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Abstract 
The purpose of this research is to develop a model, with emphasis on compa-
tibility conditions and model building, valid for high cycle fatigue design 
components such as wind turbines, automobiles, high speed railways and 
aeronautical material. In this work, we have added the frequency as one more 
variable to an existing fatigue model that already includes maximum stress, 
stress ratio and lifetime. As a result, a model and estimation method has been 
proposed and a random variable V has been identified, which, allows the ac-
cumulated damage and the probability of failure to be assessed for any load 
history in terms of stress levels, stress ranges and frequencies. Finally, the 
model is validated using a large set of real experimental data. 
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1. Introduction 

The current structural integrity concept in the fatigue design in aeronautics, elec-
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tronics, railway material, rotating machines and many other fields demands the 
probabilistic fatigue characterization of the materials and the mechanical and 
structural components they are made off, so that a reliable safety level is ensured 
during their service life. With this aim, high performance test machines, from 
middle-high frequencies (200 to 1000Hz) [1], up to ultrasonic ones [2] [3], have 
been developed, which accomplish two objectives: First, to reach fatigue lifetimes 
in the very high cycle fatigue domain, i.e. till 109, or even 1010 cycles, where new 
fatigue mechanisms may arise other than those observed in the high cycle fatigue 
domain. Second, a remarkable reduction of test duration and cost implied when 
conventional servo-hydraulic or electric fatigue test machines are used. In addi-
tion, the correspondence among the fatigue S-N fields for different test frequen-
cies, ranging from low till ultrasonic frequencies must be established and vali-
dated if a high quality congruent fatigue design is desired. 

Traditionally, most fatigue models have been considered for low frequencies 
and they are two-dimensional, that is, involving a stress, for example, the stress 
range, σ∆ , and lifetime as the main variables. However, this was proved as not 
sufficient. 

Fatigue has been considered from a long time ago, as one of the most impor-
tant causes of failure, and being responsible for important accidents in machines, 
structures and bridges, for example. However, the appearance of models able to 
analyze the problem in detail has been slow and almost always below the expec-
tations and, mainly, the needs. Today, it is known that a precise analysis of fati-
gue requires a random model including at least four variables: the stress variables, 
stress level and stress range, the frequency and the lifetime. 

A simple revision of the existing literature shows that there is no unanimity in 
the selection of these two variables. Common models choose them from a set of 
six different candidate stress related variables: { }, , , , ,M m a meanRσ σ σ σ σ∆ , which 
are the maximum stress, the minimum stress, the stress range, the stress ampli-
tude, the stress ratio, and the mean stress, respectively. However, though in theory 
different choices are equivalent, as indicated in [4], maximum stress, Mσ  and 
stress ratio, R, are the most convenient stress variables. 

Recently a three dimensional model has been given, see [4], which involves 
two stresses, the maximum stress Mσ  and the stress ratio R, what implied an 
important advance in order to predict fatigue for given load histories. In this 
paper a four dimensional fatigue model including the effects of the maximum 
stress Mσ , the stress ratio R, and the frequency f on the fatigue lifetime, N, is 
presented, as a step further. It is built based on the three-dimensional model in 
[4] to which the frequency, as a fourth and relevant variable, is incorporated. To 
understand the proposed model in depth and the important role of functional 
equations in building compatible models, it is necessary to explain in detail how 
the model arises from scratch. So, as a state of the art, a detailed description of 
all the steps followed to reach the final model is included. In addition, a func-
tional equation is used later to derive the proposed cumulative damage formula 
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to avoid incompatible formulas causing inconsistencies. Thus, in this paper func-
tional equations are indirectly and strongly recommended for modeling, not on-
ly in fatigue but also in problems of general nature. 

2. First Step: The S-N Bidimensional Models 

Fatigue models started with the up-and-down method, that was designed for de-
termining the endurance limit as its only variable. However, most fatigue models 
are bidimensional and include only one of the first two stress variables already 
mentioned and the lifetime, which are the models dealt with in this section. 
However, one must keep in mind that these models are valid only when the re-
maining two variables, the second stress and the frequency variables, are consi-
dered constant. 

A significative advance in the development of fatigue models took place with 
the appearance of bidimensional S-N regression models, initially linear, later bi-
linear and finally of hyperbolic type. The selection of the mathematical structure 
of these models was initially based on convenience and simplicity of the models. 
This is the case of the linear models, which, when they were perceived as not 
adequate, a log transformation of one or the two axes was used to improve them. 
When this was not sufficient, the bilinear models were used as a simple and 
practical solution. 

These regression curves, in the sense of being conditional means, were used 
extensively, but unfortunately its random character and the corresponding per-
centile curves were not fully introduced as a necessity to deal with the actual 
random nature of the problem. 

Fortunately, curved trend models of random type were soon accepted and other 
models appeared. This was the case of the model in [5] where the mathematical 
structure of the regression curve and percentiles came from the solution of a func-
tional equation expressing a compatibility condition that must be satisfied. 

In this context, a special mention deserves the use of functional equations in 
the process of building models. These equations, as differential or integral equa-
tions, express properties that must be satisfied by the models being looked for. 
However, the unknown functions neither appear as derivatives, nor inside inte-
grals, what makes the interpretation and handling of the problem more conve-
nient, but without losses in its power. 

