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Abstract 
The genome-wide association study (GWAS) is a powerful experimental de-
sign that is applied to detect disease susceptible genetic variants. The main 
goal of these studies is to provide a better understanding of the biology of 
disease, which further facilitates prevention or better treatment. A statistical 
inferential process is finally carried out in this study, where an association is 
usually observed between the single-nucleotide polymorphism (SNPs) and 
the traits in a case-control setting. To detect the disease responsible loci cor-
rectly, the investigation of the statistical association should be carefully con-
ducted along with the other necessary steps. This research provides an intro-
ductory guideline for conducting such statistical association tests for these 
studies using SNP genotype data. 
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1. Introduction 

A genome-wide association study (GWAS) is an inclusive genetic analysis to 
identify associations between specific genetic variations in the form of sin-
gle-nucleotide polymorphism (SNPs) and phenotypic traits. These studies are 
very effective in genetic epidemiology as they provide a relatively superficial ap-
proach for detecting potential genetic contributors to common and complex 
diseases using a simple case-control study model [1]-[6]. 

Correct performance of such genetic association studies requires interdiscip-
linary knowledge. Specifically, knowledge of genetics, statistics, and bioinfor-
matics are the primary key [6]. In this pathway, in-depth knowledge of the ge-
netic architecture of the human genome was provided by two important re-
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search initiatives, the International HapMap Project and the 1000 Genomes 
project. The International HapMap Project [7] described the patterns of com-
mon SNPs within the human DNA (deoxyribonucleic acid) sequence whereas 
the 1000 Genomes (1KG) project [8] provided a map of both common and rare 
SNPs [6]. 

In such studies, very large sample sizes are required to identify and validate 
findings. The careful attention to data quality has been appreciated as even small 
sources of systematic or random error can cause spurious results. Hence, a 
number of strategies for quality control have been developed [6] [9] [10].  

Along with these quality control and quality assurance of genotypic data, ap-
propriate statistical association testing will need to be carefully conducted using 
sophisticated and dedicated genetics software [6].  

The method of presenting the GWAS finding regarding the reporting of dis-
ease-associated or risk markers are quite different from most clinical or epide-
miological studies. Particularly, p-values of a single SNP test along with its asso-
ciated odds ratio are emphasized in case of results presentation [5] [11]. 

Here, the likelihood of the odd-ratios between two different alleles being sta-
tistically different than one is reported by the p-values in a GWAS, where the 
typical threshold of significance level for the most published GWAS is p = 5 × 
10−08 [5]. 

This study focuses on the statistical analysis after genotyping calls are made 
and quality control and assurance measures are taken [11]. The main objective 
of this paper is to provide an overview of some introductory statistical analysis 
of GWAS using the SNP genotype DNA sequencing data. 

2. GWAS Data Preparation 

For the independence tests, the SNP genotype data for each gene were generated 
for 3000 individuals using computer simulation in R-programming language by 
assigning the equal probability for both the cases (0.5) and the controls (0.5) 
(Data 1). Another data containing the GWAS results was also generated via 
computer simulation in R, which is a replica of “PLINK assoc” output  
(https://zzz.bwh.harvard.edu/plink/anal.shtml) containing the following infor-
mation (Data 2). 

 
chr Chromosome number that defaults to PLINK’s “CHR”. 

bp 
Physical position (base-pair). This is the chromosomal position. (defaults to 
PLINK’s “BP”). 

p The p-value from the association tests that defaults to PLINK’s “P”. 

snp SNP identifier or rsID (Reference SNP cluster ID) which defaults to PLINK’s “SNP”. 

3. Demonstration of the Statistical Analysis 
3.1. Testing Association 

GWAS generally tests association for a single SNP which is a contingency table 

https://doi.org/10.4236/ojs.2022.122014
https://zzz.bwh.harvard.edu/plink/anal.shtml


T. Basak, N. Roy 
 

 

DOI: 10.4236/ojs.2022.122014 202 Open Journal of Statistics 
 

test of genotype counts and disease phenotype. For example, for a SNP with ma-
jor allele “A” and minor allele “a”, the genotype counts (A/A, A/a and a/a) can 
be presented in a 2 × 3 contingency table along with a binary disease status or 
phenotype (case-control) (Table 1) [12]. 

