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Abstract 
Discrimination and classification rules are based on different types of as-
sumptions. Also, all most statistical methods are based on some necessary 
assumptions. Parametric methods are the best choice if it follows all the un-
derlying assumptions. When assumptions are violated, parametric approach-
es do not provide a better solution and nonparametric techniques are pre-
ferred. After Box-Cox transformation, when assumptions are satisfied, para-
metric methods provide fewer misclassification rates. With this problem in 
mind, our concern is to compare the classification accuracy of parametric and 
non-parametric approaches with the aid of Box-Cox transformation and 
Bootstrapping. We carried Support Vector Machines (SVMs) and different 
discrimination and classification rules to classify objects. The attention is to 
critically compare the SVMs with Linear discrimination Analysis (LDA), and 
Quadratic discrimination Analysis (QDA) for measuring the performance of 
these techniques before and after Box-Cox transformation using misclassifi-
cation rates. From the apparent error rates, we observe that before Box-Cox 
transformation, SVMs perform better than existing classification techniques, 
on the other hand, after Box-Cox transformation, parametric techniques pro-
vide fewer misclassification rates compared to nonparametric method. We 
also investigated the performances of classification techniques using the 
Bootstrap approach and observed that Bootstrap-based classification tech-
niques significantly reduce the classification error rate than the usual tech-
niques of small samples. Thus, this paper proposes to apply classification 
techniques under the Bootstrap approach for classifying objects in case of 
small sample. A real and simulated datasets application is carried out to see 
the performance. 
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1. Introduction 

Most of the statistical decisions can be made with the aid of explanatory data 
analysis, test of hypothesis, and from the suitable statistical model. In real life, 
most of the models are nonlinear. Linear models are very simple to estimate, 
test, as well as forecast. But nonlinear or generalized linear models are appropri-
ate in real-life situations. Nonlinear models can be transformed into linear mod-
els to avail the benefits of the linear model by different transformation tech-
niques. To overcome this difficulty of transformation techniques, several non-
parametric procedures can be used. SVMs are one of the popular nonparametric 
methods to handle nonlinear model [1].  

In data mining, nonparametric model is one that is data-driven. No explicit 
equations are used to determine the model. Parametric methods are the best 
choice if it follows all the underlying assumptions of the assumed models [2]. 
Also, all most statistical models are based on some assumptions. When assump-
tions are violated, parametric approaches can’t be better work, in that case, we 
should use nonparametric techniques to obtain better performance. In practice, 
researchers often carry out the experiment without checking assumptions and 
apply parametric methods. If most of the assumptions are violated, then without 
checking it is better to use nonparametric and robust methods or some other 
data mining techniques.  

Violation of these assumptions can seriously increase the chances of the re-
searcher committing misleading classification rules. Naturally, question arises, 
when observations are not independently distributed, observations are not nor-
mally distributed, and observations have unequal variance-covariance matrix 
[3]. According to the above situations, can we observe better performances of all 
discrimination and classification rules?  

In order to overcome the above problem, we can transform non-normal data 
to near normal by using Box-Cox transformation [4]. It is not always necessary 
or desirable to transform a data set to resemble a normal distribution. Our aim is 
to identify the best technique of classification in all situations. When assump-
tions are not satisfied then without checking we can use SVMs as a nonparame-
tric method.  

Classification techniques cannot usually provide an error-free method of as-
signment [3]. This is because there may not be a clear distinction between the 
measured characteristics of the populations: that is the groups which may over-
lap. Classification accuracy rates can be improved by using Bootstrapping. We 
addressed this issue of classification errors over small samples, investigated the 
performances of classification techniques, and observed that Bootstrap-based 
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classification techniques significantly reduce the classification error than the 
usual techniques of small samples. Thus, this paper proposes to apply classifica-
tion techniques under the Bootstrap approach for classifying objects in case of 
small sample.  

2. Data Information 

The data was obtained from Wroclaw Thoracic Surgery Centre for patients who 
underwent major lung resections for primary lung cancer. The dataset consists 
of post-operative life expectancy in lung cancer patients from 470 distinct indi-
viduals across 17 distinct attributes. The response variable has two classes, class 
1, death within one year after surgery, class 2, survival [5]. We split the dataset 
into training with two-thirds of observations and rest of the observations as test 
dataset. We split the dataset as a rule of thumb. Therefore, we train the model 
using the training set and then apply the model to the test set. In this way, we 
evaluated the performance of our models. 