As a reminder, in Figure 1 the compatibility condition used to derive some 
bidimensional model is illustrated graphically. In it, a Nσ∆ −  plot is pre-
sented, in which the virtual Nσ∆ −  curves associated with the different spe-
cimens used in fatigue tests are shown as continuous lines, in blue color. Since 
these fatigue tests are normally destructive, only one use of each specimen is 
possible, and then, only one point on that curve can be observed, but the exis-
tence of this curve needs to be emphasized and its conceptual importance to be 
pointed out. 

One first comment on it consists in observing that these blue curves do not  
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Figure 1. Compatibility conditions: The S-N field showing the compatibility condition 
implied by the Nσ∆ −  curves associated with each specimen. 

 
intersect, as it occurs in the plot. This means that one specimen is more resistant 
than other no matter the value of σ∆ , what is a simplifying, but a reasonable 
assumption. 

The first compatibility functional equation, used in [5], is based on the fol-
lowing observation: Any curve in the left plot of Figure 1 entering the square on 
the left-down rectangular area through out the horizontal line iσ σ∆ = ∆  exits 
this area through out the vertical line jN N= , so that the density functions of 
the variables lifetime, N, given σ∆ , and stress range, σ∆ , given N, defined all 
over the S-N field, permit plotting the density functions, as those shadowed in 
the figure, representing the fractions of curves, passing through the horizontal 
and vertical segments, which must be coincident. Note that all this implies that 

( ) ( )| | ,NF N F Nσ σ σ∆ ∆ = ∆                    (1) 

where ( )|F Nσ σ∆ ∆  and ( )|NF N σ∆  are the cdf of σ∆  given N and the 
cdf of N given σ∆ , respectively. The variability field of both variables in a cor-
rect model must fulfil this strong condition. Otherwise, the fatigue model would 
become not valid. 

Next, we assume that the random variables implied in the fatigue behavior de-
finition belong to the same family of distributions, such as one of the extreme 
value distributions (Weibull, Gumbel, Fréchet) or any other location-scale fami-
ly. This is a weak and natural assumption, because it would have no sense if for 
given units the distribution belongs to the family but it fails to belong when 
changing units of measure. Similarly, when asymptotes are involved it is natural 
to admit location changes so that changes in the asymptotes are included in the 
selected family of distributions. 

If the cdfs involved in (1) are assumed strictly increasing, the functional equa-
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tion 

( )
( )

( ) ( )
( )

( )1 2
1 2

1 2

,
N

N N
N

β β σ
σ λ λ σ
δ δ σ

∆
   ∆ − − ∆

=      ∆   
             (2) 

with six unknown functions: ( )1 Nλ , ( )1 Nδ , ( )1 Nβ , ( )2λ σ∆ , ( )2δ σ∆  and 
( )2β σ∆  results. 

A very general solution of this equation was found in [5], but a rigorous solu-
tion of it was given in [6] and [7], in which it was shown that there is only one 
family of physically percentile compatible solutions, with , ,B C D  and E  con-
stant parameters, of the form: 

( ) ( )( )
, constant.

N B C E
H N

D
σ

σ
− ∆ − +

∆ = =             (3) 

Next, assuming validity of the weakest link principle for the lifetimes, the fa-
tigue lifetime distribution represents a minimum problem asymptotically de-
fined by the generalized extreme value family, see [8] [9] [10] [11] or [12]. Be-
cause the existence of a lower bound in the lifetime (it cannot be less than zero) 
the Weibull distribution becomes the only candidate, see [13] [14] and [15]. The 
Weibull distribution together with the percentile curves of the form in (3) com-
plete the bidimensional model. 

Consequently, these models were selected as the only appropriate ones for fa-
tigue analysis when Mσ  is kept constant and when R is kept constant during 
the test, see [12] and [16]. 

Since most bidimensional fatigue models used in practice are written in terms 
of the lifetimes supplied for the stress range, for a fix value of the stress level, se-
lected from the set of secondary variables { }, , ,M m mean Rσ σ σ , to reduce the ef-
fect of this limitation, a hypothetical equivalence among the different S-N fields 
for different stress levels is assumed, even though this is only a strong simplifica-
tion. Some examples of this approach are the models of [17]-[25]. Some com-
parative studies among these models were reported in [26]-[32]. However, only 
very few works address the probabilistic analysis of models focused on the stress 
level effect, [33] and [34], or multiple explanatory variables, [35]. 

Unfortunately, these empirical type proposals are supported only by their 
simplicity and the associated fitting quality of the associated experimental re-
sults, but with no theoretical justification. A revision of some of these methods 
used in fatigue analysis can be seen in [12], together with some new and original 
proposals for fatigue models dealing with crack growth and damage accumula-
tion. 

The final conclusion is that bidimensional models are not satisfactory for fa-
tigue analysis, but the compatibility condition must hold for all bidimensional 
models coming from higher dimension models when the remaining variables are 
kept constant. 

Since the same considerations used for the Nσ∆ −  models for constant 

Mσ  are also valid for constant R, this implies that we have two possible com-
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patible bidimensional models to be used: 

( )
( )( ) ( )( ) ( )

( )
, ; M M M M M M

M
M M

N B C E
H N

D
σ σ σ σ

σ σ
σ

− ∆ − +
∆ =       (4) 

and 

( )
( )( ) ( )( ) ( )

( )
, ; .R R R

R

N B R C R E R
H N R

D R
σ

σ
− ∆ − +

∆ =          (5) 

Even though these two similar models can be used, if not carefully chosen they 
will be incompatible. In the following section the compatibility problem of both 
bidimensional models is stated and solved. This permits identifying the only 
compatible three-dimensional models of the form ( ), ,MH R Nσ . 