It is expected that the relative allele or genotype frequencies to be the same in 
case and control groups under the null hypothesis of no association. Usually, the 
association for a given contingency table is tested by the simple chi-squared (χ2) 
[13] test with two degrees of freedom (d.f.), and the p-value is recorded. Each of 
these p-values is compared with the GWAS typical threshold of significance lev-
el, which is p = 5 × 10−08 for the most published GWAS [5].  

For the practical application, this contingency table test (χ2-test) was firstly 
performed for evaluating each of the three randomly selected genes from the 
genotype data as described in Section 2 (Data 1). The conventional χ2-test was 
applied for each of SNPs contained in a gene, where the GENE1, GENE2 and 
GENE3 have 3, 5 and 10 SNPs, respectively. For example, the GENE1 contains 3 
SNPs, the three individual χ2-tests were performed for each of the 3 SNPs, and 
the p-values were recorded. The tests for the other two genes were also per-
formed in the same manner. The p-values for these three genes are presented in 
Table 2. 

Comparing the p-values to the GWAS threshold p = 5 × 10−08, there is one 
SNP from the GENE1 is associated with the disease phenotype having p = 
5.243314 × 10−10 (Table 2). Hence, GENE1 is associated with the disease pheno-
type. 

 
Table 1. A 2 × 3 table of genotype counts for a single SNP with disease status.  

 A/A A/a a/a 

Case n11 n12 n13 

Control n21 n22 n23 

 
Table 2. The p-values from the simple χ2-test for the 3 genes.  

GENE1 GENE2 GENE3 

1.564368 × 10−07 0.02971920 0.01076871 

5.243314 × 10−10 0.52543425 0.59685551 

3.288859 × 10−07 0.43050584 0.53037024 

 0.97167750 0.53108175 

 0.08172946 0.80016099 

  0.05465315 

  0.35180821 

  0.20358497 

  0.03885251 

  0.86894928 
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3.2. Models for the Association Tests 

The conventional χ2-test does not include the sense of the genotype ordering 
(trend). Here, each of the genotypes is assumed to have an independent associa-
tion with disease phenotype. But, these ordering could be included in the associ-
ation tests of contingency tables by considering the disease penetrance. The pe-
netrance function is an approach for modeling the relation between SNPs and 
risk of a given disease with the consideration of genotype ordering [14] [15] 
[16].  

For a single diallelic SNP with alleles “A” (major, disease responsible) and “a” 
(minor, normal), the unordered genotype counts are presented in Table 1. For a 
disease status the risk factor is defined by the genotype or allele at a specific 
marker. Thus, the disease penetrance associated with a given genotype is the risk 
of disease of the individuals carrying that genotype or allele. This risk of carrying 
disease responsible genotype could be measured by defining the probabilistic 
functions, which intern define the conditional probabilities of being affected 
with a given disease conditional on carrying a specific genotype [12] [17] [18]. 

For the genotype counts as shown in Table 1, the three models can be defined 
in terms of a genetic penetrance parameter γ (γ > 1). An additive model implies 
that risk of developing disease is increased γ-fold for the genotype A/a and by 
2γ-fold for the genotype A/A. A recessive model indicates that two copies of al-
lele “A” are required for an γ-fold increase in disease risk, and a dominant mod-
el specifies that either one or two copies of allele “A” are required for an γ-fold 
increase in disease risk. An intuitive measure of the strength of an association is 
the relative risk (RR). In this genetic association analysis, each genetic model can 
be represented with the relation to this genotypic relative risks (GRR) under the 
assumption of phenocopies, where the GRR presents the increased risk of an in-
dividual having a disease responsible genotype over a person without it [9] [19]. 

