

1 1 1 1 1

; | ;
| , ; | , , ;

| , , ;
1,

| , , , , ;

n n

T
T T T T P

T T T T n

X x X x X x
X x X n X x X x X n

X x X x X x
X x X x X x X n

− −

− −

− − −

 = = =
 = ∈ = = ∈

= = … =
→= = = ∈ 



 

 

 
 




π π
π π

π
π

   (16) 

because the geometric mean weighs with (rather than just multiplies) the pre-
vious values: as the new values get closer to 1, so must the mean itself. The geo-
metric mean from (T + 1) observations is a weighted product mean of the geo-
metric mean of the T observations and the (T + 1)th observation (with a AC  
adjusted constant for the ratio of probabilities to one, by allowing the exponen-
tial rate for the geometric mean of ratios, this becomes apparent with the bound  

( ) 11
2 0

TT T
T
AC α

+  ⋅ → 
  

 as T →∞ ). 

Once the fixated sample series 1, , Tx x  has been collected (this has been 
generated by 0π ), remember that the maximum likelihood estimate π̂  is set 
that way, such that it is true for any ∈Θπ , that 

( )

( )

1 1 1 1
1

1 1 1 1
1

ˆ| , , ;

| , , ;

T

t t t t
t

T

t t t t
t

X x X x X x

X x X x X x

− −
=

− −
=

= = =

≥ = = =

∏

∏









π

π
 

where the (conditional) probabilities (the distribution law of 1, , TX X ) are 
calculated as if π  are the real parameters that generated this realization. Thanks 
to (16) (and invertibility), this becomes 

( )
( )

1
1 1 1 1 1

1 1 1 1 1 1

ˆ| , , , , ;
1

| , , , , ;

T
T

t t t t n

t t t t t n

X x X x X x X n
X x X x X x X n

− − −

= − − −

 = = = ∈
≥  = = = ∈ 

∏
 

 




π
π

 
with probability that tends to one as T →∞ . Thinking about the random va-
riables (rather than the realizations) now, it can be written 

( )
( )

( )
( )

( ) ( )11

1 1

1

1

1
1 1 1 1 1

, , 0, , , 1 1 1 1 1 1

ˆ

ˆ| , , , , ;
,

| , , , , ;

x x TT

T k

T
T

t

t t

f X f XT
T

t t t t n

x x v v t t t t t n

p
p

X x X x X x X n p
X x X x X x X n p

=

− − −

= = − − −

 
  
 

  = = = ∈ =    = = = ∈   

∏

∏ ∏


 

 

 




π
π

 

where 1, , TX X  are the same random variables for both numerator/denominator 
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with realizations as in ( ) ( )
1 1 Tx x Tf X f X  (those have been generated by the 

real 0π ), and it is verified that 

( )
( )

1

1

ˆ
lim 1 1 for any .

T
T

t

T t t

p
p→∞ =

  
 ≥ = ∈Θ     
∏

π
π

π
           (17) 

In the other hand, it is true for any ∈Θπ , that 

( )
( )

( )
( ) 1 0

1 10 0

| , ;
T T

t t
n

t tt t

p p
X n

p p −
= =

    
= ∈            

∏ ∏   
π π

π
π π

 
and it is essential that it is the “real” 0π  that generates the random variables 
and governs the (conditional) expectation, i.e., 

( )
( )

( )

( )
( )

( )

1 1

1 1

1 0
1 0

1 1 1 0
, , 0, , ,

1 1 1 1 1

1 1 1 1 1 1 0

1 1 1
, , 0, , ,

| , ;

, , | , ;

| , , , , ;
| , , , , ;

, , | , ;

T k

T k

T
t

n
t t

T T n
x x v v

T
t t t t n

t t t t t n

T T n
x x v v

p
X n

p

X x X x X n

X x X x X x X n
X x X x X x X n

X x X x X n

−
=

−
=

− − −

= − − −

−
=

 
∈  

 
= = = ∈

= = = ∈
⋅

= = = ∈

≡ = = ∈ =

∏

∑

∏

∑

 

 



 

 

 

 










π
π

π

π

π
π

π 1:
 

the last statement is true since these are probabilities adding to one (regardless of 
the ∈Θπ ). Then it holds that 

