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Abstract 

Most meta-analysis has concentrated on combining of treatment effect meas-
ures based on comparisons of two treatments. Meta-analysis of multi-arm tri-
als is a key component of submission to summarize evidence from all possible 
studies. In this paper, an exact binomial model is proposed by using logistic 
regression model to compare different treatment in multi-arm trials. Two 
approaches such as unconditional maximum likelihood and conditional 
maximum likelihood have been determined and compared for the logistic re-
gression model. The proposed models are performed using the data from 27 
randomized clinical trials (RCTs) which determine the efficacy of antiplatelet 
therapy in reduction venous thrombosis and pulmonary embolism.  
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1. Introduction 

There has been a massive growth in the number of randomized clinical trials 
(RCTs) since the first RCT was introduced in the well-known streptomycin tri-
al in 1946 [1]. In making some of this information more readily available, an 
attempt is made to pull together the existing evidence in a form that can be 
used by researchers or statisticians; this is called systematic review. The aim of 
systematic reviews is to identify and summarize the findings of all possible 
studies addressing the clinical question of the review. Systematic review re-
duces the large quantities of information to a manageable size. An important 
aspect of most reviews is the quantitative synthesis of results; thus, meta-analysis 
is the statistical part of systematic review. The main purpose of meta-analysis is 
to increase the precision of the conclusions of a review. With statistical perspec-
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tive, it is able to detect treatment effects with greater power and estimate these 
effects with greater precision than any single study. A meta-analysis from syste-
matic reviews of Antiplatelet Trialists’ Collaboration [2] was applied in the pa-
per.  

Most meta-analysis has focused on summarizing treatment effect measures 
based on the comparison of two treatments or called arms, sometimes also called 
interventions or exposures. In this comparison, two groups of individual studies 
are exposed to two different treatments. Standard two-arm RCTs are frequently 
used in clinical research due in part to its relative simplicity of design and inter-
pretation. At its most basic, one power, one significance level and one magni-
tude of difference are analyzed for two-arm comparisons. Conclusions are 
straightforward: either the two arms are shown to be different or they are not. 
The implementation for the model is not complicated. When more than two 
arms are included in meta-analysis, complexity ensues. These types of dataset 
are called multi-arm trials [3] [4] [5] although some authors call it mixed treat-
ment comparison (MTC) [6] [7], or multiple treatment comparison [4] [8]. Ad-
ditionally, some authors call network meta-analysis for indirect head-to-head 
evidence for multiple evidences from RCTs [9]-[14]. 

For multi-arm trials data, Chootrakool and Shi [3] introduced the normal ap-
proximation model using an empirical logistic transform requiring a large num-
ber of individual observations and the probability of being the case to be not too 
near zero or one. If the number of individual observations is small, the normal 
approximation model is not suitable. The number of samples in a single study 
should usually be larger than 20 [4]. In this paper, an exact binomial model is 
introduced to fit the binary multi-arm trials data. There are two alternative 
maximum likelihood approaches that can be used to make inferences for the 
unknown parameters in the logistic regression model. These are unconditional 
method and conditional method. The logistic regression model has become in-
creasingly popular with the easy availability of appropriate computer routines. 
Many authors have described maximum likelihood estimation procedures which 
turn out to be iterative [15]. There have been a large number of studies about 
unconditional and conditional methods, for example in Tritchler [16], Sartori 
[17], Lee et al. [18] and Caterina et al. [19]. 

Most existing methods for meta-analysis of multi arm trials use the logistic 
regression model with the unconditional approach. Lu and Ades [20] introduced 
the Bayesian hierarchical model for multi-arm trials using the unconditional 
method to estimate unknown parameters. Weber et al. [21] used random effect 
model using the unconditional maximum likelihood method for the me-
ta-analysis. They conducted a simulation study comparing two zero-cell correc-
tions under the ordinary random-effects model. Logistic regression model is in-
troduced using the conditional approach in the paper.  

There has the direct and indirect comparison for RCTs in a meta-analysis [9] 
[20], this has led to network meta-analysis. Seide et al. [12] perform simulation 

https://doi.org/10.4236/ojs.2022.121002


H. Chootrakool, P. Treewai 
 

 

DOI: 10.4236/ojs.2022.121002 17 Open Journal of Statistics 
 

study for sparse network of trial including multi-arm trials. They compared 
Bayesian and Frequentist methods in random effects network meta-analysis. 
Jenkins et al. [13] introduced methods for inclusion of evidence in network me-
ta-analysis. More applications of network meta-analysis can be found in Greco et 
al. [22], Wang [23] and Zhao et al. [14]. 

The structure of the paper is arranged as follows. The data structure of mul-
ti-arm trials is firstly introduced in Section 2. Fitting the logistic regression 
model is proposed in the next section. Unconditional maximum likelihood ap-
proach for the model including the standard error of maximum likelihood esti-
mators (MLEs) are described in Section 4. Similarly, conditional maximum like-
lihood approach for the model is presented in Section 5. In Section 6, the logistic 
regression model is illustrated with the unconditional and conditional ap-
proaches with the data. The final section is discussion and conclusion including 
the advantages and the limitations of the two approaches. 