3. Second Step: A Three-Dimensional Compatibility Model 

In [36] and [37] the two bi-dimensional models in (4) and (5) were made con-
sistent using a functional equation leading to the three-dimensional model  

M R Nσ − − . 
Figure 2 shows some percentile curves of models (4) and (5) for two Mσ  

constant values, 
1Mσ  and 

2Mσ , as continuous lines, and the cases of tests for 
two R constant values, 1R  and 2R , as dashed lines. The intersections of the 
percentile lines represent four tests, indicated by thick segments, where each one 
belongs to two sets of the previous four test types and then, they must provide 
exactly the same results. The horizontal intersections of the percentiles are not a 
coincidence, but a strong cross compatibility condition that need to be satisfied. 
This condition leads to the following functional equation, which is obtained 
from Equations (4) and (5) by eliminating σ∆  and replacing it by ( )1M Rσ − , 
that is: 

 

 
Figure 2. The cross compatibility of the probabilistic distributions arising from two bi-
dimensional S-N fields referred to constant Mσ  and constant R. 
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( )
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σ

− − − +
=

− − − +
=

    (6) 

which depends on five unknown functions ( )M MB σ , ( )M MC σ , ( )M MD σ ,  
( )M ME σ , ( )RB R , ( )RC R , ( )RD R  and ( )RE R . Even though its non-con- 

sideration implies incompatibility, most new fatigue models proposed in the last 
thirty years do not pay attention to this property, as indicated in [38]. 

4. Third Step: Asymptotes Compatibility 

In addition, some of the functions appearing in (6), which define model asymp-
totes, as indicated in [4], are known. In fact, we must have: 

( ) ( ) ( ) 00; 1 .M M R MC C R Rσ σ= = −                 (7) 

The functional Equation (6) and the asymptotes in (7) lead to the following 
Weibull model: 

( ) ( )1 1 1
0 0

log 1 1 1
1

1 exp

K

M
e

M

N R R R
N R

p
a

σδ β γ
σ

      − − − − − −    −     = − −        

 (8) 

which depends on seven parameters: 0 0 1 1 1, , , , ,Ma Nσ β δ γ  and K. 
From (8), the following V Weibull random variable, which will play a key role 

in the cumulative damage evaluation, arises: 

( ) ( ) ( )1 1
0 0

; , log 1 1 1
1

M
M e

M

N RV N R R R
N R

σ
σ δ β

σ
   

= − − − − −   −   
    (9) 

The physical meaning of these parameters is as follows: a is the scale parame-
ter of the V Weibull distribution; 0Mσ  is the endurance limit for Mσ ; 0N  is 
the N asymptote for 0R = ; 1β  is the increment of the Weibull location para-
meter of the V variable for 0R =  with respect to 1R = ; 1γ  is the Weibull 
location parameter of the V variable; 1δ  is the displacement of the *loge N  
asymptote for 1 2R =  with respect to 0R =  and K is the Weibull shape pa-
rameter of the V variable. 

In addition, the associated regression models are: 

( ) ( )

( )

1 1 1
0 0

1
0

1 , , ,
1 ; exp ,

1
log 1

1

M M

e

R h a p K RN N
RN R R

N R

β γ δ
σ σ

δ

 
 − +   = + ≥   −    − −  −  

   (10) 

where 

( ) ( )( )11 1, , , log 1
K

eh a p K a pγ γ= + − −               (11) 
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is the random part of the model, and letting ( )1M Rσ σ∆ = −  one gets: 

( ) ( )1 1 1
0 0

1
0

1 , , ,
1 ; exp ,

1
log

1

M

e

R h a p K RR N N
RN R

N R

β γ δ
σ σ

δ

 
 − +   ∆ = − + ≥   −    −  −  

   (12) 

which allows us to plot Mσ  and σ∆  versus 
0

loge
N
N

 for constant R values, 

and 

( )1 1

0 1
0 1

1 1
00 0

1 , , ,

; exp ,
1log 1

M

M
M

M
M

e M
M

h a p K

N N
N
N

σδ γ
σ β

σ σ δ
σσδ β σσ

    − +   
   ∆ = ≥ −    −  + − −        

  (13) 

which allows us to plot σ∆  versus 
0

loge
N
N

 for constant Mσ  values. 

The asymptotes of the curves in (10), (12) and (13) are given in Table 1. The 
compatibility of the inequality relations in the plots in Figure 2, which must be 
taken into account for the model to be valid, implies the two constraints 1 0δ ≥  
and 1 0β ≥ . 

Next, a physical interpretation of the V variable defined in Expression (9) is 
given. 

The V variable, which has arisen in a natural form, when evaluating the proba-
bility of failure of this model and imposing the compatibility constraints, can be 
interpreted as damage level associated with an effective load, the pair ( ),M Rσ  
and the lifetime N. In other words, it can be associated with the damage caused 
to the material when subjected to N cycles under a load ( ),M Rσ  for constant 
frequency. Consequently, using the V variable in (9), a damage comparison 
can be made of two specimens subject to different load histories, when the 
frequency is constant. This is relevant, because later, based on this variable, the 
damage accumulation associated with any varying load history, will be calcu-
lated. 