( )
( )1 0

1 for any .
T

t

t t

p
p=

 
= ∈Θ  

 
∏

π
π

π
 

As in Jensen’s inequality (use the function ( ) 1 Tg y y= , 0y >  with  
( ) ( ) ( )( ) ( )1 21 1 0Tg y T T T y −′′ = − <  for 1T > ), this last statement can be 

transformed to 

( )
( )

1

1 0

1 for any ,
T

T
t

t t

p
p=

    ≤ ∈Θ      
∏

π
π

π
             (18) 

with the equality holding if and only if 0=π π  (it is considered here that  
( ) ( )1 2t tp p=π π , 1 2, ∈Θπ π  can only result from 1 2=π π ). 
In order to conclude, one can combine (17) and write 

( )
( )

1

1 0

ˆ
lim 1 1

T
T

t

T t t

p
p→∞ =

   ≥ =     
∏

π
π

 
with (18) that writes 

( )
( )

1

1 0

ˆ
1

T
T

t

t t

p
p=

    ≤      
∏

π
π

 
and they are both satisfied when 

( ) ( )
1 1

0
1 1

ˆ 0 as
T TT T

P
t t

t t
p p T

= =

   − → →∞   
   
∏ ∏π π
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or, in other words, when 

0ˆ as .P T→ →∞π π                     (19) 

4.2. Asymptotic Distribution 

Thanks to a Taylor’s expansion, (15) can be turned to 

( ) ( ) ( ) ( )

( )
( ) ( ) ( )

( )

0 0

00

2

, 1 , 1
1 1, 1 0 , 1 0

, 1 , 1 ,02
, 1 0

,
1

1 1

1 ˆ

ˆ 0,

T T

t t t t
t t jt t i t t j i

t t t t j j
j it t

T

t i
t

p p
p p

p p
p

E

π π π

π π
π π

− −
= =− −= =

− −
− ==

=

∂ ∂+ 
∂ ∂ ∂

  ∂ ∂   − −  ∂ ∂    

+ =

∑ ∑∑

∑

 

 

 



π π π π

π ππ π

π π
π π

π π
π

π
 

where i (and j) are indexes that refer to all different scalar π  in ∈Θπ  and 
( ), ˆt iE π  are scalars; to understand their role better, consider the expansion for 

fixed t and define the function 

( ) ( ) ( )

( ) ( ) ( )

0

, , 1
, 1

0
, 1

0,1 , 1

1:

1
!

t i t t
t t i

xx

t tx
x t t i

e p
p

p
p x

π

π

−
−

−
= − =

∂
=

∂

  −∂ ∂
−   ∂∂  
∑









π π

π π
π

π π
π

ππ
 

with “ 0x = ” applying no derivative at all to the function ( ( )0
0 1− ≡π π ) and 

“ 1x = ” being the usual row vector of first derivatives (times a column vector): 
then it is clear that ( )0 0e =π . Due to (19) and the continuity of the function e 
at 0π , it can be concluded that ( )ˆ 0Pe →π  as T →∞  (without worrying 
about the ( ), 1t t −  label, i.e., the convergence to zero takes place anyway for 
T →∞ ). It will be taken for granted then that 

( ),1
ˆ

0 as ,
...

T
t i Pt E

T= → →∞∑ π
                (20) 

where “…” is the convenient divisor T or even T1/2. Note that (20) has been justi-
fied without the presumption of existence of a higher than second derivative of 
the conditional probabilities under study. 

After omitting the extra terms, all the equations are stacked to come up with 

( ) ( ) ( ) ( )02
1 1, 1 0 , 1 0, 1 0

1 1 1ˆ ,
T T

t t t t
t tt t t tt t

D
p pp

τδ δ δ
= =− −−

 
− − =  

 
∑ ∑  

 

π π
π ππ

 

where tδ  is the column vector of ( )
0

, 1t t
i

p
π −

=

∂
∂



π π

π , 1,2,i =   and tD  is 

the matrix with elements ( )
0

2

, 1t t
i j

p
π π −

=

∂
∂ ∂



π π

π , , 1, 2,i j =   and “τ ” stands 

for the transpose operator. It is re-written that 
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( )

( ) ( ) ( )

1 2
0

1

2
1 1, 1 0 , 1 0, 1 0

1 2

ˆ

1 1 1 1 .
T T

t t t t
t tt t t tt t

T

D T
T p pp

τδ δ δ
−

= =− −−

−

−

   = −      
∑ ∑  

 

π π

π ππ

    (21) 

Next, consider tδ  to be the column vector of ( )
0

t
i

p
π

=

∂
∂

π π

π , 1,2,i =  . 