3. Methods 

There were two main phases of the analysis. First, parametric, and nonparame-
tric classification methods were used to see the classification accuracy before and 
after Box-Cox transformation. Finally, we applied these classification techniques 
under the Bootstrap approach for classifying objects in the case of small and 
large samples to see the performance. 

3.1. Non-Parametric Classification Algorithm 

Support Vector Machines (SVMs) 
SVMs [6], are a classification method which has drawn tremendous attention 

in machine learning. They belong to a family of generalized linear models which 
achieves a classification decision based on the value of the linear combination of 
the features. They are also said to belong to “kernel methods”. A special property 
of SVMs is, SVMs simultaneously minimize the empirical classification error 
and maximize the geometric margin. 

Linear SVMs 
Let us consider a binary classification task with data points xi  ( )1, ,i m= 

, 
having corresponding labels 1iy = ±  and let the decision function be: 

( ) ( )sign w xf x b= ⋅ +                        (1) 

where, ⋅  is the scalar or inner product (so Tw x w x⋅ ≡ ). From the decision 
function we see that the data is correctly classified if ( )w x 0 i iy b i⋅ + > ∀  since 
( )w xi b⋅ +  should be positive when 1iy = + , and it should be negative when 

1iy = − . This leads the concept of distance or margin. Hence, we define a scale 
for ( )w,b  by setting w x 1b⋅ + =  for the closest points on one side and  
w x 1b⋅ + = −  for the closest on the other side. The hyperplanes passing through 
w x 1b⋅ + =  and w x 1b⋅ + = −  are called canonical hyperplanes, and the re-
gion between these canonical hyperplanes are called the margin band [6]. 
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Let 1x  and 2x  be two points inside the canonical hyperplanes on both 
sides. If 1w x 1b⋅ + =  and 2w x 1b⋅ + = − , we deduce that ( )1 2w x x 2⋅ − = . 
For the separating hyperplane w x 0b⋅ + = , the normal vector is 

2w w  
(where 

2w  is the square root of Tw w ). Thus, the distance between the two 
canonical hyperplanes is equal to the projection of 1 2x x−  onto the normal 
vector 

2w w , which gives ( )1 2 2 2x x w w 2 w− ⋅ =  maximizing the mar-
gin is therefore equivalent to minimizing: 

2

2

1 w
2

                            (2) 

subject to the constraints: 

( )w x 1    i iy b i⋅ + ≥ ∀                       (3) 

This is a constraint optimization problem in which we minimize an objective 
function (2) subject to the constraints (3), [6]. As a constrained optimization 
problem, the above formulation can be reduced to minimization of the following 
Lagrange function, consisting of the sum of the objective function and the m 
constraints multiplied by their respective Lagrange multipliers. We can call this 
the primal formulation: 

( ) ( ) ( )( )
1

1w, w w w x 1
2

m

i i i
i

L b y bα
=

= ⋅ − ⋅ + −∑             (4) 

where, iα  are Lagrange multipliers, and thus 0iα ≥  at the minimum, we can 
take the derivatives with respect to b and w, and set there to zero.  

Kernel Selection 
SVMs sensitive to the proper choice of parameters, so we checked the range of 

parameter combinations. In order to improve the performance of the support 
vector classification, we needed to select the best parameters for the model. To 
find misclassification rates, we used Radial Basis kernel, because of its good gen-
eral performance and the few numbers of parameters (C and γ). First, we used 
cross validation to find better C and finally decided which γ values need to be 
used for the better C.  