 
Table 1. Horizontal and vertical asymptotes of the curves in (10), (12) and (13). 

Equation Horizontal asymptote Vertical asymptote 

(10) 0M M=σ σ  
1

0 exp
1

RN N
R

 =  − 

δ

 

(12) ( )0 1M R∆ = −σ σ
 

1
0 exp

1
RN N
R

 =  − 

δ

 

(13) 0∆ =σ  
1

0 1

0

exp
1M

M

N N

 
 
 = −
 − 
 

β δσ
σ  
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5. Fourth Step: Reproducing the Frequency Effect 

In this section the basic ideas and formulas used to reproduce the effect of fre-
quency on fatigue tests are discussed. It is assumed that the influence of fre-
quency on fatigue is manifested in the variation of the elastic modulus tending to 
an effective elastic modulus, efE . The observation is consistent with experi-
mental experience that the speed in a static test influences the apparent modulus 
of elasticity. 

The higher the test speed, the more rigid the material behaves. Therefore, the 
higher the frequency, the higher the effective elastic modulus, efE . Asymptoti-
cally, when the frequency is practically zero, the behavior of the material, i.e. the 
effective modulus of elasticity, is the nominal one, so 0efE E= . When the fre-
quency is very high, the effective modulus of elasticity tends to an asymptotic 
value, E∞ . 

The effect of frequency on the S-N fields has been studied in [39], where a 
model based on a three-parameter Weibull cumulative distribution was pro-
posed to analyze the influence of frequency and stress ratio on the fatigue life in 
concrete, both plain and reinforced with fibers, showing the reduction of effec-
tive stresses due to increased frequencies. 

All this is in accordance with a viscoelastic simile of the material, in the sense 
that for high values of frequency, the behavior of the material tends to reach an 
asymptotic value according to a sigmoidal function, such as a biparametric 
Weibull cdf. If we observe a cycle in fatigue under the condition of test in load 
control, this assumes that the induced deformation in a load cycle decreases as 
the frequency increases, as it can be seen in Figure 3. 

Since deformation is the determining mechanism in the fatigue process, the 
range of deformations deduced from the range of stresses, assuming that the 
static modulus of elasticity is the key factor. This implies that in reality, a lower 
deformation is being applied according to the relationship 0 efE E  and, ac-
cepting the linear relationship between strain and stress given by 0E , for the re-
presentation in the S N−  field, a shift to the right of the S N−  curves will be 
observed as the frequency increases. 

 

 
Figure 3. Illustration of the role played by the Young modulus on the fatigue frequency effect and the stress Mσ  and mσ  re-
duction due to frequency. 
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According to this, we can normalize the Young modulus and, since the nor-
malized range becomes the closed interval [ ]0,1  we can assume a Weibull cdf 
for the logarithm of the frequency, as follows: 

( )0 0

0

log
1 exp ,ef eE E f f

E
E E

β

τ∞

 −  
 = = − −  −    

            (14) 

where 0f  is a reference frequency and τ  is a dimensionless scale parameter. 
Note that the Weibull distribution has been justified for the logarithm of 0f f , 
a dimensionless variable, as it must always be for logarithm and trigonometric 
functions, a condition frequently ignored. Then, we have 

( ) ( )0
0 0

log
1 exp .e

ef

f f
E E E E

β

τ ∞

     = + − − −       
         (15) 

From now on, we call 

0 1.ef
ef

E
a

E
= ≤                         (16) 

which, from (15) gives 

( ) ( )0

1

log
1 1 exp 1

ef

e
ratio

a
f f

E
β

τ

=
     + − − −      

          (17) 

where 

0

1.ratio
EE
E
∞= ≥                        (18) 

Accordingly, the value of Mσ  and the stress amplitude are affected by the 
factor efa , while the mean stress is not affected. This is due to the way of carry-
ing out the test, in which the load is placed in the medium stress and then it is 
expanded until it reaches the desired amplitude. With which, it turns out that: 

, , , , ,M ef mean ef a ef mean nom ef a nomaσ σ σ σ σ= + = +             (19) 

, , , ,

2 2
M nom m nom M nom m nom

efa
σ σ σ σ+ −

= +            (20) 

( ) ( ), ,1 1

2
ef M nom ef m noma aσ σ+ + −

=                (21) 

( ) ( ) ,1 1

2
ef ef nom M noma a R σ + + − =                (22) 

and then, 

, , .

, , .

m ef mean nom a ef
ef

M ef mean nom a ef

R
σ σ σ
σ σ σ

−
= =

+
                           (23) 

, .

, .

2 2

2 2

M m M m
efmean nom ef a nom

M m M mmean nom ef a nom
ef

aa
a a

σ σ σ σ
σ σ

σ σ σ σσ σ

+ −
−−

= =
+ −+ +

          (24) 
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( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 1 1 1
.

