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Abstract 
Adequate power supply is a vital factor in the development of the economic 
growth of every nation. However, due to changing hydrological conditions, 
inadequate fuel supplies and dilapidated infrastructure, developing countries 
face challenges in planning the power grid infrastructure needed to support 
rapidly growing urban populations. This research seeks to model the monthly 
electricity power generation for prediction purposes, by implementing stochas-
tic process models on a historical series of monthly electricity power genera-
tion in Ghana. A detailed explanation of model selection and forecasting 
accuracy is presented. The SARIMA (1, 0, 0) × (0, 1, 1)12 model with an AIC 
score of 439.6995, a BIC score of 446.3537 and an AICc score of 440.8759, has 
been identified as an appropriate model for predicting monthly electricity 
power generation in Ghana. The range used was from 2015 to 2019 and it was 
validated with data from April to December of 2019. The predicted values for 
2019 are relatively close to the observed values. Thus, the experimental results 
show good prediction performances. Therefore, with developed SARIMA mod-
el, the forecast is made for the year 2021, proving an increase of monthly power 
generation. The performance and validation of the SARIMA model were eva-
luated based on various statistical measures, the test data produced RMSE 
(55.8606), MAE (45.454) and MAPE (3.0621%). The lagged effect can also 
help in accurate forecasting and assist policy and decision-makers to establish 
strategies, priorities on electric power generation. 
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1. Introduction 

Electricity generation is one of the key components in achieving sound eco-
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nomic development. Although, Ghana has committed itself to universal electric-
ity access by 2020, the real challenge is the capacity to meet this goal and, most 
importantly, to ensure that supply is reliable and adequate [1]. The electricity 
supply is frequently interrupted in Ghana and series of load shedding incidents 
have been experienced, such as in 2014 and 2015, which was popularly referred 
to as “Dum-Sor” [2]. 

Ghana’s main sources of electricity generation are hydroelectric, thermal and 
renewable. Ghana currently has over 4000 MW of installed generation capacity, 
though actual availability rarely exceeds 2400 MW. The total installed capacity 
for existing plants in Ghana is 4132 MW consisting of Hydro 38%, Thermal 61% 
and Solar less than 1% [3] [4]. However, as already mentioned, this type of elec-
tricity generation has its limitation due to hydrological conditions, inadequate 
fuel supplies and dilapidated infrastructure. 

Since the Sustainable Development Goals (SDGs) were adopted by all United 
Nations Member States in 2015, which seeks to “ensure access to affordable, re-
liable, sustainable and modern energy for all” and has centered on electricity ac-
cess, often ignoring the poor rates of grid resilience and reliability [5] [6]. 

In 2014, the Ghanaian government announced two generation expansion 
goals—5000 MW installed capacity by 2015 and 10% renewable energy by 2020. 
Yet, as of 2018, installed capacity stood at 3800 MW and renewable energy 
formed only 2% of the generation mix, and the government pushed back its goal 
of 10% renewable energy to 2030 [4]. These goals were announced on the heel of 
rising electricity tariffs and the 2012-2016 power crisis, the worst in the country’s 
history. 

From 2015 to 2017, the average number of outages experienced by consumers 
in Ghana has increased from 18 to 48 per year despite the regulatory maximum 
of 6 power outages per customer per year [4]. During the peak of the crisis in 
2014, consumers averaged 8 outages per month with each lasting at least 8 hours 
and back up diesel generators accounted for 12 percent of grid capacity [7]. 

Although, electricity generation capacity has increased, the trend of future 
electricity demand is vital to solving challenges such as frequent power outages, 
load shedding, and inadequate electricity supply [8]. 

These events in Ghana, have compelled energy planners to diagnose the elec-
tricity issue as a problem of reliability, the policy goals focused largely on fixing 
power supply shortages through generation expansion. 

Several researches such as [9] [10] and [11] have looked into prediction of 
electricity consumption and electricity demands in Ghana but both articles failed 
to look at the amount of power needed to be generated to help solve the con-
sumption and demand problems. 

