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Abstract 
Confirmatory factor analysis (CFA) refers to the FA procedure with some 
loadings constrained to be zeros. A difficulty in CFA is that the constraint 
must be specified by users in a subjective manner. For dealing with this diffi-
culty, we propose a computational method, in which the best CFA solution is 
obtained optimally without relying on users’ judgements. The method con-
sists of the procedures at lower (L) and higher (H) levels: at the L level, for a 
fixed number of zero loadings, it is determined both which loadings are to be 
zeros and what values are to be given to the remaining nonzero parameters; at 
the H level, the procedure at the L level is performed over the different num-
bers of zero loadings, to provide the best solution. In the L level procedure, 
Kiers’ (1994) simplimax rotation fulfills a key role: the CFA solution under 
the constraint computationally specified by that rotation is used for initializ-
ing the parameters of a new FA procedure called simplimax FA. The task at 
the H level can be easily performed using information criteria. The usefulness 
of the proposed method is demonstrated numerically. 
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1. Introduction 

In factor analysis (FA), the variation of p observed variables is assumed to be ex-
plained by m common factors and p unique factors, with m < p and the two 
types of factors mutually uncorrelated. The m common factors serve to explain 
the variations of all p variables. On the other hand, each of the p unique factors 
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has a one-to-one correspondence to each variable: a unique factor explains spe-
cifically the variation of the corresponding variable that remains unaccounted 
for by the common factors [1] [2] [3]. 

The parameters to be estimated in FA are a factor loading matrix Λ = (λij) (p × 
m), a unique variance matrix Ψ = (ψii′) (p × p), and a factor correlation matrix Φ 
= (φjk) (m × m). Here, the loadings in Λ stand for how the variables load on the 
common factors, Ψ is the diagonal matrix whose diagonal element ψii expresses 
the variance of the ith unique factor, and Φ contains the correlation coefficients 
among the m common factors. Upon making certain distributional assumptions 
for the factors, the covariance matrix Σ among p observed variables is modeled as 

′= +Σ ΛΦΛ Ψ .                        (1) 

(e.g., Adachi, 2019 [1]; Mulaik, 2010 [2]). Thus, a loss function ( ), , |f SΛ Ψ Φ  
can be defined, which stands for the discrepancy between (1) and its sample 
counterpart S (p × p): FA can be formulated as minimizing ( ), , |f SΛ Ψ Φ  
over Λ, Ψ, and Φ, for a given S. 

FA can be classified into two types; confirmatory (CFA) and exploratory 
(EFA) [2]. In CFA, some loadings in Λ are constrained to take zero values, while 
no constraints are imposed on the loadings of EFA. In this paper, we focus on 
CFA. An example of the CFA model with a particular constraint is illustrated in 
Figure 1. There, a constrained loading matrix Λ is shown on the left, and the 
corresponding CFA model is depicted on the right as a diagram, in which only 
pairs of variables and factors with unconstrained loadings are linked by paths. In 
Figure 1, the binary matrix B is also presented which specifies the constraints in 
Λ and the links in the right diagram. The elements in B = (bij) (p × m) are de-
fined generally as 

0, iff 0

1, otherwise
ij

ijb
λ == 


,                      (2) 

in other words, bij = 1 if variable i is linked to factor j; otherwise, bij = 0. In this 
sense, we call B a link matrix. Any CFA constraint can be expressed as = •BΛ Λ . 
Here, • denotes the element-wise Hadamard product with ( )ij ijb λ• =B Λ . It 
should be kept in mind that specifying a CFA model amounts to selecting a par-
ticular link matrix B. Thus, CFA can be formally expressed as 

( ), ,min , , |f SΛ Ψ Φ Λ Ψ Φ  s.t. = •BΛ Λ  for a specified ∈ BB       (3) 

 

 
Figure 1. Illustration of constrained loadings and the corresponding CFA model. 
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with “s.t.” the abbreviation for “subject to” and B  denoting a set of considered 
matrices B. 