Generally, the models should be chosen based on the mode of inheritance 
(dominant, additive and recessive). But, a common problem is the lack of know-
ledge concerning the mode of inheritance. Assumption of the incorrect mode of 
inheritance may lead to significant loss of power. Also, testing for all the possible 
models may increase type I error rate. Some studies have proposed ways to de-
termine the robust procedures which will correctly specify the underlying model 
of inheritance. Also, these methods perform the analysis by maximizing the 
power and preserving the nominal type I error rate. The proposed methods are 
based on the theory of efficiency robust procedures, the deviations from Har-
dy-Weinberg equilibrium (HWE) and a combination of test statistics for the se-
lection of the underlying genetic model [20] [21]. 

Now, the practical application of these concepts of penetrance in an associa-
tion study using the contingency table can be demonstrated in one of the two 
ways. In one approach, these models of penetrance could be included in the con-
tingency table analysis by rearranging the genotype counts according to the 
mode of inheritance (additive, dominant and recessive) [9] [19] [22]. The other 
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way is to define the penetrance models that will specify the trends of risk with 
increasing numbers of disease responsible allele. Hence, the association could be 
tested by the Cochran-Armitage trend test for the additive, dominant and reces-
sive models [9] [23] [24]. Tests with an additive model are common in GWAS 
when the underlying genetic model is unknown. This is because this model has 
reasonable power to detect both additive and dominant effects [9] [19].  

For the genotype data (Data 1), the association test was further performed by 
the Cochran-Armitage trend test for additive model. Single SNP test was applied 
for each of the three genes (GENE1, GENE2 and GENE3), and the p-values were 
recorded (Table 3).  

From the results of the Cochran-Armitage trend test, it was observed that the 
two SNPs from the GENE1 having the p = 6.284831 × 10−11 and 8.586496 × 10−08, 
respectively, are significant according to the GWAS threshold p = 5 × 10−08, and 
hence associated with the disease phenotype (Table 3). So, the GENE1 is to be 
reported as positive among the three. 

On the other hand, the p-values from the two tests (the conventional χ2-test 
and the Cochran-Armitage trend test) are completely different from each other 
(Table 2 and Table 3). That is, considering the order of the genotypes is pro-
ducing the different outputs as compared to the unordered case. More specifi-
cally, overall the trend test is producing smaller p-values except for some cases. 
Though, the GENE1 is resulting in significant association in both of the two 
tests. But, the conventional χ2-test is showing only one significant SNP whereas 
the Cochran-Armitage trend test is resulting in two significant SNPs. The SNP2 
is significant for both the tests but the Cochran-Armitage trend test is producing 
smaller p-value (Table 2 and Table 3).  

3.3. Multiple Testing Corrections 

The GWAS evaluates several thousand of genes simultaneously under different 
conditions over the genome, where each gene consists of a different number of 
SNPs. Hence, such association studies consider huge number of simultaneous 
testing of the null hypothesis, which constitutes multiple testing.  

In order to control the type I error rate accurately, an adjustment is required 
for the p-values obtained from such simultaneous testing process, because detec-
tion of false positives may occur in such microarray data analysis. Here, the false 
positives are genes that are found to be statistically different between conditions, 
but are not in reality. 

Different types of multiple testing corrections include Bonferroni, Holm, Ben-
jamini and Hochberg False Discovery Rate, etc. [9] [25] [26]. All of these me-
thods have some underlying principles to be applied in practice.  

As a practical application, the Bonferroni correction is applied for the mar-
ginal p-values obtained from both the tests (the conventional χ2-test and the 
Cochran-Armitage trend test) for the significant gene (GENE1). In this approach, 
the p-values are multiplied by the number of comparisons. The corrected p-values 
are presented in Table 4.  

https://doi.org/10.4236/ojs.2022.122014
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Table 3. The p-values from the Cochran-Armitage trend test for the 3 genes.  