Against the backdrop, the objective of this research is to model the historical 
data of the monthly gross production of electric energy in Ghana between 2015 
and 2019, performing a detailed analysis of the data to reduce the forecast error 
using the Seasonal Autoregressive Integrated Moving Average (SARIMA) tech-
nique. This will allow us to make a stochastic model to forecast the monthly 
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production of hydroelectric energy and can be used for energy planning from 
different sources of electricity production. 

2. Materials and Methods 
2.1. Data Collection 

The Monthly Electricity Power Generation series data was obtained from Ghana 
Energy Commission corresponding to the years 2015 to 2019 for this research. 
The series data has 60 monthly observations from January 2015 to December 
2019 [12]. The first 51 monthly observation from January 2015 to March 2019 
were used for model calibration. The rest 9 observations from April 2019 to De-
cember 2019 were used for model validation “in-sample” forecast. 

2.2. Series Analysis 

The analytical approach to this study is bounded by the Box-Jenkins SARIMA 
model [13]. The modelling of the data is done using a combination of non-seasonal 
and seasonal components, and can be specified as SARIMA (p, d, q) × (P, D, 
Q)s. These models are regression models with delays in the dependent variable 
Xt and delays with respect to the error term. In the ARIMA models (p, d, q), the 
parameters p, d and q must be identified, where the parameter p is the autore-
gressive value of the dependent variable, d is the finite difference transformation, 
and q is the delay of the error term or the moving average value of these stochas-
tic models [14]. To find these values, the stationarity of the time series data was 
analyzed in detail. The single Autocorrelation Function (ACF) and Partial 
Autocorrelation Function (PACF) are correlograms functions help to determine 
the degree of correlation between two consecutive values of the series and give 
an idea of the possible parameters of the ARIMA models [15] [16]. 

Step 1: Series transformation 
The SARIMA non-seasonal and seasonal differencing was conducted to achieve 

stationarity of the time series by eliminating the trend and seasonality. From the 
non-seasonal and seasonal differenced data, the non-seasonal and seasonal com-
ponents of the model were formulated by examining their autocorrelation func-
tion (ACF) and partial autocorrelation function (PACF). The ACF and PACF 
were used to determine the degree of differencing and appropriate autoregres-
sive and moving average terms. 

Step 2: Stationarity evaluation 
From the non-seasonal and seasonal differenced data, the non-seasonal and 

seasonal components of the model were formulated by examining their autocor-
relation function (ACF) and partial autocorrelation function (PACF). The ACF 
and PACF were used to determine the degree of differencing and appropriate 
autoregressive and moving average terms. In addition, the Kwiatkowski-Phillips- 
Schmidt-Shin (KPSS) and the Augmented Dickey Fuller (ADF) unit root tests 
were also used to ascertain the stationarity of the series. These tests assume three 
variants such as a random walk with null mean, random walk with drift and 
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random walk with drift and linear trend [17]. 
Step 3: Model identification 
In ARIMA models (p, d, q) [17] the series differs d times to obtain a stationary 

series. These stationary models present the following Equation (1) 

( ) ( )

1 1 1 1

AR MA

d d d d d
t t p t p t q t q t

p q

X X Xα φ φ θ ε θ ε ε− − − −= + + + + + + + 

 

         (1) 

where d
tX  is the series with differences of order d, tε  represents the process 

of white noise with normal distribution ( )20,N σ  being independent and iden-
tically (i.i.d) and α , 1, , pφ φ , 1, , qθ θ  are the model parameters. 

As the monthly electricity power generated data presents strong seasonality 
[18], models have been used where ARIMA models are combined with seasonal 
terms. This new combined model has two components: a component with regu-
lar structure ARIMA (p, d, q) that models the non-independence associated with 
the data and the other component with ARIMA structure (P, D, Q) that models 
the seasonality component, where P is the autoregressive seasonal term, D sea-
sonal term of difference and Q seasonal term of moving average. 

The Equation (2) of the general mathematical model for this type of model, 
also called SARIMA [19] is 

( ) ( )

( ) ( )

1 1 1

SARAR

1 1 1 1

MA SMA

t t p t p t s P t Ps

Pp

t t q t q t Q t Qs

q Q

X X X X Xα φ φ ϕ ϕ

ε θ ε θ ε ϑ ε ϑ ε

− − − −

− − − −

= + + + + + +

+ − − − − − −

 





 

 

          (2) 

where α , 1, , pφ φ , 1, , Pϕ ϕ , 1, , qθ θ , 1, , Qϑ ϑ  are the model parame-
ters to estimate. 