A problem in CFA (3) is that the link matrix B = (bij) defined as (2) must be 
selected by users. That is, it must be decided in a subjective manner, which ele-
ments in B are to be zeros/ones, in other words, which pairs of variables and 
factors are linked as in Figure 1 whether the CFA model with a particular con-
straint is accepted or not is checked afterwards by referring to the goodness- 
of-fit of the solution [4] [5] [6]. However, even if the model is found acceptable, 
better CFA models with other link matrices B may exist. It implies that all possi-
ble B in B  must be considered for finding the best B. However, this is unfeas-
ible, unless pm is very small, as the number of all possible B is enormous. That 
number can be calculated as 2pm, since each of the pm elements in B takes zero 
or one as in (2): for example, for p = 12 and m = 3 one finds 2pm ≅ 6.87 × 1010. In 
short, the problems in CFA can be summarized next: 

[P1] The link matrix B (specifying a CFA model) must be selected subjectively 
by users. 

[P2] An enormous number of possible matrices B in B  must be considered 
for finding the best B. 

To the best of our knowledge, the problems [P1] and [P2] in CFA have not 
been considered in the existing papers. In order to deal with those problems, we 
propose an FA procedure for computationally and optimally identifying a suita-
ble CFA model. Here, the model identification includes estimating the model 
parameter values. The outline of our proposed procedure is described in the next 
section. Then, we detail the procedure in Section 3, report its assessment in a 
simulation study in Section 4, give numerical examples in Section 5, and con-
clude this paper in Section 6. 

2. Outline of the Proposed Procedure 

First, we outline our approach to the CFA model identification under the condi-
tion that the number of zero loadings is fixed to a particular integer in Section 
2.1. Then, in Section 2.2, the approach is extended to the cases with the number 
of zero loadings not being fixed. We then summarize the prospects for the fol-
lowing sections. 

2.1. Model Identification for a Specified Number of Nonzero 
Loadings (Cardinality) 

For dealing with the difficulties [P1] and [P2] in CFA, we can consider the two 
procedures introduced in the next paragraphs, on the condition that  

( ) ( )Card Card= BΛ , that is, the number of nonzero values in Λ and B the ma-
trix between parentheses equals a specified integer c hence 

( )Card c=Λ , or equivalently, ( )Card c=B .            (4) 

Clearly, pm − c equals the number of zeros in B or Λ. 
The first procedure considered can be formulated as 
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( ), ,min , , |f SΛ Ψ Φ Λ Ψ Φ  s.t. = •BΛ Λ , after B is estimated optimally s.t. (4). (5) 

This minimization is rewritten as performing CFA under the constraint indi-
cated by link matrix B, with B estimated by another method in advance. Thus, 
the problem [P1] is overcome. Further, we can also consider that [P2] is dealt 
with, supposed that the value c in (4) and B are suitable. 

The above procedure consists of two stages: first B is estimated, then CFA is 
performed, see (5). In contrast, the second procedure considered is formulated 
with a single stage as follows: 

( ), , ,min , , , |fB B SΛ Ψ Φ Λ Ψ Φ  s.t. = •BΛ Λ  and (4).         (6) 

Here, B has been added to the subscripts of “min”: the link matrix B, which in-
dicates the pairs of variables and factors to be linked, is estimated jointly with 
the other parameters Λ, Ψ, and Φ. 

Between (5) and (6) or (6′), we can find the following difference: in minimiz-
ing loss function ( ), , |f SΛ Ψ Φ , the B value is kept fixed in (5), but allowed to 
change in (6). The difference implies that the resulting loss function value in (6) 
cannot exceed that value in (5): 

( ) ( ), , , , ,min , , , | min , , |f f≤B B S SΛ Ψ Φ Λ Ψ ΦΛ Ψ Φ Λ Ψ Φ .        (7) 

This inequality shows that (6) can provide a better solution than (5). We will 
propose an iterative algorithm for (6), which will be started by the optimum for 
(5). As empirically shown later, in almost all cases, the solutions of (5) and (6) 
are equivalent: we can obtain the final solutions only by (5), without performing 
the iterative algorithm for (6). However, it is worth to perform the latter step, as 
(6) can provide a better solution in a few cases. 

In this paper, we use the maximum likelihood (ML) method for estimating the 
parameters in (5) and (6). This implies that the loss function to be minimized is 
given as the negative of the log likelihood. It is explicitly expressed as 

( ) ( ) 11, , | log tr log trf −− ′ ′= + = + + +S S SΛ Ψ Φ Σ Σ ΛΦΛ Ψ ΛΦΛ Ψ ,  (8) 

following from the normality assumptions for factors [7]. For minimizing (8), 
we use Rubin & Thayer’s [8] EM algorithm for FA, whose properties are dis-
cussed in Adachi [9]. This algorithm is detailed in Appendix A1. 