Lemma 4.1: It holds that 

( ) ( )1 0 , 1 0

1 2 1 1 as .
T

P
t t

t t t t

T T
p p

δ δ
= −

−  
− → →∞  

 
∑ 



0
π π

 
Proof: This may be presented. 
Once Lemma 4.1 has been established, Equation (22) should be replaced by 

( )
( ) ( ) ( )

1

0 2
1 1, 1 0 0,

1 2

1 0

1 21 1 1 1ˆ .
T T

t t t t
t tt t tt t

T D T
T p pp

τδ δ δ
−

= =−−

−
   − = −      
∑ ∑  



π π
π ππ

 (22) 

To proceed further, consider tD  to be the matrix with elements  

( )
0

2

t
i j

p
π π

=

∂
∂ ∂

π π

π , , 1,i j =  . 

Lemma 4.2: It holds that 

( ) ( ) ( ) ( )2 2
1 , 1 0 0, 1 0 0

1 1 1 1 1T
P

t t t t t t
t t t tt t t

D D
T p pp p

τ τδ δ δ δ
= − −

    
 − − − →         

∑ O 

 π ππ π
 

as T →∞ , where O  (use bold for emphasis) is the square matrix of zeros. 
Proof: This may be presented. 
Once Lemma 4.2 has been established, Equation (22) should be replaced by 

( )
( ) ( ) ( )

1

0 2
1 10 00

1 2 1 21 1 1 1ˆ .
T T

t t t t
t tt tt

T D T
T p pp

τδ δ δ
−

= =

−
   − = −      
∑ ∑π π

π ππ
  (23) 

Theorem 4.3: It holds that 

( ) ( )1 0

1 2

0

1 1,Var as .
T

D
t t

t t t

T N T
p p

δ δ
=

−
  

→ →∞      
∑ 0

π π
 

Proof: This may be presented. 
Lemma 4.4: It holds that 

( ) ( )2
1 00

1 1 1Var as .
T

P
t t t

t tt

T
T pp

τδ δ δ
=

 
→ →∞  

 
∑ ππ

 

Proof: This may be presented. 
Lemma 4.5: It holds that 

( )1 0

1 1 as .
T

P
t

t t

D T
T p=

→ →∞∑ O
π  

Proof: This may be presented. 
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5. Empirical Illustrations 

This section serves in practice, when for special cases of TARMA models the 
maximum likelihood estimation takes place, so that (i) it is refreshed how to 
compute joint probabilities to insert in the likelihood (and estimate) and, more 
importantly, (ii) it is examined how well the estimators perform for moderate 
sample sizes: for both (i), (ii) particular interest lies in 1q ≥ , when “naïve” 
moments estimates cannot be computed directly from the data, as opposed to 
the more traditional TAR cases. At this point, it is reminded that the TAR is a 
special case of the TARMA model with AR parameters only and explicit results 
that have been obtained for the Markov chains. The TARMA with the inclusion 
of MA parts is a parsimonious way to succeed the infinite order of a TAR model 
and where the paper interest lies. 

Hence the groundwork equation 

( )( ) ( ) ( )
( ) ( ) ( )

1|0
1 1 1 1

0|1 1|1
1 1 1 1

1 1 1

1
t t t t t t t

t t t t t t

X I X I I X I

I X I I X I
− − − −

− − − −

= − − + −

+ − +
           (24) 

will, in general, govern a series { } ( )~ TARMA 1,1,1tX  (with realizations in  
{ }0,1 ). By writing ( ) ( )| : ,t ti j X i I jψ = = = , , 0,1i j = , then from the parame-
ters ( )1tIπ = =  and ( ) ( )( )| |

| 1 |i j i j
v t tI I vπ ∗ = = = , ( ) ( ), 0,0i j ≠ , 0,1v =   

( ( ) ( )( ) ( ) ( ) ( )| | | |
|1 |01 1i j i j i j i j

tIπ ππ π π∗ ∗= = ≡ + − ), [1] has contributed a methodology 
that eventually (under causality) computes the ψ  as in 