3.2. Transforming Univariate Observations 

Multivariate transformation is accomplished by applying a possibly different 
univariate transformation to each of the components of the multivariate data. 
The most used univariate transformation family is the Box-Cox power transfor-
mation family. A convenient analytical is available for choosing a power trans-
formation. In the case of univariate analysis Box and Cox consider the slightly 
modified family of power transformations 

( )
1    0

ln        0

x
x

x

λ

λ λ
λ

λ

 −
≠= 

 =

                        (5) 

which, is continuous in λ  for 0x > . 
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Manly (1976) suggests applying Box-Cox transformation to the exponential 
data. Thus, Manly’s transformation is, 

( )
( )exp 1

   0;
                   0

x
h x

x

λ

λλ λ
λ

 −
 ≠= 
 =

                    (6) 

Box-Cox suggests that a power transformation can be selected by maximum 
likelihood or Bayesian estimation. Given the observations 1 2, , , nx x x , the 
Box-Cox solution for the choice of an appropriate power λ  is the solution that 
maximizes the expression below:  

( ) ( ) ( )( ) ( )
2

1 1

1ln 1 ln
2

n n

j j
j j

nl x x x
n

λ λλ λ
= =

 
= − − + − 

  
∑ ∑            (7) 

where, 

( ) ( )

1 1

11 1n n
j

j
j j

x
x x

n n

λ
λ λ

λ= =

 −
= =   

 
∑ ∑                    (8) 

This estimation procedure can be applied to the exponential data to estimate 
the parameter in Manly’s transformation family [3]. 

3.3. Linear Discriminant Analysis (LDA) 

LDA models the distribution of the predictors separately in each of the response 
classes and then uses Bayes’ theorem to flip them around into estimates. For 
more than one predictor, the LDA classifier assumes that the observations in the 
kth class are drawn from a multivariate gaussian distribution which has a 
class-specific mean and common variance. Class means and common variance 
must be estimated from the data, and once obtained are then used to create li-
near decision boundaries in the data. LDA then simply classifies an observation 
according to the region in which it is located [7]. 

The simplest procedure is to calculate a linear discriminant for each class, this 
discriminant being just the logarithm of the estimated probability density func-
tion for the appropriate class, with constant terms dropped. Where the prior 
class proportions are unknown, they would be estimated by the relative frequen-
cies in the training set. Suppose the prior probability of class iA  is iπ , and 
that ( )if x  is the probability density of x in iA  class and is the normal densi-
ty equation.  

( ) ( )T 11 1exp
22

x xµ µ
π

− − − Σ − 
 Σ

                 (9) 

The joint probability of observing class iA  and attribute x is ( )i if xπ  and 
the logarithm of the probability of observing class iA  and attribute x is, 

T 1 T 11log
2i i i ixπ µ µ µ− −+ Σ − Σ                     (10) 

to within an additive constant. So, the coefficients iβ  are given by the coeffi-
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cients of x. 
1

i iβ µ−= Σ                            (11) 

and the additive constant iα  by, 

T 11log
2i i i iα π µ µ−= − Σ                       (12) 

though these can be simplified by subtracting the coefficients for the last class. 
The above formulae are stated in terms of the (generally unknown) popula-

tion parameters Σ , iµ  and iπ . To obtain the corresponding “plug-in” for-
mulae, substitute the corresponding sample estimators: S for Σ ; ix  for iµ ; 
and ip  for iπ , where ip  is the sample proportion of class iA  examples [8]. 

3.4. Quadratic Discriminant Analysis (QDA) 

QDA is very similar to LDA but does not assume constant variance across 
classes. Heterogenous class variances change the decision boundaries from linear 
to quadratic, thus changing the behavior of the classifier. LDA is a simpler mod-
el with a higher bias but less variation. QDA is a more flexible model that has a 
lower bias but higher variance. LDA will outperform QDA when the decreases in 
bias are outweighed by the increases in variance [9]. 

The quadratic discriminant function is most simply defined as the logarithm 
of the appropriate probability density function, so that one quadratic discrimi-
nant is calculated for each class. Taking the logarithm and allowing for differing 
prior class probabilities iπ  we obtain 

( ) ( ) ( ) ( ) ( )T 11 1log log log
2 2i i i i i i if x x xπ π µ µ−= − Σ − Σ −        (13) 

as the quadratic discriminant for class iA . 
In classification, the quadratic discriminant is calculated for each class and the 

class with the largest discriminant is chosen. To find the posteriori class proba-
bility explicitly, the exponential is taken of the discriminant and the resulting 
quantities normalized to sum to unity. Thus, the posterior class probabilities 
( )iP A x  are given by, 

( ) ( ) ( ) ( ) ( )T 11 1exp log log
2 2i i i i i iP A x x xπ µ µ− = − Σ − Σ −  

     (14) 

The most frequent problem with quadratic discriminants is caused when some 
attribute has zero variance in one class, for then the covariance matrix cannot be 
inverted. One way of avoiding this problem is to and a small positive constant 
term to the diagonal terms in the covariance matrix (this corresponds to adding 
random noise to the attributes). Another way, adopted in our own implementa-
tion, is to use some combination of the class covariance and the pooled cova-
riance. [10] [11]. 