2. The Data Structure of Multi-Arm Trials 

Let the indices 1, ,i M=   and 0,1, ,j K=   stand for the studies and the 
treatments respectively, where the index 0j =  stands for the control group. To 
make multi-arm comparisons, suppose that there is M RCTs comparing K + 1 
treatments. For the ith study, let ijr  represent the number of cases on treatment 
j and let ijn  be the total number in the corresponding group. Let ijπ  be the 
probability of being the case for a patient received the treatment j in the ith 
study. The ijr  has a binomial distribution 

( )~ , ; 1, , ; and 0,1, , .ij ij ijr Bin n i M j Kπ = =   

A data structure of multi-arm trials shall be defined by introducing an index 
set iJ  comprising the treatments involved in the ith study. The data structure 
is shown as  

( ){ }, : 1, , ; .ij ij ir n i M j J= = ∈  

Some studies of meta-analysis might not have all the treatments available. For 
example, some studies might compare fewer than K + 1 treatments, or some 
baseline treatments may be different, or both cases could occur simultaneously. 
The data structure is analogous to an incomplete-blocks design. For example, 
from Antiplatelet data, the 8th - 17th studies are composed of two treatment 
comparison unlike the 1st - 7th studies comparing three treatments. 

Let b(i) denote baseline treatment or called study-specific reference treatment 
[4] corresponding to the ith study, which can be the control group or any other 
treatments. As mentioned earlier about indirect comparison, in a situation that 
the treatments in some studies cannot be compared directly to the control 
group, we need to use evidence from the external studies. To make it clear, if b(i) 
= 0 then the direct comparison is involved in this study. Conversely, if ( ) 0b i ≠  
then the study makes indirect comparison. Let ( ) ( ){ }\iiJ J b i=  represent the 
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set of treatments involved in the ith study but excluding the baseline treatment 
b(i). Let ik  and 1ik +  denote the number of treatments in the sets iJ  and 

iJ  respectively. The ( )ib ir  and ijr  are binomially distributed, respectively as 

( ) ( )( ),ib i ib iBin n π  and ( ),ij ijBin n π  for 1, ,i M=   and ( )ij J∈ . Let D be set 
of studies that make the direct comparison of treatment thus let I be set of indi-
rect comparison of treatment. 

The multi-arm trials data is consisted of 27 RCTs from systematic reviews of 
Antiplatelet Trialists’ Collaboration [2] in total as shown in Table 1. The studies 
compare three treatments: aspirin plus dipyridamole (A), aspirin alone (B) and 
control group (C), where seven trials compare aspirin plus dipyridamole, aspirin 
alone and control group (i.e. comparing all A, B and C), ten trials compare aspi-
rin plus dipyridamole and control group (i.e. comparing A and C) and ten trials 
compare aspirin alone and control group (i.e. comparing B and C) The “event” 
in Table 1 represents the number of patients in whom deep venous thrombosis 
was detected by systematic fibrinogen scans or venography, or both, after gener-
al and orthopedic surgery and in high risk medical patients. The “total” 
represents the number of patients controlled in each group. 

3. Fitting the Logistic Regression Model 

This section illustrates how to fit the logistic regression model to the binary data 
related to multi-arm trials including the direct and indirect comparisons. Logis-
tic regression is a regression model for a binomially distributed response/dependent 
variable. It is useful for modelling the probability of an event occurring as a 
function of other factors. Logistic regression is part of a category of statistical 
models called generalized linear models and uses the logit as its link function. 
Logistic regression can be used only with two types of dependent variables: one 
is a categorical dependent variable that has exactly two categories (i.e. a binary 
or dichotomous variable). The other is a continuous dependent variable that has 
values in the range 0 to 1 representing the probability values or the proportions. 
The names for logistic regression used in various other application areas are lo-
gistic model or logit model. Logistic regression is similar to linear regression. In 
linear regression, ultimate objective for the study may be either estimation of the 
coefficient values, or prediction of the response value. One significant difference 
between logistic and linear models is that the linear model has a continuous re-
sponse variable and the logistic model uses a binary or dichotomous response. 
Logistic regression models for the ith study can be defined by 

( )

( )
log

1
ib i

i
ib i

π
α

π

 
  =
 − 

                       (1) 

( ) ( ),log ,
1

ij
i i b i j

ij

j J i
π

α δ
π

 
= +  


∈

−
                 (2) 

where iα  and ( ),i b i jδ  are trial effect and treatment effect, they will be detailed 
next. 
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Table 1. RCTs of Antiplatelet data. 

Study 
number 

Number of patients 

Aspirin + Dipyridamole (A) 
even/total 

Aspirin (B) 
even/total 

Control (C) 
even/total 

1 3/31 7/30 13/35 

2 6/12 6/9 4/9 

3 3/30 9/32 13/34 

4 0/100 4/100 5/100 

5 6/18 8/16 8/25 

6 1/11 2/10 4/11 

7 0/11 2/14 1/14 

8 13/75  35/75 

9 12/85  24/75 

10 3/38  14/66 

11 1/30  11/36 

12 20/32  21/32 

13 10/20  8/20 

14 8/21  8/22 

15 3/13  6/15 

16 1/19  7/19 

17 6/40  14/40 

18  42/153 33/150 

19  5/702 11/679 

20  9/56 11/49 

21  9/357 32/357 

22  16/50 12/50 

23  7/138 17/140 

24  27/66 29/63 

25  16/44 20/44 

26  7/26 4/25 

27  11/58 23/59 

3.1. Trial Effect 

Two assumptions are usually made about the trial effect iα . The first one is that 
the trial effects are assumed to be study-level effects, which means that the iα ’s 
are different parameters and are treated as nuisance parameters in the model. 
The M different unknown parameters are needed to include in the model. The 
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second one is that the model may be assumed for the iα ’s. A special case is to 
assume that the trial effect is a fixed effect, defined by 0iα α= . Conversely, it 
may be assumed to be a random effect, given by ( )2

0 0~ ,i N α αα µ τ , where 0αµ  
is the overall mean of the trial effect and 2

0ατ  measures the magnitude of the 
variation between the studies. Most of the existing methods therefore used the 
first assumption. However, the number of unknown parameters is the same as 
the number of studies if the first assumption of the trial effect is made. It will 
result in some theoretical and computational problems. The accuracy of the es-
timation depends on the sample size of each study not the overall sample size of 
the pool in the meta-analysis. Therefore, the iα ’s are assumed to be different in 
the paper. 