( ) ( ) ( )( ) ( )( )( ) ( ) ( ) ( )( ){ }
( )( ) ( ) ( )( ) ( )( )( ) ( ) ( ) ( )( ){

( )( ) ( )( )( )( ) ( ) ( ) ( ) ( )( )
( )( )

1|0 0|1 0|1 1|0
|0 |1 |0 |11|1

1|1 1|0 0|1 0|1 1|0
|1 |0 |1 |0 |1

1|0 0|1 1|1 0|1 1|1
|1 |1 |0 |0 |1

0|1 1|
|1 |1

1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1

1

ψ π π π π π π π π π

π ππ π π π π π π π π

π ππ π π π π π π π π

π ππ π π

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗

 = − − − − − − −  

 + − − − − − − − −  

 + − − − − + − −  

+ − − ( )( )( ) ( ) ( ) ( )( ) ( )( ) }0 1|1 1|0 1|1
|0 |0 |11 1 1 1 ,π π π π π π∗ ∗ ∗ − + − − − 

(25) 

followed by 

( )

( )( )( )( ) ( ) ( ) ( ) ( )( )
( ) ( )( ) ( )( )( ) ( ) ( ) ( )( ) ( )

0|1 1|1 0|1 1|1
|1 |0 |0 |1

1|0 1|11|0 0|1 0|1 1|0
|0 |1 |0 |1

1 1 1 1 1

1 1 1 1 1 1

π π π π π π π π
ψ ψ

π π π π π π π π

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

− − − + − −
=

− − − − − − −
  (26) 

and 

( )

( )( )( ) ( ) ( ) ( )( ) ( )( )
( ) ( )( ) ( )( )( ) ( ) ( ) ( )( ) ( )

1|0 1|1 1|0 1|1
|1 |0 |0 |1

0|1 1|11|0 0|1 0|1 1|0
|0 |1 |0 |1

1 1 1 1 1

1 1 1 1 1 1

π π π π π π π π
ψ ψ

π π π π π π π π

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

− − + − − −
=

− − − − − − −
 

 (and ( ) ( ) ( ) ( )0|0 1|0 0|1 1|11ψ ψ ψ ψ= − − − ).               (27) 

Additionally, after writing for h∈  that  

( )( ) ( ) ( )
1 1 1 1, , | : , , ,

h t t h h ti i j h X i X i I jψ
+ − += = = =



  (and ( ) ( ) ( )| |0i j i jψ ψ≡ ), the 
methodology also contributes the recursive formulae 
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( )( ) ( ) ( )( ) ( ) ( )
( )( ) ( )

2 1 2 1 2 1

0|1
|11,0, , , |1 0, , , |0 0, , , |11 ,

h h hi i i i i ih h hψ πψ ππ ψ
+ + +

∗+ = +
  

   (28) 

( )( ) ( ) ( )
( )( ) ( )

2 1 2 1

1|
|11,1, , , |1 1, , , |

0,1
1 ,

h h

j
i i i i j

j
h hψ ππ ψ

+ +

∗

=

+ = ∑
 

 

( )( ) ( ) ( ) ( )
( )( ) ( )

2 1 2 1

0|1
|01,0, , , |0 0, , , |11 1 ,

h hi i i ih hψ π π ψ
+ +

∗+ = −
   

( )( ) ( ) ( ) ( )
( )( ) ( )

2 1 2 1

1|
|01,1, , , |0 1, , , |

0,1
1 1 ,

h h

j
i i i i j

j
h hψ π π ψ

+ +

∗

=

+ = −∑
 

 
and the recursive formulae 

( )( ) ( ) ( )( ) ( )( ) ( )
2 1 2 1

0|1
|10,0, , , |1 0, , , |11 1 ,

h hi i i ih hψ π π ψ
+ +

∗+ = −
   

( )( ) ( ) ( )( ) ( )( ) ( )
2 1 2 1

1|
|10,1, , , |1 1, , , |

0,1
1 1 ,

h h

j
i i i i j

j
h hψ π π ψ

+ +

∗

=

+ = −∑
 

 

( )( ) ( )