1 1 1 1
ef M ef m ef ef nom

ef M ef m ef ef nom

a a a a R

a a a a R

σ σ

σ σ

− + + − + +
= =

+ + − + + −
        (25) 

Referring now to the nominal values, those intended in the tests, the following 
efective ,M efσ  and efR  values must replace the nominal ones, ,M nomσ  and  

nomR  in (10), (12) and (13): 

( ) ( ) ,
,

1 1
;

2
ef ef nom M nom

M ef

a a R σ
σ

 + + − =              (26) 

( ) ( )
( ) ( )
1 1

1 1
ef ef nom

ef
ef ef nom

a a R
R

a a R

− + +
=

+ + −
                  (27) 

or their inverses: 

( ) ( )( ) ,
,

1 1
;

2
ef ef ef M ef

M nom
ef

a a R

a

σ
σ

+ − −
=               (28) 

( ) ( )
( ) ( )
1 1

.
1 1

ef ef ef
nom

ef ef ef

a a R
R

a R a

− − +
=

− − +
                 (29) 

This means that the influence of the frequency on fatigue is equivalent to a 
change in the Mσ  and R values by their equivalent nominal ones ,M efσ  and 

efR  and that there exists a unique fatigue limit, independently of the frequency 
and R. 

If the model turns out to be correct, the frequency characterization of a ma-
terial, that is, the determination of the curve ( )fφ φ=  would be easily deter-
minable. It would only be a matter of applying a relatively high stress at different 
frequencies and measuring the deformation due to that stress, which would al-
low us to observe the evolution of the modulus of elasticity as a function of fre-
quency. 

6. Proposed Model 

The model proposed in this paper starts from the model developed in [4], in 
which a three-dimensional compatible M R Nσ − −  model for constant fre-
quency was derived using functional equations. In this section this model is ex-
tended to four dimensions by including the frequency variable, which plays a 
very important role in several applications, e. g. high speed train bridge safety. 

It is clear that this model and consequently, the following equations must be 
applied to the effective values of Mσ  and R, because, even though the material 
is apparently subject to given nominal values of Mσ  and R, the frequencies 
modify these actual values to the effective ones. Thus, the following equations 
refer to effective values. 

In the previous model it was demonstrated that the variable in (9) plays a cru-
cial role, because all the remaining variables can be considered as deterministi-
cally dependent on this one. In other words, the model can be written in a form 
such that its deterministic and its random parts are identified, that is, they be-
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come separable. In addition, since the variable V is unidimensional, only the 
random parameters associated with it rule the random behavior. Obviously, the 
remaining model parameters are deterministic. 

Replacing ,M Rσ  and σ∆  by ,
efM efRσ  and efσ∆ , respectively, in (10), 

(12) and (13) one gets: 
1) 

efMσ  for given efR : 

( ) ( )

( )
1 1 1

0 0

1
0

1 , , ,
1 ; exp .

1
log 1

1

ef

ef ef
M M

efef
e ef

ef

R h a p K R
N N

RRN vR
N R

β γ δ
σ σ

δ

 
 

− +   
= + ≥     −    − −   −  

 (30) 

2) ( )1
efef M efRσ σ∆ = −  for given efR : 

( ) ( )1 1 1
0 0

1
0

1 , , ,
1 ; exp ,

1
log

1

ef ef
ef M ef

efef
e

ef

R h a p K R
R N N

RRN
N R

β γ δ
σ σ

δ

 
 

− +   
∆ = − + ≥     −    −   −  

(31) 

3) efσ∆  for given 
efMσ : 

( )
0

00

1 1

1
, 0 1

1 1
0

1 , , ,

; exp ,
1log 1

ef

efef

M

M
ef M ef

MM
e

MM

h a p K

N N
N
N

σ
δ γ

σ β
σ σ δ

σσ
δ β

σσ

   
− +       ∆ = ≥ −     −+ − −         

 (32) 

where 1 1, 0δ β ≥  and 0efM Mσ σ>  for the model to be valid. 

These expressions, allow us to plot 
efMσ  and efσ∆  versus 

0

loge
N
N

 for cons- 

tant efR  values and efσ∆  versus 
0

loge
N
N

 for constant 
efMσ  values (some 

examples can be seen in the same paper [4]). 
It is important to realize that the common term ( ), , ,h a p Kγ  in (11) ap-

pearing in expressions (30) (31) and (32) refers to the Weibull distribution of the 
V in Expression (9), where γ , a and K are its location, scale and shape parame-
ters, respectively. Alternatively, other family of distributions can be selected to 
reproduce the random behavior of V. 

The asymptotes of the curves in (30), (31) and (32) are given in Table 2. 
Note finally, that the role of the V damage variable remains valid, when fre-

quencies are considered if the effective stresses are used instead of the nominal 
ones. 

7. Parameter Estimation 

To estimate the ten model parameters, 
00 1 1 1 0, , , , , , , ,Ma N fσ β δ τ γ β  and K, a 

two-step method is used. In the first step the seven deterministic parameters, 
{ }0 0 1 1 0, , , , , ,MN fσ δ τ β β , are estimated using a regression estimate based on  
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Table 2. Horizontal and vertical asymptotes of the curves in (30), (31) and (32). 