3.2. Treatment Effect 

The treatment effect ( ),i b i jδ  can be direct treatment effect if i D∈  or indirect 
treatment effect if i I∈ : they are defined as follows. 

( )

( )
( ) ( ) ( ) ( ) ( )( )

2
,0 0 0

, 2 2
,0 0 0 0,0 0 0 0

, if ,

~ , 2 if .

i j j j

i b i j
i j j j ji b i b i b i jb i b i

N i D

N i I

δ µ τ
δ

δ δ µ µ τ τ ρ τ τ

 ∼ ∈


− ∈
=

− + −

 

where ( )jb iρ  is the correlation coefficient between ,0i jδ  and ( ),0i b iδ . For ex-
ample, if the data, includes 3 treatments such as treatment A, B, C and C stands 
for control group. The baseline treatment for some studies exclude the control 
group C (such as A and B) thus the indirect treatment effect can be written as 

( )2 2
, , , , 2 , .i AB i AC i BC AC BC AC BC AB AC BCN i Iδ δ δ µ µ τ τ ρ τ τ= − ∼ − + − =  

Next, we shall consider the treatment effect in a matrix form. Let ,0iδ  and 

0µ  represent the vectors of ( ),0 , 1, ,
t

i j j Kδ =   and ( )0 , 1, ,
t

j j Kµ =   re-
spectively where the superscript t stands for matrix transposition and let 0Ω  
represent the K K×  covariance matrix. The model ,0iδ  can be written as 

( ),0 0 0~ , .i MVNδ µ Ω  

This is called the basic model of random treatment effect. Let ijF  be the in-
dex vector of length K consisting of elements 0 and 1 corresponding to ( ),i b i jδ , 
given by  

( )
 

( )
 

thth

thth

0, , 0 , 1 , ,0 if ,

0, , 1 , , 1 , ,0 if .

jb i

ij

jb i

i D

i I

 
 ∈   

 

− ∈  

=



F

  

  

 

Now, the random effect ( ),i b i jδ  can be written in the form of ,0iδ  and ijF : 

( ) ( ),0 0 0, ~ , .t
ij i ij ij iji b i j Nδ = F F F Fδ µ Ω  

As before, the covariance between the treatment effects ( ),i b i jδ  and ( ),i b i kδ  
for j k≠  and ( ), ij k J∈  may be dependent. For the ith study, let iF  be the 
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following ik K×  matrix 

( ) ( )for ,
i

i ij ik K
j J

×
= ∈F F  

Let iδ  denote the vector ( ) ( )( ), ,
t

i b i j ij Jδ ∈  then we have  

( ),0 ~ , ,i i i i iMVN= Fδ δ µ Ω  

where 0i i= Fµ µ  and 0 .t
i i i= F FΩ Ω  

The iα  are assumed to be different and the ( ),i b i jδ  are assumed to be a 
random effect as iδ . The models in the Equation (1) and Equation (2) can be 
used for both treatment comparisons. From model in Equation (2), log 

1ij ijπ π−  is called the logistic transform of probability ijπ  or alternatively log 
odds ijπ  or logit ijπ . Having considered the properties of logit ijπ , the term 

1ij ijπ π−  is the odds of an unsuccessful outcome from a patient treated with 
treatment j and so logit ijπ  is the log odds of being the case. It is easily seen that a 
value of ijπ  in the range (0, 1) corresponds to a value of logit ijπ  in (−∞, ∞). As 

ijπ  approaches to 0, logit ijπ  approaches to −∞; as ijπ  approaches to 1, logit 

ijπ  approaches to ∞ and for 0.5ijπ = , logit 0ijπ = . After some rearrangement, 
the logistic regression models in Equation (1) and Equation (2) have respectively 
equivalent formulations as 

( )
e

1 e

i

iib i

α

απ
 

=  
+ 

 and 
( )

( )

,

,

e

1 e

i i b i j

i i b i jij

α δ

α δπ
+

+

 
 =
 + 

.          (3) 

There are two alternative maximum likelihood (ML) approaches, the uncon-
ditional and conditional approaches that can be used to estimate the unknown 
parameters in a logistic regression model.  

4. Unconditional Maximum Likelihood Approach 

Generally, unconditional ML estimation is preferred if the number of parame-
ters in the model is small relative to the number of studies in a meta-analysis 
[25].  

4.1. Probability Functions 

To demonstrate the unconditional ML estimation, let ( )( )| iib ip r α  and 

( )( ),| ,ij i i b i jp r α δ  denote the probability functions associated with the distribu-
tions of ( ) | iib ir α  and ( ),| ,ij i i b i jr α δ  respectively for 1, ,i M=   and ( )ij J∈ , 
defined as follows. 