( ) ( ) ( ) ( )( ) ( )( ) ( )
2 1

2 1 2 1

0,0, , , |0

0|1
((0, , , )|0) |0 0, , , |1

1

1 1 1 ,

h

h h

i i

i i i i

h

h h

ψ

π ψ π π ψ

+

+ +

∗
…

+

= − + − −



  

( )( ) ( ) ( ) ( )( ) ( )( ) ( )
2 1 2 1

1|
|00,1, , , |0 1, , , |

0,1
1 1 1 ,

h h

j
i i i i j

j
h hψ π π ψ

+ +

∗

=

+ = − −∑
 

     (29) 

from which the probabilities 

( )( ) ( )( ) ( )
0 1 10 1 1 11 , , , |

0,1
, , , 1

ht t ht h i i i j
j

X i X i X i hψ
+− +− + …

=

= = = = +∑
 

can be computed for 0 1 1, , , 0,1hi i i + = . 
To generate tX , 1, ,t T=  , it has been used that  

( )( )1
0

i
t t t ii t jjX Y DY Y−

−∈ −=
= +∑ ∏



, ( ) ( )0|1
1 1: 1t t t t tY I I I I− −= + − ,  

( ) ( ) ( )( ) ( )( )( )1|1 0|1 1|0
1 1: 1t t t t t ttDY I I I I I I− −= − + − − , with the sum being held up to a 

finite constant 20c =  for 1t = , and so on. The two presented conditions for 
causality and invertibility write together that 

( )( ) ( )( ) ( )( )0|1 1|0 1|12
1 1 1, ,t t tdf I df I d f Iπ + +  

 
( ){ } ( )( ) ( )( ) ( )( )| 1|0 0|1 1|12

1 1 1, 0,1
max , 1i j

t t ti j
df I df I d f Iπ

=
+ + <  

 
(the ( )1 ..hd f , 1,2h =  notation was re-introduced in the very beginning of Sec-
tion 3). Hence by imposing the strong requirement ( ){ }|

, 0,1max 1 6i j
i j π= < , the 

series is secured to be where it should be (without worrying about the interde-
pendence scenario). 

Firstly the case 0.165π = , ( )1|0 0.152π = , ( )0|1 0.125π =  and ( )1|1 0.108π =  
(and under interindependence) has been studied, for a number of observations 

6,10,14T =  (the maximum sample size 14 has been picked due to a purely 
technical reason of restoring in one vector 12T +  probabilities for the last recur-
sion, or otherwise a modification must take place in the code). A search of the 
four parameters ( )...0 0.1667π< < , ( ) ( )... ... 0.01π π= +  has materialized and for 
each attempted value the probabilities (25), (26), (27) and recursions (28)...(29) 
must be computed: the likelihood is none other than one of these final probabili-
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ties indicated by the position of zero-one(s) in the sample series (this is the same 
position regardless of the parameter values under search). Then the attempted 
parameter values that offered the biggest of those probabilities are taken to be 
the maximum likelihood estimates. 

Meanwhile, an opportunity of a comparison with the TAR model (of order 
2p = ) with same parameters ( 0.165π = , ( )10 0.152π = , ( )01 0.125π =  and 

( )11 0.108π = ) has arisen, i.e., { }1, , TX X  have now been born from 

( )( ) ( ) ( )
( ) ( ) ( )

10
1 2 1 2

01 11
1 2 1 2

1 1 1

1 .
t t t t t t t

t t t t t t

X I X X I X X

I X X I X X
− − − −

− − − −

= − − + −

+ − +  

Note that it can be derived ( )1
,
n

t t t n t nnX I C I−
−∈

= +∑


 with  
( ) ( ) ( )0 10 10
,1 :t t t tC DI I I= ≡ − , ( ) ( ) ( )0 01 01

,2 :t t t tC DI I I= ≡ − ,  
( ) ( ) ( ) ( ) ( )0 11 11 10 012
,(1,2) :t t t t t tC D I I I I I= ≡ − − +  and for n∈  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( )

1 1 10 1 10 1 01
, 1 , 1 , ,( , 1) , 2 ,

11 11 11 11 11 102 * *
,, 1, 2 , , 1

: , : , and

: , : .