2.2. Selection of the Best Cardinality 

We should notice that the above approach is conditional upon c in (4). Thus, it 
remains to select the best value for c. This can be attained by the following pro-
cedure: 

Select the value c with the lowest IC(c) among min max, ,c c c= � .    (9) 

Here, cmin/cmax expresses the reasonable minimum/maximum of c, and IC(c) de-
notes the value of an information criterion statistic [10], with the statistic being a 
function of c. The information criteria consist of some statistics which can be 
defined in ML-based procedures, and they show smaller values for better solu-
tions. Explicit expressions of IC(c) are introduced later. We can rewrite (9) as 
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follows: the procedure of (6) following (5) (in the last subsection) is performed 
for min max, ,c c c= � , so that we have multiple solutions, among which the solu-
tion with the least IC(c) is selected as the best one. The largest interval of [cmin, 
cmax] is obviously [1, pm]. It can be reasonably reduced as 

minc p=  and 
( )

max

1
2

m m
c pm

−
= −               (10) 

This is because, solutions with c smaller than p would surely have one or more 
zero rows of loadings. On the other hand, it is considered in the cmax value that 
m(m − 1)/2 elements in Λ can be set to zeros without a change in the values of 
loss function (8). 

Now, let us discuss how our proposed procedure is related to the set B  
containing all possible B, using ( )cB  for the subset of B  that contains the 
matrices B with c nonzeros. The number of B in ( )cB  is given by 

( ) Cpm cN c =B ,                       (11) 

i.e., the number of the combinations of the c elements being ones among all pm 
elements in B. Thus, the number of all B contained in B  is given by 

( )max

min

c
c cN N c
=

= ∑B B                      (12) 

with (10) and (11). For example, when p = 12 and m = 3, the value in (12) is ap-
proximately 1.25 × 109, which is enormous (though less than 2pm ≅ 6.87 × 1010 
presented in the last section where (10) was not yet considered). However, it is 
not required to assess all NB matrices B in B  in our proposed procedure, as 
the performance of (6) following (5) allows us to find the optimal B in ( )cB  
for a particular c, with this performance made for min max, ,c c c= �  as in (9). 
That is, our proposed procedure can find the optimal B among all NB matrices B 
in B  by the max min 1c c− +  runs of (6) following (5), but not by assessing all 
B. The example of max min 1 22c c− + =  for p = 12 and m = 3 demonstrates how 
easily we can arrive at the optimal B. 

The remaining parts of this paper are organized as follows: in Sect 3.1 and Sect 
3.2, we detail (5) and (6) in turn. There, it is described that Kiers’ [11] simplimax 
rotation is used for the optimal estimation of B subject to (4) in (5) and the 
idea of this rotation also fulfills a key role in (6). Thus, the procedures for (5) 
and (6) are particularly called simplimax-based CFA (SbCFA) and simplimax 
FA (SimpFA), respectively. In the section after treating SbCFA (5) and SimpFA 
(6), we detail the whole process of the proposed procedure, i.e., SimpFA (6) fol-
lowing SbCFA (5) with the cardinality selection by (9). The proposed procedure 
is studied in a simulation study and illustrated with real data examples, as re-
ported in the sections before concluding this paper. 

3. Simplimax-Based Confirmatory Factor Analysis 

In this section, we detail the procedure formulated as (5) with ( ), , |f SΛ Ψ Φ  
defined as (8). A key point is that we will use exploratory FA (EFA) followed by 
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Kiers’ [11] simplimax rotation for estimating B optimally subject to (4) in (5). 
That is, in the procedure, firstly EFA is performed for a data set, secondly sim-
plimax is applied to the EFA solution for estimating the link matrix B, and, fi-
nally, the resulting B is used for minimizing (8) subject to = •BΛ Λ . These 
three stages are described respectively in the following subsections. The last 
one can be regarded as confirmatory FA (CFA) on the basis of the B given by 
simplimax. We thus call the procedure in this section simplimax-based CFA 
(SbCFA). 

3.1. Exploratory Factor Analysis 

Let T denote any m × m nonsingular matrix satisfying 

( )diag m′ =TT I ,                       (13) 

where diag(TT′) is the diagonal matrix whose diagonal elements are those of 
TT′. EFA has rotational indeterminacy as shown next: 

1 1
T T

− − ′′ ′ ′= + = +T TT TΣ Λ Λ Ψ Λ ΦΛ Ψ               (14) 

with Φ = TT′ and ΛT = ΛT−1. Here, the latter matrix can also be regarded as the 
loading matrix. Thus, even if Φ = TT′ is fixed to Im by choosing T that meets TT′ 
= Im, the (8) value remains unchanged when Λ is replaced by ΛT−1. By taking 
account of this property, ( ), , |mf = SΛ Ψ Φ Ι , i.e., (8) with Φ = Im, is minimized 
over Λ and Ψ in EFA. This is attained with the EM algorithm described in Ap-
pendix A1. We use ΛE for Λ resulting from EFA. 