For the baseline treatment, 

( )( ) ( )

( )
( )
( )

( )( ) ( ) ( ) ( )

( )

( )

( ) ( )

e| 1
1 e

i ib i
ib i ib iib i

ib ii

r
n rib i ib ir

iib i ib iib i n
ib i ib i

n n
p r

r r

α

α
α π π

−
= =
   
   −
    +   

    (4) 

For the treatments j, ( )ij J∈  

( )( ) ( )
( )( )

( )( )
,

,
,

e| , 1 .
1 e

i iji b i j
ij ijij

iji i b i j

r
n rrij ij

ij i ij iji b i j n
ij ij

n n
p r

r r

α δ

α δ
α δ π π

+
−

+

   
−   

   +
=


=      (5) 
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The combination in Equation (4) represents the number of possible combina-
tions of ( )ib in  taken ( )ib ir  at a time. The ( )ib iπ  in the middle term of Equation 
(4) is substituted from Equation (3) and ( )( )1 ib iπ−  becomes 1 1 e iα+ . The 
combination in Equation (5) can be analyzed in the same way.  

4.2. The Unconditional Likelihood 

From the probability functions ( )( )| iib ip r α  and ( )( ),| ,ij i i b i jp r α δ , the trial ef-
fects iα ’s are study-level effects. They are assumed to be different and also in-
cluded in both probability functions. While the ( ),i b i jδ  is a random effect, thus 
the ( )( ),| ,ij i i b i jp r α δ  involves the vector of random effects, iδ . The standard 
method of handling a probability function which involves random variables that 
have a fully specified probability is to integrate the probability function with re-
spect to the distribution of those variables. To deal with the random effects iδ , 
let ( )ir  be the vector ( )( ),

t

ij ir j J∈ . The probability function ( )|ij ip r δ  will be 
integrated with respect to iδ . The ( )( )ip r  contains ik  integrals, which is the 
number of treatments in the set ( )iJ , and is given by 

( )( )
( )

( ) ( )| ; , d ,
ii

ij i i i i ii j Jp p r φ
∈

= ∏∫r
δ

δ δ µ δΩ              (6) 

where ( ); ,i i iφ δ µ Ω  is the probability density function of the normal distribu-
tion with mean iµ  and covariance iΩ  given by  

( )
( )

( ) ( )1

1 22
21; , e

2
i i i i i

ii i i k
i

φ
−′− − −=

π
δ µ δ µδ µ ΩΩ

Ω
            (7) 

The integral in Equation (6) can be calculated numerically; one way to do it is 
to use the Gauss-Hermite method. To apply Gauss-Hermite approximation, the 
probability function ( )( )ip r  for the ith study can be estimated by 

( )( ) ( ) ( )
( )

( )( )

( )

1 2
,

1

11 1 2
,

2
12

1 1
2

e

1 e

i i i n iji
k ii i

k ijk i ii
i i i ni

r
l l ijkk

n ni nn n j J
ij

n
p w w

r

α

α

+ +

= = ∈
+ +

 
 

  ≈ π   
   +    

∑ ∑ ∏
d

d
r 

µ

µ

Ω

Ω
, (8) 

where the sampling nodes are at 1 2
,2i i i n+ dµ Ω  and ( ) ( )( )1

1
, , , i

ki

k
i n n nx x=d  . The 

vector ,i nd  depends on the number ik , which is the number of treatments 
comprising in the ith study. The resulting function ( )( )ip r  does not depend on 
the iδ . For most practical purposes, 

ikl  need not be greater than 20, although 
some authors suggest using even smaller values [26]. 

As before, let θ  be the collection of all unknown parameters for the me-
ta-analysis including all trial effects ( ), ,i Mα α , µ  and Ω  and let ir  be the 
vector ( ),ij ir j J∈ . The likelihood function for the ith study can be written as  

( ) ( ) ( )( ) ( )( )| | .
ii ij iib i ij JL p r p r pθ α

∈
= =∏r r              (9) 

where ( )( )| iib ip r α  and ( )( )ip r  are given in Equation (4) and Equation (8) 
respectively. Let ( ), lo |gu i il L r= θ  standing for the unconditional log-likelihood 
function of the logistic regression model for the ith study. The log-likelihood 
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function of θ  for the logistic regression models is given by 

( ) ,1 .u u i
M
il l
=

= ∑θ                         (10) 

The number of iα ’s is the same as the number of studies. The computation of 
MLEs may be quite unstable if the number of studies is large while the sample 
size of each study is small. As discussed earlier, this may also result in a biased or 
misleading estimate. A conditional approach is suggested to eliminate all nuis-
ance parameters. 

4.3. Asymptotic Variance-Covariance Matrix 

This section shows how to calculate the standard errors for the MLEs of the lo-
gistic regression model using the unconditional approach. Since there are ran-
dom effects in the model, some integrals are involved in the likelihood function. 
The unconditional log-likelihood function ( )ul θ  in Equation (10) can be writ-
ten as 

( ) ( )( ) ( )( )
( )( )

( )
( ) ( )

1 1

1 1

log log

log log | ; , d .
ii

M M

M

u ib i ii i

ij i i i i iib ii i j
M

J

l p r p

p r p r φ

= =

= = ∈

= +

= + ∏∫

∑ ∑

∑ ∑

r

δ

θ

δ δ µ δΩ
  (11) 

Let 1l  and 2l  stand for the first and second terms of the above log-likelihood 
function, given by ( ) 1 2ul l l= +θ . Three types of unknown parameters are in-
volved in θ ; the trial effects, iα ’s, the overall mean effects μ’s (for µ ), and the 
variances τ’s and the correlation coefficients ρ’s in the covariance matrix Ω . Let 
τ represent a parameter (either τ or ρ) involved in Ω . There is no random ef-
fect involved in 1l . 