n n n n n n
t n t n t n t n t n n t n t n t n t n

n nn
t n t n t n t t tt n n t n n

C C C DI C I C C DI

C C D I C D I D I I I

− − − −
+ + − + − + −

−−
− −+ + +

= + + =

= + = −
 

Computing the probabilities ( )1,t tX i X j−= = , , 0,1i j =  (from the same 
methodology and under causality) is straightforward, while the condition for 

causality now requires ( )1

21*
0 01 1 1 1m

m mβ
= =

 + − <  
∑ ∑  or * 2 1 0.138

3
β −

< ≈ , 

where 

( ) ( ){ } ( ){ }10 01 11* 2: max ,max , , :t t tDI DI D Iβ π=   
 

so it might be that it is violated (the search is no different than for the TARMA 
above). 

According to Table 1, it is indeed remarkable how the performances for the 
two models almost coincide. That is such an encouraging sign for the TARMA, 
as it tempts the researcher to dare include moving-average parts and benefit 
from the rare flexibility, if they are willing to take the extra computational bur-
den of the recursions: exact likelihoods can be computed as functions of the pa-
rameters and, even for small sample sizes, the estimators seem to perform quite 
satisfactorily. It is highlighted that the precision here is as returned by the code 
with no formal justification attached to it (for a smaller 100R =  repetitions, 
the differences to the table were still minimal). From Table 1 it looks like there is 
a better bias (and MSE) performance of the π  estimator over the other three 
ones, so this is investigated further. 

Table 2 picture still favors the π  estimator with a low absolute bias: the two 
( )0|1π , ( )1|1π  estimators score the highest bias, naturally resulting from the real 

values being quite high. Similarly, for both numerical cases the ( )1|0π  estimator, 
with the lowest real value, escapes the high bias values without outperforming 
the π  in the same department though. The conclusions for the variance can be 
reversed. At this stage, it is highlighted that the easily obtainable (conditional  
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Table 1. Approximate (from 1000R =  replications) bias, variance and Mean Squared 
Error of the Maximum Likelihood Estimators based on T consecutive observations from 
the TARMA (1, 1) and TAR (2) models ( 1k = , Bernoulli variables) with real values  

0.165π = , ( )1|0 0.152π = , ( )0|1 0.125π =  and ( )1|1 0.108π =  (under interindependence). 

 TARMA TAR 

 Bias Var MSE Bias Var MSE 

6T =        

π  −0.05675 0.00508444 0.008305 −0.0545 0.00497475 0.007945 

( )1|0π  −0.14 0.0002724 0.0198724 −0.12595 0.0021499 0.0180133 

( )0|1π  −0.09865 0.00212518 0.011857 −0.1039 0.00154179 0.012337 

( )1|1π  −0.08375 0.00193444 0.0089485 −0.07445 0.0029779 0.0085207 

10T =        

π  −0.04738 0.00267194 0.0049168 −0.03844 0.00260857 0.0040862 

( )1|0π  −0.13786 0.00057666 0.019582 −0.11545 0.0032776 0.0166063 

( )0|1π  −0.09121 0.00297854 0.0112978 −0.09595 0.0024946 0.011701 

( )1|1π  −0.07685 0.00272518 0.0086311 −0.0782 0.00257796 0.0086932 

14T =        

π  −0.03761 0.002243061 0.0036575731 −0.04143 0.00233756 0.004054 

( )1|0π  −0.13783 0.000572841 0.0195699499 −0.10495 0.0041848 0.0151993 

( )0|1π  −0.08032 0.00394194 0.0103932424 −0.08935 0.00318958 0.011173 

( )1|1π  −0.0677 0.0035838 0.00816709 −0.0773 0.00267651 0.0086518 

 
Table 2. Approximate (from 10000R =  replications) bias, variance and Mean Squared 
Error of the Maximum Likelihood Estimators based on 6T =  consecutive observa-
tions from the TARMA (1, 1) model ( 1k = , Bernoulli variables) with real values, for 
the “Case 1.1”, 0.105π = , ( )1|0 0.081π = , ( )0|1 0.148π = , ( )1|1 0.152π = , or for the “Case 
1.2”, 0.165π = , ( )1|0 0.081π = , ( )0|1 0.152π =  and ( )1|1 0.148π =  (both under interin-
dependence). 