In identifying a suitable model, information loss metrics such as the Akaike 
Information Criterion (AIC) [20], the corrected AIC (AICc) and Bayesian In-
formation Criterion (BIC) [21] were employed. 

( )AIC 2log 2L k = Ψ + 
                      (3) 

( )2 1
AICc AIC

1
k k
n k

+
= +

− +
                     (4) 

( ) ( )BIC 2log logL k n = Ψ + 
                   (5) 

where: n is number of observations, k is the number of parameters in the model 
1k p q P Q= + + + +  and a likelihood function, ( )L Ψ , where Ψ  is the maxi-

mum likelihood estimates of the parameters for the SARIMA. 
Step 4: Estimation of model parameters 
After the successful identification of a suitable model, the parameters dis-

cussed in Step 3 are then estimated. At this stage, the significance as well the 
relative contribution of each parameter to the overall predictive ability of the 
model is assessed. 

Step 5: Model diagnostics and validation 
At this stage, diagnostics is performed on the residual of the suitable model. 
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This is carried out to ensure that the assumptions governing the usage of the 
model are satisfied. To achieve this, the standardised plot, ACF plot and the plot 
of Box-Ljung test (modified version of the Box-Pierce test) are employed as di-
agnostic tools to test for the “lack-of-fit”. The Box-Ljung [22] test statistic is ex-
pressed as shown in Equation (6) 

( )
2

1

ˆ
2

m
k

k

r
Q n n

n k=

= +
−∑                       (6) 

Thus, the model is shown to be asymptotically distributed as a ( )2
1 mαχ − , 

where m is the number of lags being tested with degree of freedom  
df m q P Q= − − − , n is the sample size and k̂r  is the estimated autocorrelation 
of the series at lag k. 

The Box-Ljung test is defined on the null hypothesis, Ho: the model does not 
exhibit lack-of-fit against the alternate hypothesis Ha: the model exhibits lack- 
of-fit. The null hypothesis is rejected if 2

1 ,dfQ αχ −> . 
In validating the selected model, performance indicators such as the Root 

Mean Squared Error (RMSE), Mean Absolute Error (MAE) and the Mean Ab-
solute Percentage Error (MAPE) are utilised as shown in Equations (7) to (9) 
respectively [22]. 

( )2

1

1 ˆRMSE
n

t t
t

X X
n =

= −∑                     (7) 

1

1 ˆMAE
n

t t
t

X X
n =

= −∑                       (8) 

1

ˆ1MAPE 100
n

t t

t t

X X
n X=

−
= ×∑                    (9) 

Step 6: Model forecast 
Once the SARIMA model has been validated, the selected SARIMA model in 

step 5 is then used to forecast electricity power generated from January 2020 to 
December 2020. The predicted values are estimated with a 95% confidence level. 

3. Results and Discussion 

Figure 1 shows the monthly electricity power generated data, which covers 60 
months, from January 2015 to December 2019. Though electricity power is gen-
erated every month, they also have obvious periodicity and seasonality, which 
manifests basically in the last quarter of the year to the first quarter of the sub-
sequent year. This could be attributed to the enormous megawatts of power 
needed in the celebration of seasonal festivities during these periods. 

Figure 2 shows the plot of the training dataset and presents the autocorrela-
tion functions ACF and PACF. Both functions decay exponentially in a delay 
or lag, which are significant with period seasonal frequencies suggested by the 
SARIMA model. 

In order to address the unit root problem and develop a reliable model for 
predicting electricity power generation, a seasonal differencing is applied on the  
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Figure 1. Electricity power generated in megawatt (MW). 

 

 
Figure 2. Correlogram functions of the electricity power generated series. 

 
training dataset. The 12th differences (seasonal difference at lag 12) of the train-
ing dataset is estimated, the ACF and the PACF plots of the seasonally differ-
enced estimates are shown in Figure 3. In checking the stationarity of the sea-
sonally differenced data, Table 1 reports on the KPSS and ADF tests. As ob-
served, the statistics from both tests suggest that the seasonal differenced data is 
now stationary. 