First, the second-order partial derivative 2 2
1 il α∂ ∂  can be calculated in the 

usual way; while the other terms are  
2 2 2

1 1 1 0
i j i i

l l l
α α α µ α τ
∂ ∂ ∂

= = =
∂ ∂ ∂

, i j≠  and { }1, , ,i j M∈  . 

Next, consider the second term of Equation (11), for notational convenience, 
let ( )i iP δ  represent the function ( )

( )
|

i ij ij J p r
∈∏ δ  in 2l . Now the term 2l  

takes the form  

( ) ( ) ( )2 1 2
1 1

, , , ,, log d
i

M i i i i

M

i

M

i
l p lα α φ

= =

= = ∑∫∑

δ
µ δ δ δΩ  

where ( )φ δ  is the density of the multivariate normal distribution with mean iµ  
and variance matrix iΩ , and 2il  is a summand of the log-likelihood involving 
the integrals ( ( ) ( )log d

i
i i i iP φ∫δ δ δ δ ). The first-order partial derivatives relating 

to 2l  are shown as follows 

( ) ( )22

1
e d ,i

i

i il
i i

ii

M

i

Pl
φ

α α
−

=

∂∂
=

∂ ∂∑ ∫δ
δ

δ δ  

( ) ( )
22

1
e d ,i

i

il
i i i

i

Ml P
φ

µ µ
−

=

∂∂
=

∂ ∂∑ ∫δ
δ

δ δ  
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( ) ( )
22

1
e d .i

i

il
i i i

i

Ml P
φ

τ τ
−

=

∂∂
=

∂ ∂∑ ∫δ
δ

δ δ  

Similarly, the second-order partial derivatives are  

( ) ( ) ( ) ( )2 2

222
2
2 2

1
e d e d ,i i

i i

M
i i il l

i i i i
i ii i

P Pl
φ φ

αα α
− −

=

  ∂ ∂∂  = −    ∂∂ ∂   
∑ ∫ ∫δ δ

δ δ
δ δ δ δ    (12) 

( ) ( ) ( ) ( )
2 2

222
2
2 2

1
e d e d ,i i

i i

M
i il l

i i i i i i
i

l P P
φ φ

µµ µ
− −

=

  ∂ ∂∂  = −    ∂∂ ∂   
∑ ∫ ∫δ δ

δ δ
δ δ δ δ    (13) 

( ) ( ) ( ) ( )
2 2

222
2
2 2

1
e d e d ,i i

i i

M
i il l

i i i i i i
i

l P P
φ φ

ττ τ
− −

=

  ∂ ∂∂  = −    ∂∂ ∂   
∑ ∫ ∫δ δ

δ δ
δ δ δ δ    (14) 

( ) ( ) ( ) ( )
2 2

222
2

1
e d e d .i i

i i

M
i il l

i i i i i i
i

l P P
φ φ

µ τ µ τ µ
− −

=

  ∂ ∂∂  = −    ∂ ∂ ∂ ∂ ∂  
∑ ∫ ∫δ δ

δ δ
δ δ δ δ   (15) 

Note that the second-order partial derivative 2
2 i jl α α∂ ∂ ∂  is equal to zero. 

The second-order partial derivatives of 2
2 i jl µ µ∂ ∂ ∂  and 2

2 i jl τ τ∂ ∂ ∂  can be 
expressed in similar equations to Equation (13) and Equation (14) respectively. 
The integrals in the first-order and second-order partial derivatives can be ap-
proximated by Gaussian quadrature.  

From the log-likelihood ( )ul θ  in Equation (11), the second-order partial de-
rivatives for the observed Fisher information matrix can be calculated as 

2 2 2
1 2

2 2 2
u

i i i

l l l
α α α
∂ ∂ ∂

= +
∂ ∂ ∂

, 
2 2

2
2 2
ul l

µ µ
∂ ∂

=
∂ ∂

, 
2 2

2u

i j i j

l l
µ µ µ µ
∂ ∂

=
∂ ∂ ∂ ∂

, 

2 2
2

2 2
ul l

τ τ
∂ ∂

=
∂ ∂

, 
2 2

2u

i j i j

l l
τ τ τ τ
∂ ∂

=
∂ ∂ ∂ ∂

, 
2 2

2ul l
µ τ µ τ
∂ ∂

=
∂ ∂ ∂ ∂

. 

As set earlier, the second partial derivatives of 2 2
ul ρ∂ ∂  and 2

ul µ ρ∂ ∂ ∂  
(and 2

ul τ ρ∂ ∂ ∂ ) can be calculated in similar equations to 2 2
ul τ∂ ∂  and 

2
ul µ τ∂ ∂ ∂  respectively. Notice that the second-order derivative of 1l  is only 

related in 2 2
u il α∂ ∂ . The matrix of second partial derivatives can be partitioned 

into a block matrix with null matrices in the off diagonals: 

( ) ( )
( )

α

µτρ

 
=   
 





0

0
θ

θ
θ

, 

where ( )α θ  and ( )µτρ θ  are the second-order partial derivatives about jα , 
and μ, τ and ρ respectively. By multiplying ( ) θ  by −1, the observed Fisher in-
formation matrix ( )θ  is obtained. The inverse of ( )θ  is the asymptotic va-
riance-covariance matrix of MLEs and their standard errors are the square roots of 
the diagonal of ( ) 1θ − . 

5. Conditional Maximum Likelihood Approach 

Conditional likelihood is widely used in logistic regression models with binary 
data. In particular, this leads to accurate inferences for the parameters of interest 
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and eliminates all nuisance parameters [25]. The conditional likelihood will be 
defined and the maximum likelihood estimation will be described in this section. 