 Case 1.1 Case 1.2 

 Bias Var MSE Bias Var MSE 

π  −0.02201 0.00562096 0.0061054 −0.056825 0.00508792 0.008317 

( )1|0π  −0.069541 0.000208601 0.00504455 −0.068298 0.000374559 0.00503918 

( )0|1π  −0.130132 0.00109877 0.0180331 −0.125859 0.00211538 0.0179559 

( )1|1π  −0.1312 0.00150336 0.0187168 −0.123285 0.001990072 0.0171899 

 
likelihood) asymptotic result (for the estimators ( )1π̂ , π̂  of  

( ) ( )1
1: 1 | 1t tX Xπ −= = = , ( )1: 1 | 0t tX Xπ −= = = , respectively) regarding the 

{ } ( )~ TAR 1tX  model, i.e., 
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( ) ( ) ( ) ( )( ) { }
( ) { }

1 11
1

1
2 1 00ˆ
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T N
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π ππ π
π π π π

  −   −   →       −   − −    




 

has also been approved by simulation indications (for sample sizes  
10,20,30T =  and 100R = ), but those will not be presented here. 

The investigation is not over yet, as it is desirable to smooth out the differenc-
es in the bias of estimators for the TARMA (1, 1) model, and the solution to that 
could be an “agreement” between the different ( )...I  variables (at the same time 
t) via the presence of interdependence. Indeed according to Table 3 and for the 
only small sample size ( 6T = ), “Case 2.1” exhibits low biases in all but the 
-0.11726 approximation from the 1000 estimates of ( )0|1

|1π
∗ ; similarly, for the 

“Case 2.2” and excluding the highest (absolute) bias for π  (its true value has 
been set high), almost all other estimates are approximated to be near their real 
value. The variance results for both cases are very impressive too. Note that the 
conditions for causality-invertibility might not have been followed faithfully in 
Table 3 (hence the real value 0.25π =  in “Case 2.2”) and the “agreement” 
search has been set to ≥0.85 for ( )...

|1π
∗ , or ≤0.15 for ( )...

|0π ∗  (together with a 
search 0.1667π ≤  that justifies the -0.11655 bias in “Case 2.2”). 

Again it is reminded that the results obtained from fewer simulations (Table 
2: 100,1000R = , Table 3: 100R = ) are hardly any different. The simulation 
indications of this section favor the addition of moving-average parts for the 
modelling of strict stationarity, if one is willing to slightly inconvenience them-
selves with a more sophisticated code for the likelihood computation. There  

 
Table 3. Approximate (from 1000R =  replications) bias, variance and Mean Squared 
Error of the Maximum Likelihood Estimators based on 6T =  consecutive observations 
from the TARMA (1, 1) model ( 1k = , Bernoulli variables) with real values, for the “Case 

2.1”, 0.165π = , ( )1|0
|1 0.95π ∗ = , ( )1|0

|0 0.03π ∗ = , ( )0|1
|1 0.98π ∗ = , ( )0|1

|0 0.05π ∗ = , ( )1|1
|1 0.966π ∗ = , 

( )1|1
|0 0.044π ∗ = , or for the “Case 2.2”, 0.25π = , ( )1|0

|1 0.95π ∗ = , ( )1|0
|0 0.03π ∗ = , ( )0|1

|1 0.98π ∗ = , 
( )0|1

|0 0.05π ∗ =  and ( )1|1
|1 0.966π ∗ = , ( )1|1

|0 0.044π ∗ =  (the interdependence is implied for both). 

 Case 2.1 Case 2.2 

 Bias Var MSE Bias Var MSE 

π  −0.0545 0.00497475 0.007945 −0.11655 0.0032776 0.0168615 

( )1|0
|0π
∗

 −0.01832 0.00019877 0.0005344 −0.01316 0.000774014 0.0009472 

( )1|0
|1π
∗

 −0.09804 0.00027055 0.0098824 −0.09202 0.00105352 0.0095212 

( )0|1
|0π
∗

 −0.02908 0.00119115 0.0020368 −0.02032 0.0019743 0.0023872 

( )0|1
|1π
∗

 −0.11726 0.00162129 0.0153712 −0.10704 0.00268724 0.0141448 

( )1|1
|0π
∗

 
−0.01852 0.00161797 0.00196096 −0.00196 0.00281824 0.00282208 

( )1|1
|1π
∗

 −0.09794 0.00220224 0.0117945 −0.07862 0.00383594 0.010017 
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have been no signs of distinction between the auto-regressive and moving-average 
estimators’ merits: not only does this strengthen the views of Sections 4.1 and 4.2, 
but also it brings to mind the classic Gaussian ARMA gem of [8], that the mov-
ing-average estimation transforms in theory to an auto-regression like situation. 