GENE1 GENE2 GENE3 

1.381782 × 10−07 0.008027006 0.003282794 

6.284831 × 10−11 0.379414203 0.911031670 

8.586496 × 10−08 0.198701794 0.443972876 

 0.836489351 0.324895632 

 0.371924565 0.860287464 

  0.326049890 

  0.166654955 

  0.297718380 

  0.021493524 

  0.991691621 
 

Table 4. The Bonferroni corrected p-values for both the conventional χ2-test and the 
Cochran-Armitage trend test for the significant gene, GENE1. 

The conventional χ2-test The Cochran-Armitage trend test 

Marginal p-values Corrected p-values Marginal p-values Corrected p-values 

1.564368 × 10−07 4.693104 × 10−07 1.381782 × 10−07 4.145346 × 10−07 

5.243314 × 10−10 1.572994 × 10−09 6.284831 × 10−11 1.885449 × 10−10 

3.288859 × 10−07 9.866577 × 10−07 8.586496 × 10−08 2.575949 × 10−07 
 

Overall, the p-values are changed after the correction. Specifically, this correc-
tion method provides quite larger p-values as compared to the marginal values. 
For the same gene (GENE1), the number of the significant SNPs remains the 
same for the conventional χ2-test. But, the scenario is changed for the Coch-
ran-Armitage trend test. For this case, there were two significant SNPs before 
the correction whereas only one SNP is showing association after the correction 
is performed (Table 4). 

4. Manhattan Plot 

A commonly used plot in most GWAS to display the significant SNPs in terms 
of p-values summarizes the results of the millions of tests, which have been per-
formed. It is also a presentation of the p-values of the entire GWAS on a ge-
nomic scale. The horizontal x-axis is a map of the genome (genomic coordi-
nates) organized from left to right by chromosome, and within chromosome by 
location. The different colors of each block usually show the extent of each 
chromosome. Each dot on the Manhattan plot signifies a SNP. The vertical loca-
tion of the SNP along the y-axis is its p-value for the correlation of itself with the 
phenotype. The p-values are negative-log-transformed (that is the −log10(p) label 
on the y-axis) so that the smaller values are higher on the plot [27].  

Figure 1 is presenting the Manhattan plot of all the p-values from the PLINK 
output (Data 2). The red line indicates the threshold for genome-wide signific-
ance (p = 5 × 10−08), and the blue line for suggestive associations (p = 1 × 10−05).  
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Figure 1. Manhattan plot of all the p-values for the GWAS results (Data 2). 

 
There is one SNP that crossed the red line (the solid grey dot circled by a red 

border, Figure 1). That is, this SNP is significant according to the GWAS thre-
shold. Based on the information of GWAS results (Data 2), this significant SNP 
is on chromosome 6 with the p-value 4 × 10−09. As the y-axis presents the 
−log10(p), which is equivalent to the number of zeros after the decimal point plus 
one. For example, see the presentation of the p-value = 4 × 10−09 for the signifi-
cant SNP indicated in a red circle in Figure 1. On the other hand, two SNPs on 
chromosomes 3 and 4 (the black and the grey dots between the blue and the red 
lines) have crossed the suggestive significance level (the blue line) having the 
p-values 1 × 10−07 and 2 × 10−06, respectively.  

5. Dedicated Software for GWAS 

The open-source statistical software like R [28] can be used for performing and 
visualizing all of these analyses as mentioned in this paper. But, there are some 
customized and dedicated GWAS software. For example, PLINK [29] is the most 
popular and computationally efficient software program that offers an inclusive 
and properly documented set of an automated GWAS analysis including the 
quality control, association testing, etc. The open source software PLINK is 
written in C++ and can be installed on Windows, Mac and UNIX machines.  

6. Conclusion 

A practical guideline for the GWAS association testing is provided in this paper. 
Although this application considers simulated data of SNP genotype and the 
GWAS results, the real data sets can also be handled in similar ways as outlined 
here. All of these theoretical contexts of statistical association testing along with 
the practical application would be made GWAS more accessible to statistical re-
searchers without having any formal training in this field.  
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