5.1. Conditional Likelihood 

From the logistic regression models in Equation (1) and Equation (2), the condi-
tional likelihood ir  given that 

ii ij ij JC r c
∈

= =∑  for the ith study, is given by 

( ) ( ) ( )
( )

|
| ; | ; .

|i

i

i i
i i i i i ij i ij J

ij i ij J

f
f C c f r c

f r c∈

∈

= = = =
=

∑
∑

r
r r

δ
δ δ

δ
     (16) 

The conditional likelihood reflects the probability of the observed data confi-
guration relative to the probability of all possible configurations of the given da-
ta. The numerator ( )|i if r δ  is exactly the same as the unconditional likelihood 
obtained from Equation (4) and Equation (5). The denominator is what makes 
the conditional likelihood different from the unconditional likelihood; it sums 
the joint probability for all possible configurations. To derive the Equation (16), 
the conditional likelihood ir  given iC  can be simplified as 

( )

( )
( )

0

e
| ; ,

e

irij

i

iuij

i i i
i

ij
j J

ij
i i i i

i ij
U j Ji ijj J ij

n
r

f C c
n n

c u u

∈

∈ ∈
∈

 
 
 = =

   
   −    

∏

∑ ∏∑u

r

δ

δ

δ       (17) 

where ( )( ),
t

i ij iu j J= ∈u  and 

( )
( )

0: 0 , and .
i

i i ij ij i i ij ii
j J

U u n j J c n u c
∈

  = ≤ ≤ ∈ − ≤ ≤ 
  

∑u  

Notice that this likelihood function does not involve any nuisance parameters 

iα ’s and is a function of iδ  alone. The removal of the trial effects from the 
conditional likelihood is important because when the conditional likelihood is 
used, estimates are obtained only for the parameters of interest in the model and 
not for the iα ’s. 

5.2. Estimation 

The conditional likelihood in Equation (17) has ik  random effects so the like-
lihood ( )|

ii ij ij Jf r c
∈

=∑r  involves ik  integrations: 

( ) ( ) ( )| | ; ; , d ,
i ii

i ij i i ij i i i i i ij J j Jf r c f r c φ
∈ ∈

= = =∑ ∑∫r r
δ

δ δ µ δΩ    (18) 

where ( ); ,i i iφ δ µ Ω  is the probability density function of multivariate normal dis-
tribution with mean iµ  and covariance iΩ  given in Equation (7). Gauss-Hermite 
approximation is applied to Equation (18) and obtain: 

( ) ( )1

1
1

1
,

1 1

2| | ; ,
ki

ii
ki

i iki

ll
kk

i ij i i ij i i nn n
j J j Jn n

f r c w w f r c−

∈ ∈= =

   
= ≈ π =   

   
∑ ∑∑ ∑r r δ   (19) 
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where ( ),| ;
ii ij i i nj Jf r c

∈
=∑r δ  is obtained from Equation (17) where the  

sampling nodes is 1 2
, ,2i n i i i n= + dδ µ Ω  and ( ) ( )( )1

1
, , , i

ki

k
i n n nd d=d  . The likelih-

ood for the ith study ( )| iL rθ  can be written as 

( )| | ; .
i

i i ij i i
j J

L f r c
∈

 
= = 

 
∑r rθ δ  

The log-likelihood function of the logistic regression models using the condi-
tional approach is  

( ) ( ) ( )1log | log |M
c iil L L

=
= = ∑r rθ θ θ               (20) 

By maximizing the conditional likelihood function over θ , an exact parame-
ter estimate is obtained for θ , called the conditional maximum likelihood esti-
mate. To calculate the standard error of their MLEs, the log-likelihood function 
in Equation (20) can be written as  

( ) ( )
( ) ( )

1

1

log |

log | , ; , d .

i

ii

M
c i ij ii j J

M
i ij i i i i i ii j J

l f r c

f r c φ

= ∈

= ∈

= =

= =

∑ ∑

∑ ∑∫

r

r
δ

θ

δ δ µ δΩ
    (21) 

Let ( )i iP δ  represent ( )| ,
ii ij i ij Jf r c

∈
=∑r δ  in the above equation. The 

second-order partial derivatives of 2 2
2l µ∂ ∂ , 2 2

2l τ∂ ∂  and 2
2l µ τ∂ ∂ ∂  are 

similar to Equation (13) - Equation (15) respectively. In a similar way to the pre-
vious section, the standard errors for the MLEs are obtained. 

6. Application to Antiplatelet Therapy Data 

From the data given in Table 1, the total number of individual observations is 
small thus the empirical log-odds model is not appropriate. The logistic regres-
sion model will be applied using the unconditional and conditional approaches 
with the data. 

6.1. Unconditional Inference 

From the data, there are 27 studies investigating the use of aspirin plus dipyri-
damole or aspirin alone in comparison with the control group. The studies 
compare three treatments: aspirin plus dipyridamole (A), aspirin alone (B) and 
the control treatment (C). Seven studies compare A, B and C, ten studies com-
pare A and C and ten studies compare B and C. There is no indirect comparison 
for this dataset, so the set D is { }1, , 27 . The baseline treatment for all studies 
is the control group (b(i) = 0). 