6. Conclusions and Extending to the χ2 Test for Stationarity 

Straight from (23), Theorem 4.3 and Lemmas 4.4, 4.5, there is the important de-
rivation 

( ) ( )

1

0
1 2

0

1ˆ ,Var asD
t

t

T N T
p

δ
−   − → →∞     

0π π
π

       (30) 

for the Maximum Likelihood Estimators of the parameters of a process that as-
signs its appearance to a causal and invertible TARMA model. The normal dis-
tribution convergence (30) implies the chi-square distribution convergence 

( ) ( ) ( ) 2
0 0

0

1ˆ ˆVar ,D
t df

t

T
p

τ δ χ
 

− − →  
 

π π π π
π

          (31) 

where df  equals the size of the parameter vector. 
The asymptotic result (31) can be a real asset when testing whether a sample 

series has been generated by a stationary ( -indexed) process: the null hypo-
thesis will be of the form 

H0: {Xt} is stationary with “distribution”... 

where “distribution” is being used in the wide sense of a hyper-model that might 
specify as much information is allowed for the researcher (for example, marginal 
distribution, pairwise distribution,... or marginal and conditional distributions,... 
with or without knowledge of parameters etc). Under H0, a proper identification 
of k (this might not be necessary if the variables are discrete with “Bernoulli” 
being the best of cases), as well as p and q (some faint suggestions for setting 

0p =  or 0q =  might be found in [1]) must take place to proceed. Identifica-
tion issues must still be resolved in the case that the researcher is not testing an 
assumption, but opts for the alternative task of point and interval estimation. 
For either inference route taken, further research is mandatory, in order to ap-
proximate the variance matrix ( )1Var t tp δ− . The reader might wish to look for 
the special case of a causal TAR model, which due to its simplicity, is believed here 
that it should be supported as the most appropriate test for the non-parametric 
time series stationarity. 

In a more structured context, an equivalent to the [14] ARMA methodology 
of identification, estimation, validation and forecasting can now become reality 
for the strictly stationary processes: any distribution (heavy-tailed, with extreme 
values, asymmetric or with levels of skewness) can be tamed by a proper catego-
rization and then p and q need to be selected as well. This paper has contributed 
the complete guide for the second step with the best of all methods of estima-
tion, by putting on the table all necessary properties of the TARMA maximum 
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likelihood estimators. 
In order to use the TARMA equation, the sample series needs to be produced 

by a stationary one. Any sign of persistent tendency, such as trends, seasonality 
or cycles forbid the use of TARMA: joint distributions (of equal “windows”) 
must look alike in time. For the second-order stationarity [15] give answers on 
how the series can be fixed to ARMA; or, there is a whole philosophy of model-
ling those tendencies directly. For the strict stationarity, one can still resort to 
(31), testing and computing whether the sample series is close enough to a hy-
pothesis of hyper- dependence: a large value of the statistic, as compared to a 
chi-square value, will suggest that the hypothesis collapses. Otherwise, there are 
parametric/theoretical approaches that work under specific distributional as-
sumptions. 

To wrap it up, it is strongly believed that a precious link has been solidified 
between the “multiplicative linear” (as called in [1])—strictly stationary- times 
series and the non-parametric inferential statistics. The well-known 2χ  test for 
the distribution of a variable that has generated a random sample, can be ex-
tended now to the 2χ  test for the stationary-principled hyper-model, domi-
nating a  -indexed process that has generated a sample series: as in the former 
case, when extra (than the prespecified) parameters need to be estimated, it 
might be worth investigating the reduction of degrees of freedom in the statistic 

2χ  distribution. Regardless of various such minor issues that might be studied 
further, the main achievement of this paper is that it has dealt quite satisfactorily 
with a complex problem: the inference for any stationary time series that can be 
clothed by a causal and invertible TARMA equation. 
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