For the analysis of the stationarity of the series, we obtained the Augment 
Dickey-Fuller (ADF) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) unit root 
tests in Table 1. Observing from Table 1, the statistic from the KPSS test (1.1768) 
is less than the critical values at various significant levels (0.347, 0.463, 0.739), 
even at 10% significance level. On the other hand, the statistic from the ADF test 
(1.4221) is less than the critical values (1.61, 1.95, 2.60). Thus, the hypothesis of 
the existence of a unit root is not rejected. 

From Figure 4, a spike at 12 in the ACF is significant but no other is signifi-
cant at lags multiple of 12, the PACF shows an exponential decay in the seasonal  
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Figure 3. Time series, ACF and PACF plots for the seasonally differenced. 

 
Table 1. Test of stationarity. 

Test Hypothesis Critical Values 
Seasonal Differencing 

Order 0 Order 12 

KPSS 
H0: Stationary 

H1: Not Stationary 

10% 0.3470 

1.1768 0.1129 5% 0.4630 

1% 0.7390 

ADF 
H0: Not Stationary 

H1: Stationary 

10% 1.6100 

1.4221 5.4321 5% 1.9500 

1% 2.6000 

 
lags; that is 12, 24, 36 etc. Thus, the seasonal part of the model has a moving av-
erage term of order 0 and an autoregressive term of 1. For the non-seasonal part, 
the ACF tails off after lag 2 and the PACF cuts off after lag 1. Therefore, the 
non-seasonal part has an autoregressive term of 1 and a moving average term of 
0. Based on the features portrayed by the plots, an initial SARIMA (1, 0, 0) × (0, 
1, 1)12 model is proposed. Further investigation of neighbouring models was 
conducted and the result is as shown in Table 2. However, the tentative model 
along with its variants are estimated and then compared in terms of AIC, BIC 
and AICc information loss metrics. Table 2 shows the information loss report 
on the estimated competing models. As observed, ARIMA (1, 0, 0) × (0, 1, 1)12 
was indeed the most suitable among the competing models with least values of 
AIC (439.6995), BIC (446.3537) and AICc (440.8759). 

To validate and verify the SARIMA model, Figure 4 shows the standardized 
residuals, the respective ACF graph and p-values for the Ljung-Box statistic. 
Panel (a) of Figure 4 suggests that the standardized residuals estimated from this  
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Table 2. AIC, BIC and AICc scores for neighbouring models. 

Sn Model AIC BIC AICc 

1 (1, 0, 0) × (0, 1, 0)12 441.8826 446.8733 442.5684 

2 (1, 0, 0) × (0, 1, 1)12 439.6995 446.3537 440.8759 

3 (1, 0, 0) × (0, 1, 2)12 440.9824 449.3002 442.8006 

4 (1, 0, 1) × (0, 1, 1)12 440.4900 448.8078 442.3082 

5 (1, 0, 1) × (0, 1, 2)12 441.7639 451.7453 444.3889 

6 (1, 0, 0) × (1, 1, 0)12 441.7042 448.3584 442.8807 

7 (1, 0, 0) × (1, 1, 1)12 441.3633 449.6811 443.1815 

8 (1, 0, 1) × (1, 1, 2)12 443.0759 454.7209 446.6888 

9 (2, 0, 0) × (0, 1, 1)12 440.8491 449.1669 442.6673 

10 (2, 0, 1) × (0, 1, 2)12 443.7390 455.3839 447.3519 

 

 
Figure 4. Graphical Diagnostics of SARIMA (1, 0, 0) × (0, 1, 1)12 Model: (a) Standardized 
Residuals, (b) ACF (c) P-values for the Ljung-Box statistic. 

 
model should behave as an independent and identically distributed sequence 
with a mean of zero and a constant variance. The ACF of the residuals showed in 
Panel (b) suggests that the autocorrelations are close to zero. This result means 
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that the residuals did not deviate significantly from a zero mean white noise 
process. Panel (c) shows p-values for the Ljung-Box statistic. Given the high 
p-values associated with the statistics, we cannot reject the null hypothesis of 
independence in this residual series. Thus, we can say that the SARIMA (1, 0, 0) 
× (0, 1, 1)12 model fits the data well. The residual plots in Figure 4 suggest that 
the distribution of the residuals of our proposed model is Gaussian (white noise). 
Hence, our proposed model is justified. 