The indices 1, , 27i =   and 0,1,2j =  stand for the studies and the treat-
ments C, A and B, respectively. The data is partitioned into three groups: 

{ }1 1, ,7G =  , { }2 8, ,17G =   and { }3 18, , 27G =  . The sets iJ  and ( )iJ  
are given by  

{ } ( ) { }
{ } ( ) { }
{ } ( ) { }

1

2

3

0,1, 2 , 1, 2 for ,

0,1 , 1 for ,

0, 2 , 2 for .

i i

i i

i i

J J i G

J J i G

J J i G

 = = ∈
 = = ∈


= = ∈

            (22) 
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Let 0 1,i ir r  and 2ir  be the numbers of patients who suffered reocclusions on 
treatments C, A and B respectively, where the ith study is in 1 2 3G G G  , 

1 2G G  and 1 3G G , respectively. The total numbers of patients are 0 1,i in n  
and 2in  Let 0 1,i iπ π  and 2iπ  be the probabilities that patients have reocclu-
sions on treatments C, A and B respectively in the ith study. The 0 1,i ir r  and 2ir  
are binomially distributed as  

( )0 0 0 1 2 3~ , , ,i i ir Bin n i G G Gπ ∈    

( )1 1 1 1 2~ , , ,i i ir Bin n i G Gπ ∈   

( )2 2 2 1 3~ , , .i i ir Bin n i G Gπ ∈   

The treatment effect iδ  for 1G  is defined as 
2

,01 01 01 01 02
2

,02 02 01 02 02

~ ,i

i
MVN

δ µ τ ρτ τ
δ µ ρτ τ τ

     
           

           (23) 

Logistic regression models for the data can be fitted using the Equation (1) 
and Equation (2) where b(i) = 0 and ( )iJ  is given in Equation (22). Note that 
the trial effects are assumed to be different in each study. To define the uncondi-
tional likelihood function, let ( )ir  represent the vector ( )1 2,i ir r . The probability 
functions ( )0ip r  and ( )( )ip r  are formulated from Equation (4) and Equation 
(8) respectively. 

From iδ  for 1G , the correlation coefficient ρ between ,01iδ  and ,02iδ  is 
in the form 2

0 01 02τ τ τ , where is obtained from ( )2
0 0 0~ ,i Nδ µ τ . Note that 

0µ  and 2
0τ  are not estimable unless some other information is used. The 

assumption of homogeneity variance will be considered here. Suppose that all 
heterogeneity parameters are the same: 01 02τ τ τ= =  and the correlation 
coefficient takes the value 1/2. The unknown parameter θ  for the models is 
{ }2

1 2 27 01 02, , , , , ,α α α µ µ τ . The log-likelihood function ( )ul θ  is obtained 
from Equation (10). By maximizing the log-likelihood function, the MLEs can be 
estimated. Also their standard errors are given by the observed Fisher informa-
tion matrix. 

The results for the treatment effects 01δ  and 02δ  are given in Table 2. SD 
and CI stand for standard deviation and confidence interval respectively. The 
trial effects are presented in Table 3. The overall means on the log odds ratio  
 
Table 2. The results of the treatment effects for the model using the unconditional 
method.  

 
01δ  02δ  

01µ  01τ  01µ  01τ  

LOR scale 
(SD) 

−1.17849 
(0.08499) 

0.00372 
(0.04752) 

−0.63700 
(0.03728) 

0.00372 
(0.04752) 

95% CI (−1.33, −1.00) (−0.08, 0.09) (−0.64, −0.62) (−0.08, 0.09) 

OR scale 0.30774  0.52800  

95% CI (0.26, 0.36)  (0.52, 0.53)  
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Table 3. The trial effect of the model using the unconditional method. 

 Study 1 Study 2 Study 3 Study 4 Study 5 

Trial Effect 
(SD) 

−0.72387 
(0.01021) 

1.20619 
(0.00934) 

−0.54688 
(0.00993) 

−3.01061 
(0.0117) 

0.55283 
(0.00926) 

95% CI (−0.74, −0.70) (1.18, 1.22) (−0.56, −0.52) (−3.03, −0.98) (0.53, 0.57) 

 Study 6 Study 7 Study 8 Study 9 Study 10 

Trial Effect −0.85773 −1.69947 −0.34480 −0.65231 −1.29308 

(SD) 
95% CI 

0.01206) 
(0.88, −0.83) 

(0.01264) 
(−1.72, −1.67) 

(0.00735) 
(−0.35, −0.33) 

(0.00770) 
(−0.66, −0.63) 

(0.01087) 
(−1.31, −1.27) 

 Study 11 Study 12 Study 13 Study 14 Study 15 

Trial Effect 
(SD) 

2.18147 
(0.01231) 

1.68130 
(0.00636) 

1.17724 
(0.00811) 

0.68567 
(0.00869) 

−0.14132 
(0.01102) 

95% CI (−2.20, −2.15) (1.66, 1.69) (1.16, 1.19) (0.66, 0.70) (−0.16, −0.11) 

 Study 16 Study 18 Study 18 Study 19 Study 20 

Trial Effect 
(SD) 

−1.53114 
(0.01214) 

−0.57320 
(0.00941) 

−0.33486 
(0.00661) 

−4.24972 
(0.01367) 

−1.05748 
(0.01199) 

95% CI (−1.55, −1.50) (−0.59, −0.55) (−0.34, −0.32) (−4.27, −4.22) (−1.08, −1.03) 

 Study 21 Study 22 Study 23 Study 24 Study 25 

Trial Effect 
(SD) 

−3.01727 
(0.01184) 

−0.11773 
(0.00977) 

−2.23388 
(0.01252) 

0.24853 
(0.00802) 

0.04007 
(0.00987) 

95% CI (−3.04, −2.99) (−0.13, −0.09) (−2.25, −2.20) (0.23, 0.26) (0.02, 0.05) 

 Study 26 Study 27    

Trial Effect 
(SD) 

−0.37573 
(0.01277) 

−0.76995 
(0.01098) 

   

95% CI (−0.40, −0.35) (−0.79, −0.74)    

 
(LOR) scale for 01δ  and 02δ  are −1.17849 (SD 0.08499) and −0.63700 (SD 
0.03728), and the heterogeneity parameter is 0.0372 (SD 0.04752). On the odds 
ration (OR) scale, the means are 0.30774 and 0.52800 respectively. Their confi-
dence interval (CI) can be calculated from the related CI on the LOR scale. To be 
concluded, treatments aspirin plus dipyridamole and aspirin only in antiplatelet 
therapy reduce deep venous thrombosis by over 70% and 45% respectively. The 
average of both treatments reduces deep venous thrombosis by over 55%.  