3.5. Cross Validation (CV) 

Cross validation [12] involves randomly dividing the set of observations into K 
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“folds” of approximately equal size. The first fold is treated as a validation set, 
and the model is trained on the remaining K − 1 folds of data. This trained mod-
el is then used to predict the target in the Kth fold, and an accuracy metric, 

1ACC , is computed. This procedure is repeated K times where a new validation 
set is used during each iteration. This process results in K estimates of the test 
error: 2, , , kACC ACC ACC . The K fold CV estimate is computed by averaging 
these values, 

( ) 1

1 n
ik iCV ACC

k =
= ∑                     (15) 

This article required classifying observations into one of two categories; 
therefore, accuracy, misclassification rate, and the kappa statistics were used as 
accuracy measures in CV. 

3.6. Kappa Statistic 

Accuracy can be a misleading metric since it is possible to make correct classifi-
cations simply by chance alone. The following is the formula for calculating the 
kappa statistic: 

( ) ( )
( )1

Pr a Pr e
k

Pr e
−

=
−

                    (16) 

In this formula, ( )Pr a  refers to the proportion of actual agreement and 
( )Pr e  refers the probability of making a correct classification purely by chance. 

Kappa values range from 0 to a maximum of 1. 1 indicates perfect agreement, a 
value of 0 indicating no agreement, and values between 0 and 1 indicating vary-
ing degrees of agreement. Depending on how a model is to be used, the inter-
pretation of the kappa statistic might vary. Traditional metrics such as precision, 
recall, and specificity can still be calculated with multiple classes, but the objec-
tive of this analysis was overall accuracy, not a specific error rate [12] [13]. 

3.7. Bootstrap Methods 

The Bootstrap is a computer intensive re-sampling technique introduced by 
Efron [14] where theoretical statistics are difficult to obtain. The ability to do a 
lot of computation extremely fast has led to the use of techniques that provide 
“new” sets of data by re-sampling numbers generated from a single data set [15]. 
The bootstrap estimate of the sampling distribution is generally better than the 
normal approximation based on the central limit theorem [16], even if the statis-
tic is not following the distribution F with mean, µ  and variance 2σ . The 
standard bootstrap procedure is to draw with replacement a random sample of 
size n from 1 2, , , nX X X . Denote the bootstrap sample by * * *

1 2, , , nX X X  and 
denote their mean and standard deviation by *

nX  and, *
nS . Suppose nF  indi-

cate the empirical distribution of 1 2, , , nX X X , then the sampling distribution 
of ( )*

n nX X−  under nF  is the bootstrap approximation of the sampling dis-
tribution of ( )nX µ−  under F. The bootstrap technique provides the mean B̂θ   
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of all the bootstrap estimators 1

ˆ
ˆ

B

i
i

B B

θ
θ ==

∑
, where îθ  is the estimate using the ith  

bootstrap sample and B is the number of Bootstraps. The idea behind the boot-
strap is very simple, namely that (in the absence of any other information), the 
sample itself offers the best guide of the sampling distribution. By re-sampling 
with replacement from the original sample, we can create a bootstrap sample, 
and use the empirical distribution of our estimator in a large number of such 
bootstrapped samples to construct confidence intervals and tests for significance. 

4. Findings 

It is important to evaluate how well SVMs perform in comparison with Linear 
Discrimination Analysis (LDA), and Quadratic Discrimination Analysis (QDA). 
This section compares the misclassification rates of SVMs with the existing clas-
sification techniques. 

Table 1 represents that the SVMs have been successfully trained, the results 
produced by it are often superior to those obtained from the usual discrimina-
tion and classification rules before Box-Cox transformation. On the other hand, 
after Box-Cox transformation when assumptions are satisfied, although apparent 
error rate of SVMs is decreased but apparent error rates of existing methods are 
decreased significantly.  

Table 2 shows the same performance of SVMs when we applied these proce-
dures in simulated data. We then apply these techniques to the original data set 
under Bootstrapping. The results are given in the following subsequent tables.  