Table 3 shows the parameters of the selected SARIMA (1, 0, 0) × (0, 1, 1)12 
model. As observed, all the parameters are statistically significant (p-values < 
0.05). This indicates the contribution of the individual parameters to the overall 
predictive ability of the model. Also, the p-values from the Box-Pierce and 
Box-Ljung test statistics (0.657, 0.6475 > 0.05) further ascertains the adequacy of 
the model as discussed in Figure 5. 

Figure 5 shows the plot of observed monthly electricity power generated and 
train predicted from 2015 to 2019. The figure shows that the values for monthly 
predicted cases tend to follow the reported values quite closely with RMSE 
(56.09), MAE (38.785) and MAPE (3.2217%). 

The selected SARIMA (0, 1, 1) × (0, 1, 1)12 model was then used to forecast 
monthly electricity power generated from April 2019 to December 2020 as shown  

 
Table 3. Parameter estimate of SARIMA (1, 0, 0) × (0, 1, 1)12 model. 

Parameter Estimate Std. Error Z P-Value 

ar1 0.57203 0.14264 4.0104 <0.0001 

sma1 −0.53911 0.26367 −2.0447 0.04089 

drift 9.99151 1.23922 8.0628 <0.0001 

Box-Pierce = 0.1972 (0.657); Box-Ljung = 0.2091 (0.6475). 
 

 
Figure 5. Observed and training predictions. 
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in Table 4 and Figure 6. The first part of the forecast values (i.e. from April to 
December 2019) was used to validate the model by comparing with the reserved  

 
Table 4. Validation and forecast values of SARIMA (1, 0, 0) × (0, 1, 1)12. 

Year Month Observed Forecast Year Month Observed Forecast 

2019 

Jan   

2020 

Jan  1586.74 

Feb   Feb  1491.73 

Mar   Mar  1635.25 

Apr 1502.64 1503.77 Apr  1602.33 

May 1598.72 1485.87 May  1593.56 

Jun 1441.77 1394.21 Jun  1507.13 

Jul 1401.22 1371.87 Jul  1487.78 

Aug 1381.05 1415.69 Aug  1533.31 

Sep 1338.56 1386.24 Sep  1504.83 

Oct 1406.62 1463.26 Oct  1582.41 

Nov 1504.19 1499.23 Nov  1618.70 

Dec 1613.00 1538.72 Dec  1658.37 

Error 
RMSE = 55.8606 
MAE = 45.4540 
MAPE = 3.0621 

 

 

 
Figure 6. Observed power generated (January 2015-December 2019) and forecast of power generated 
(January 2020 to December 2020). 
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test data. Results from the validation produced a RMSE (55.8606), MAE (45.454) 
and MAPE (3.0621%). The forecasting model generated the good empirical re-
sults as the forecasted data is very close to the observed data. 

4. Conclusion 

This study employed the SARIMA modelling technique in forecasting the monthly 
electricity power generated in Ghana. This was achieved by first soliciting for 
monthly data (from January 2015 to December 2019) on electricity power gen-
erated (MW) in Ghana from Ghana Energy Commission. The data was then 
partitioned into training (January 2015 to March 2019) and test (April 2019 to 
December 2019) through which various SARIMA models were developed. The 
study found that the SARIMA (1, 0, 0) × (0, 1, 1)12 model was suitable when 
compared with the other models, thus, can adequately represent the dynamics in 
electric power generated in Ghana. Also, all the tests conducted suggest that the 
model is reasonable for its short-term forecasting with a high forecasted accura-
cy based on performance indicators such as the RMSE, MAE, and MAPE. Due to 
the fundamental importance of reliability in forecast, the model was again vali-
dated by comparing the forecast values with observed test values. This validation 
on the test data produced RMSE (55.8606), MAE (45.454) and MAPE (3.0621%). 
The model was used to forecast the monthly electricity generated (MW) in 
Ghana from the year 2020. The SARIMA forecast model can serve as a useful 
tool that can provide information to support policy makers and the energy sec-
tor. 
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