Equation Horizontal asymptote Vertical asymptote 

(30) 0efM M=σ σ
 

1
0 exp

1
ef

ef

R
N N

R
 

=   − 

δ

 

(31) ( )0 1ef M efR∆ = −σ σ
 

1
0 exp

1
ef

ef

R
N N

R
 

=   − 

δ

 

(32) 0ef∆ =σ
 

1
0 1

0

exp
1efM

M

N N

 
 
 = − 

−  
 

β δσ

σ  
 

least squares, which minimizes the sum of error terms, that is, the differences 
between the observed values, 

fiMσ , and those given by the regression curves of 

Expression (10), which correspond to the V mean value 1
11V a
K

γ  = + Γ + 
 

. In 

other words, the following optimization problem is solved: 

( )

( )
0 0 1 1 0

2

1
0, , , , , , , 1

1
0

ˆ1
Minimize 1

log 1
1

i

efiM
i

i
i

n ef
M MN V f i efi

e ef
ef

R V
Z

RN R
N R

σ δ τ β β

β
σ σ

δ
=

  
  

− +  
= − +  

   − −    −   

∑  (33) 

where 
iefM  and 

iefR  depend on 0 ,f τ  and β , subject to 

1
0 exp ,

1
i

i

ef
i

ef

R
N N

R
δ 

≥   − 
                    (34) 

1 1 0, , 0,Nδ β ≥                         (35) 

0 ,
elliM Mσ σ≥                         (36) 

where n is the sample size. 

In the second step, and keeping 11V a
K

γ  = + Γ + 
 

, that is, the mean of V,  

constant, the random parameters, { }, ,a Kγ  are obtained by restricted maxi-
mum likelihood. This restriction guaranties that the previously estimated regres-
sion curves are not modified and also avoids overfitting. This means that the 
following optimization problem is solved: 

( )( )
, , 1

Minimize log log 1 log
n

K
e e i e ia K i

Z K a W K W
γ =

= − + + − −∑       (37) 

subject to 0K ≥ , where the expression between parentheses in (37) is the log- 
likelihood, changed sign, and 

; 1, 2, , .i
i

v
W i n

a
γ−

= = �                    (38) 

This optimization problem has been implemented in matlab, using the func-
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tion “fmincon”. One example of application is given in Section 9. 

8. Damage Accumulation 

The damage interpretation of the V variable in (9) offers us the possibility of de-
riving from it a damage accumulation conversion law, which will allow us to 
calculate the probability of failure derived from any varying load history. 

It has already been indicated that the V expression in (9) gives the cumulative 
damage associated with N cycles when the load 

efMσ  and efR  is applied as-
suming that the initial damage is zero. In addition, its cdf gives the probability of 
failure, associated with N cycles when that load is applied assuming a threshold 
value, 0V , associated with a threshold number of load cycles, for which the 
probability of failure is zero. Thus, the damage level associated with N load 
cycles and zero initial damage, is: 

( ) ( ), , 0, , , .
ef efM ef M efV N R Q N Rσ σ=                (39) 

However, we look for a more general formula 

( )0 , , , ,
efM efV Q V N Rσ=                     (40) 

allowing us to consider how the damage level evolves after a given damage, 0V , 
is reached. This is one of the aims of this section. 

We start by saying that the Expression in (40) cannot be given arbitrarily. 
Otherwise, using different threshold damages will lead to different final damage 
levels even though the loads and the number of cycles coincide (see, for example, 
[40]). 

To avoid this problem, the formula to obtain V in (40) must be subjected to a 
compatibility condition, which states that the same damage level must be ob-
tained if (a) we start from a 0V  threshold damage and apply 0N N+  cycles of 
the load or (b) we start from the damage level associated with 0N  cycles and 
afterwards we apply N cycles of the same load. This, compatibility condition can 
be written as: 

( ) ( )( )0 0 0 0, , , , , , , , , ,
ef ef efM ef M ef M efQ V N N R Q Q V N R N Rσ σ σ+ =     (41) 

which is a functional equation, with its only unknown function being  

( )0 , , ,
efM efQ V N Rσ  (see [41] [42] [43] [44] or [45]). From (41) with 0 0V = , we 

get 

( ) ( )( )0 00, , , 0, , , , , , .
ef ef efM ef M ef M efQ N N R Q Q N R N Rσ σ σ+ =      (42) 

and using (39) twice one obtains: 

( ) ( )( )0 0, , , , , , , .
ef ef efM ef M ef M efV N N R Q V N R N Rσ σ σ+ =       (43) 

and letting ( )0 0, ,
efM efV N R Vσ =  in (43) the solution of Equation (41) is ob-

tained: 

( ) ( )( )1
0 0, , , , , , , ,

ef ef efM ef M ef M efQ V N R V V V R N Rσ σ σ−= +       (44) 
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where the inverse of the V function refers to its first argument and it has been 
assumed that it exists. 

If the load history is defined as a set of loads ( ) ( )( ){ }, ; 1, 2, ,
efM efj R j j mσ = � , 

for given frequencies, repeated for ( )N j  cycles, the partial and the final dam-
age states can be calculated as follows: 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( )

0 0

1
0

1 , , ,

1 , , , , ; 1, 2, ,

ef

ef ef

M ef

M ef M ef

V j Q V j N j j R j

V V V j j R j N j j R j j m

σ

σ σ−

= −

= − + = �
(45) 

where ( )0 1V j −  is the threshold damage for load ( ) ( ){ },
efM efj R jσ , and the 

initial and final damage levels are ( )0 0 0V V=  and ( )0V m , respectively. 
It is obvious that these two formulas become crucial when one needs to eva-

luate damage states caused by different load histories, as it happens in real prac-
tice. 