From Table 3, it is clear that, SVMs, LDA, and QDA give the apparent error 
rates for initial data sets are 22.2%, 30.0%, and 25.5% respectively, whereas un-
der Bootstrapping these classification techniques reduces this misclassification 
rates significantly and reaches to 16.20%, 24.51%, and 19.20% respectively for 
2000 Bootstrapping. Also, we observe that apparent error rates decrease if the 
number of Bootstrapping increases but after a certain number of Bootstrapping 
the difference of the apparent error rates between current and previous Boot-
strapping is negligible. 

From Table 4 we also observe that misclassification error rates decrease if the 
number of Bootstrapping increases but after a certain number of Bootstrapping  
 
Table 1. Misclassification error rates before and after box-cox transformation of thoracic 
surgery data. 

Classification methods 

APER in % 
Before Box-Cox 
transformation 

APER in % 
After Box-Cox 
transformation 

SVM LDA QDA SVM LDA QDA 

Cross Validation Kappa Statistic 40.5 52.0 53.1 38.1 32.2 34.0 

Classification error rate 40.0 51.0 53.0 37.0 32.1 33.0 
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Table 2. Misclassification error rates before and after box-cox transformation of simu-
lated data. 

Classification methods 

APER in % 
Before Box-Cox 
transformation 

APER in % 
After Box-Cox 
transformation 

SVM LDA QDA SVM LDA QDA 

Cross Validation Kappa Statistic 22.2 30.0 25.5 21.0 10.2 8.0 

Classification error rate 21.1 29.9 23.0 21.0 10.2 7.5 

 
Table 3. Results for thoracic surgery data under bootstrapping. 

 Apparent Error Rate (APER) in % 

Initial Sample 
(Without Bootstrap) 

SVM LDA QDA 

22.2 30.0 25.5 

 (No. of Bootstrap) Apparent Error Rate (APER) in % 

Bootstrap results 

50 17.99 25.75 20.57 

250 17.34 25.21 20.25 

500 17.99 25.20 20.01 

750 16.29 25.12 19.65 

1000 16.21 24.52 19.21 

2000 16.20 24.51 19.20 

 
Table 4. Results for simulated data under bootstrapping. 

 Apparent Error Rate (APER) in % 

Initial Sample 
(Without Bootstrap) 

SVM LDA QDA 

15.2 25.00 16.70 

 (No. of Bootstrap) Apparent Error Rate (APER) in % 

Bootstrap results 

50 10.99 21.75 12.57 

250 10.34 21.21 12.25 

500 9.99 20.79 12.01 

750 9.29 20.25 11.65 

1000 8.21 20.02 11.21 

2000 8.20 18.99 11.20 

 
the difference of the misclassification rates between current and previous Boot-
strapping is negligible. It is clear that, SVMs, LDA, and QDA give the apparent 
error rates for initial data sets are 15.2%, 25.0%, and 16.70% respectively, whe-
reas under Bootstrapping these classification techniques reduces this misclassi-
fication rates significantly and reaches to 8.20%, 18.99%, and 11.20% respectively 
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for 2000 Bootstrapping samples. 

5. Summary and Conclusions 

The success of this research relies on correctly classifying patients into two 
classes of response variables. Many different classification methodologies were 
used to obtain classification accuracies or misclassification rates. However, the 
misclassification rates of the classification methods present several conclusions 
about the integrity of the results. Support vector machines (SVMs) are special 
kernel-based nonparametric methods that don’t depend on different types of 
necessary assumptions. When assumptions are violated the Support Vector Ma-
chines perform better results than other existing parametric methods. But in 
such a case, when assumptions are satisfied (by applying Box-Cox transforma-
tion) parametric methods give better results than SVMs. SVMs require some 
sophisticated computer programming, which is not easily accessible. So, without 
checking assumptions or prior to using existing parametric methods we can use 
support vector machines.  

From our analysis, we also investigated that, in the case of small samples clas-
sification techniques significantly reduce the classification errors under Boot-
strapping. It is clear from our analysis that, classification techniques under 
Bootstrapping perform better than the usual techniques for small samples. Thus, 
we may conclude that, in the case of small samples, we propose to apply classifi-
cation techniques under Bootstrapping for classifying objects.  
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