6.2. Conditional Inference 

The models and other parameters are similar to those defined in the uncondi-
tional method. The function iC  for the data can be defined by 

0 1 2 1

0 1 2

0 2 3

for ,
for
fo .

,
r

i i i i

i i i

i i i

C r r r i G
C r r i G
C r r i G

= + + ∈
 = + ∈
 = + ∈

                 (24) 
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Let ir  denote the vector ( )0 1 2, ,i i ir r r . The conditional likelihood ( )|i if Cr  
for the ith study is given in Equation (18). To handle the random treatment ef-
fect iδ , the likelihood function is approximated by Gaussian-Hermite approxi-
mation as defined in Equation (19). The unknown parameter θ  for the models 
is { }01 02, ,µ µ τ . By using the log-likelihood function in Equation (20), the results 
of the models are given in Table 4. On the LOR scale, the overall mean effects 
for both treatment effects are −0.87516 (SD 0.04340) and −0.39000 (SD 0.31160) 
while their variation between studies is 0.37000 (SD 0.03900). Those means on 
the OR scale are 0.41679 and 0.67434. As before their confidence intervals are 
obtained from the related CI on the LOR scale. The results indicate that treat-
ments aspirin plus dipyridamole and aspirin only produce a reduction in deep 
venous thrombosis by over 55% and 30% respectively. The average of both 
treatments in antiplatelet therapy reduces deep venous thrombosis by over 40%. 

As seen from Table 2 and Table 4, the results from using the unconditional 
likelihood (on the LOR scale) are smaller than from using conditional likelihood. 
Note that those results are negative. That is to say that estimation with uncondi-
tional likelihood may cause underestimation or bias. Collaboration [2] summa-
rized that antiplatelet therapy produced a highly significant (2p ≤ 0.00001) reduc-
tion in deep venous thrombosis of about 40%. The results from the model using 
the conditional likelihood support this.  

7. Conclusions and Discussion 

The logistic regression model was introduced for the exact binomial distribution. 
Two alternative approaches for making inferences were presented. The uncondi-
tional likelihood involves nuisance parameters (from the trial effects). If the 
number of studies (M) is large, it may lead to inconsistent estimators. Cox and 
Snell [15] concluded for the unconditional likelihood that if the number of stu-
dies (M) is large and the number of individual observations ( ijn ) is small then it 
makes estimation inaccurate and inconsistent. The conditional maximum like-
lihood approach was introduced for the model to eliminate all nuisance parame-
ters. In making a choice between the two approaches, it is needed to consider the 
number of studies and the number of individual observations. However, the use  
 
Table 4. The results of the treatment effects for the model using the conditional method. 

 
01δ  02δ  

01µ  01τ  01µ  01τ  

LOR scale 
(SD) 

−0.87516 
(0.04340) 

0.37000 
(0.03900) 

−0.39000 
(0.31160) 

0.37000 
(0.03900) 

95% CI (−0.96, −0.79) (0.29, 0.44) (−1.00, 0.22)  

OR scale 0.41679  0.67434  

95% CI (0.38, 0.45)  (0.36, 1.24)  
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of this method can be expensive in term of the cost of computer running time, 
especially if the number of individual observations is large. Using the uncondi-
tional maximum likelihood approach, note that if the number of studies is large 
and the number of individual observations is small then the estimate may be bi-
ased or misleading.  

Some other methods can be used in the logistic regression model, for example, 
using a pseudo-loglikelihood, (see Severini [27]); or the modified profile likelih-
ood (see Bellio and Sartori [28], Hamza, Houwelingen and Stijnen [29] and Ca-
terina et al. [19]). Gaussian-Hermite quadrature was used to calculate the 
integral forms of the probabilities including random effects in the likelihood 
functions for both approaches [30]. The approximation is reasonably effective 
for low-order integrations [31]. Implementing Gaussian-Hermite approxima-
tion, we used the function “gauss.quad” in the software R to estimate MLEs for 
the model. The number of integrands depends on the number of treatments in-
volved in those studies. If this number is large then it makes the dimensionality 
of the integral large and so it cannot be approximated accurately. Other ap-
proximations such as Laplace approximation or Monte Carlo method can be 
used, see Shi and Copas [32] and Caterina [19]. Laplace approximation could 
make the calculation of second-order derivatives for the observed Fisher infor-
mation matrix easier than using Gaussian approximation since there is no 
weight term in the approximation [33] [34]. Additionally, simulation studies 
could be conducted in further work to compare these two approaches in differ-
ent scenarios including improving the approximation if multi-arm trials are 
more than three treatment comparisons. 

The established binomial tree method could be applied in the further work 
[24]. 

8. Conclusion 

Simulation studies could be conducted in further work to compare these two 
approaches in different scenarios including improving the approximation if 
multi-arm trials are more than three treatment comparisons. 
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