9. Example of Application 

In this example we have a set of 243 fatigue test data. The samples consisted of 
commercial high purity Al wires (type Al-H11 from Heraeus in as-received con-
dition with a diameter of 400 μm and a gauge length of 10 mm. A TA Electro-
Force DMA 3200 testing machine with a load capacity of 500 N, a frequency 
range of 0.00001 - 300 Hz and a displacement range of ±6 mm was used for the 
experiments. The load controlled fatigue tests were carried out in tension-tension 
mode at a stress ratio of 0.1R ≈  by using 6 - 10 samples at each stress level. 
The S-N curves were obtained by collecting the data in a broad range of 102 up 
to about 108 loading cycles at three testing frequencies of 2, 20 and 200 Hz, and 
the model parameters have been estimated using the methods described in Sec-
tion 7 and commented below. Eratio is assumed equal 3. 

The resulting lifetimes are plotted in Figure 4, using three different colors, 
blue, for 2 Hzf = , green, for 20 Hzf =  and red, for 200 Hzf = , respec-
tively. 

A simple look to the data in Figure 4 reveals the presence of a few outliers, 
which are indicated using squares instead of circles for the data points. We  

 

 
Figure 4. Plot of Mσ  versus lifetime N of the laboratory experimental data, with all data and outliers in the left plot and with 
removed outliers in the right plot. 

https://doi.org/10.4236/ojs.2021.116064


E. Castillo et al. 
 

 

DOI: 10.4236/ojs.2021.116064 1087 Open Journal of Statistics 
 

advance that these five outliers, which are only 2% of the 243 sample data points, 
were selected using both, probability papers and analyzing to percentile curves 
of the fitted model including all data points (see Figures 4-8). 

Table 3 shows the five outliers indicating their sample indices, their lifetimes 
and the corresponding values of Mσ  in MPa. 

The two-step method described in detail in Section 6 has been used to esti-
mate the parameters with all data points and the resulting fitted model plotted to 
analyze the possibility of some outliers, as revealed by our first look to the data 
points. The outliers were confirmed based on Figures 4-8, but this can also be 
done using well known methods, such as, for example, those given in [46] and 
[47]. 

Once this has been done and the outliers identified, they have been removed 
from the sample and the estimation and possible detection of more outliers re-
peated to select the final model for its use in practical applications, such as an 
analysis of safety against fatigue in high speed railway bridges. 

For the sake of facilitating the comparison of both results, with and without 
outliers, and to analyze how them affect the final results, the plots corresponding 
to both estimation processes have been grouped, such that the left plots refer to 
the whole data and the right plots to the removed outliers case, respectively. 

The first estimation step, in which the regression curves are obtained using 
least squares, provides the seven deterministic parameter estimates and the 
second step gives the three random ones, obtained by restricted maximum like-
lihood, assuming a Weibull distribution for the residuals. They are shown on the 
left and right parts of Table 4, respectively. 

Figure 5 shows the data sample points and the M Nσ −  and 
efM Nσ −  re-

sulting regression curves for the three different frequencies: 2, 20 and 200 Hz, 
which show a good fit. 

Figure 6 shows the V values on a reverse Gumbel probability paper, revealing  
 

Table 3. Outliers revealed after analyzing the information in Figures 4-8. 

Data point 
i 

Lifetime 
(cycles) 

Mσ  
MPa. 

Data point 
i 

Lifetime 
(cycles) 

Mσ  
MPa. 

131 31,517 40.00 150 94 825 37.80 

209 92,666 39.79 242 2 293 106 33.00 

243 33,714,952 31.99    

 
Table 4. Deterministic and random parameter estimates obtained with all data points and 
after removing the five outliers. 

Outliers 
Deterministic parameters Random parameters 

0Mσ
 0N  1β  1δ  0f  β  τ  a γ  K 

Included 18.96 0.388 0.174 0 1.33 × 10−5 2.63 12.1 1.40 0.91 9.60 

Removed 18.92 0.347 0.104 0.143 1.56 × 10−5 2.63 11.8 0.76 1.59 6.66 
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Figure 5. Data, M Nσ −  and 

effM Nσ −  regression curves for three different frequencies: 2, 20 and 200 Hz, fitted by least 

squares, using all data, on the left plots, and after removing the five outliers, on the right plots. 
 

 
Figure 6. V resulting sample data plotted on a reverse Gumbel probability paper, corresponding to the whole sample and after 
removing the outliers. 
 

a close to linear general trend but showing some outliers at both ends. As already 
indicated, the five outliers have been selected using this plot and the following 
percentile plots. They clearly show that we are in front of outliers, some of them 
confirming our first impression after looking to the data in Figure 4. 

The right plot in Figure 6 corresponds to the data points after removing the 
outliers, which also shows a linear trend and suggests no more outliers present. 
The lower end, suggesting a vertical asymptote, indicates a Weibull distribution 
close to a Gumbel one ( 6.66K = ) (see [48]). 

The plots in Figure 7 show the empirical cdf of all the data and all data with 
outliers removed, together with the 0.01, 0.05, 0.50, 0.95 and 0.99 percentiles of 
the order statistics of a Weibull model, confirming once more the Weibull family 
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as a reasonable choice. 
It is clear that the Weibull distribution of V is justified, theoretically and 

physically, by extreme value theory, because fatigue failure is a process that takes 
place using the weakest link or weakest region principle, stating that failures oc-
cur at the weakest locations. 

Alternatively, in the second step, the errors or residuals, iV , are also calcu-
lated and plotted, in Figure 8, together with the “ksdensity” matlab kernel esti-
mate, which is based on a normal kernel function and uses a window parameter 
(bandwidth) as explained in [49]. 

The plots in Figure 8 show the Weibull and kernel pdf estimates together with 
the data for the whole data and the removed outliers on the top and bottom 
plots, respectively, and the Weibull and kernel cases, on the left and right plots,  

 

 
Figure 7. Weibull probability bands for the order statistics of the sample considering all data and with no outliers. 
 

 
Figure 8. Weibull and non-parametric errors density estimates, left and right, respectively, with all sample data and after remov-
ing the outliers, upper and lower, respectively, together with the experimental data. 
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respectively. It is interesting to see how the top plots allow identifying the out-
liers on their left and right zones. 

If the Weibull model is used, the resulting regression curves and the asso-
ciated percentiles are shown in Figure 9 and Figure 10, for Mσ  and 

efMσ , re-
spectively. 

Figure 9 shows the three data sets, in different colors, and the resulting 0.01, 
0.05, 0.50, 0.95 and 0.99 percentiles of the Mσ  versus lifetime N regression 
curves using a Weibull parametric estimate, for outliers included (left) and re-
moved (right) cases, respectively. 

Finally, Figure 10 shows the three data sets, in different colors, and the re-
sulting 0.01, 0.05, 0.50, 0.95 and 0.99 percentiles of the 

efMσ  versus lifetime N 
regression curves using the Weibull parametric estimate. Note that the data are 
in accordance with the model showing a good fit and then, confirming the  

 

 
Figure 9. The 0.01, 0.05, 0.50, 0.95 and 0.99 percentiles of the Mσ  versus lifetime N regression curves, for three frequencies of 2, 
20 and 200 Hz and the resulting Weibull model, with (left) and without (right) outliers. 
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Figure 10. The 0.01, 0.05, 0.50, 0.95 and 0.99 percentiles of the 

efMσ  versus lifetime N regression curves, for three frequencies of 

2, 20 and 200 Hz and the resulting Weibull model, with (left) and without (right) outliers. 
 

selected model. As it can be seen, this also reveals the presence of some outliers, 
corresponding to the two sides of the regression curve. 

Note also that the outliers also appear in Figure 9 and Figure 10 on both sides 
of the mean, as already indicated by the density estimate in Figure 8, where the 
five outliers correspond to the five points on the left and right extremes. 

The regression curves Mσ  versus N and 
efMσ  versus N corresponding to 

the kernel estimates together with the associated percentiles, as those in Figure 9 
and Figure 10, are omitted because they are practically identical to the Weibull 
model ones. This is due to the fact that the densities in Figure 8 are very similar 
for the Weibull and kernel cases. 

Finally, the resulting diagram of efE ∗  versus frequency is shown in Figure 
11, showing its sigmoidal shape. 

In summary, it can be concluded that, at least in this example including a  
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Figure 11. Sigmoidal diagram of *ef

E -frequency, resulting after removing the outliers. 

 
large size data set, the model behaves well and as expected. Future analysis will 
be required to confirm the use of this model. However, the possibility of a four 
dimensional analysis, that is, including frequencies as the fourth variable is now 
possible. 

10. Conclusions 

The most important conclusions from this paper are: 
1) The necessity of replacing or improving existing models, broadly acknowl-

edged and recommend by standards and guidelines, needs to be emphasized to 
avoid the consequences of application of invalid models as reported in the lite-
rature. 

2) A new method for considering the joint effect of maximum stress, stress ra-
tio and frequency on the lifetime is presented in Sections 0 to 1. The frequency is 
included as a new and relevant variable to be considered in the design of impor-
tant high-risk components such as wind turbines and automobiles, high speed 
railways and aeronautical material. 

3) It has been shown that compatibility conditions are important tools to build 
models without arbitrary assumptions. These conditions were easily stated as 
functional equations, in Sections 2 to 4, which when solved provide the unique 
models satisfying the corresponding conditions. To our knowledge, no other me-
thod exists satisfying these conditions. 

4) The model shows, in Section 5, that the frequency effect is equivalent to a 
concurrent modification of the maximum stress-stress ratio pairs from each test, 
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what has immediate consequences in how to design the tests conducting to a 
precise parameter estimation. 

5) The model parameters are classified, in Section 7, into two distinct classes: 
those defining the deterministic model, which are estimated by least-squares re-
gression, and those reproducing the random ones, estimated by a restricted 
maximum-likelihood method. An estimation method is proposed and applied 
independently to both classes to avoid overfitting, in Section 7, and tested later 
in Section 9. 

6) A model damage measure variable, V, is identified in Section 4, which to-
gether with its cdf, permits the damage accumulation to be evaluated and the 
associated probability of failure to be determined subject to any varying load 
history. A general formula is given in Section 8, which allows the cumulative 
damage to be analytically calculated from the joint effects of the three changing 
variables, maximum stress, stress ratio and frequency. 

7) Due to its integrated character, because it includes all variables, the use of 
the model, will certainly allow us to reduce the sample size, and also to optimize 
the test sequences when used in designing test studies. 

8) A more general formula that provides the damage of any load when the ini-
tial damage is known is obtained in Section 8 as the result of a functional equa-
tion that guaranties the compatibility, that is, damage to become independent on 
the way the loads are considered. 

9) An unusually, rarely available large sample data, from an experimental cam-
paign in which 243 fatigue specimens were tested, was used to validate the mod-
el, in Section 9, resulting very good results, as shown in the figure examples. 
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