The indeterminacy (14) implies that ΛT = ΛET−1 and Φ = TT′ can also be the 
EFA solutions of factor loading and correlation matrices, respectively, with  
( ) ( )E T, , | , , |mf f= =S SΛ Ψ Φ Ι Λ Ψ Φ . This fact is often exploited by obtaining 

T that allows ΛT = ΛET to be interpretable. The procedures for obtaining T are 
generally referred to as factor rotation. 

3.2. Simplimax Rotation 

This subsection concerns the factor rotation intermediating between the first 
EFA and the final CFA stages. Here, the loading matrix is unconstrained in EFA, 
but constrained to meet = •BΛ Λ  in CFA as in (3). The latter constrainedness 
leads to 

( ) ( ) ( ), , E Tmin , , | , , | , , |f f f• ≥ = =B S S SΛ Ψ Φ Λ Ψ Φ Λ Ψ Φ Ι Λ Ψ Φ ,  (15) 

where ( ), , |f •B SΛ Ψ Φ  stands for the loss function in (3) in which the CFA 
constraint = •BΛ Λ  substituted. Inequality (15) implies that the value of the 
EFA loss function ( ) ( )E T, , | , , |f f= =S SΛ Ψ Φ Ι Λ Ψ Φ  gives the lower limit of 
( ), , |f •B SΛ Ψ Φ  to be minimized in CFA (3). This suggests that the best attain-

able CFA solution would be one which provides the ( ), ,min , , |f •B SΛ Ψ Φ Λ Ψ Φ  
value close to the EFA counterpart the ( ) ( )E T, , | , , |f f= =S SΛ Ψ Φ Ι Λ Ψ Φ  
value. 

Now if T can be chosen in the factor rotation such that ΛT = ΛET−1 is similar 

https://doi.org/10.4236/ojs.2021.116062


J. Y. Cai et al. 
 

 

DOI: 10.4236/ojs.2021.116062 1050 Open Journal of Statistics 
 

to a matrix that can be written as •B Λ  for particular matrices B and Λ, then 
we can expect that such B and Λ will be good candidates for giving a CFA solu-
tion with a fit close to that of EFA. This can be attained by the simplimax rota-
tion [11], which is formulated as minimizing the simplimax function 

( )
21

E, ,spx −= • −B T B TΛ Λ Λ                  (16) 

over B, Λ, and T subject to (4) and (13). Thus, this rotation serves as a suitable 
bridge between the first and final stages. 

For the constrained minimization of (16), two steps are iterated alternately. In 
one of them, the simplimax function (16) is minimized over T under (13) for a 
given •B Λ , using Browne’s [12] algorithm. In another step, (16) is minimized 
over B = (bij) and Λunder (8) for a given ΛET−1. As this problem is also related to 
the procedure in the next section, we express the minimization in a generalized 
form as 

( ) 2
,min , |spx = • −B B H B HΛ Λ Λ  for a given p×m matrix ( )jkh=H ,  (17) 

with H = ΛET−1 in the present context. As explained in Appendix A3, (17) can 
be attained for 

[ ]
2 21, if

0, otherwise
ij c

ij

h h
b

 ≥= 


 and = HΛ ,                (18) 

with [ ]
2
ch  denoting the cth largest value of all elements in ( )2

ijh• =H H . The 
steps in the simplimax rotation algorithm is listed in Appendix A2. 

3.3. Confirmatory Factor Analysis Following Simplimax Rotation 

The final stage is simply to perform CFA using B obtained by the simplimax 
rotation. Thus, SbCFA is formulated by making (5) concrete as 

( ), ,min , , |f SΛ Ψ Φ Λ Ψ Φ  s.t. = •BΛ Λ  

after B is estimated s.t. ( )Card c=B  by simplimax   (5′)  

with ( ), , |f SΛ Ψ Φ  defined as (8). The minimization in (5) or (5′) is attained 
with the EM algorithm, which is described in Appendix A1. 

3.4. Simplimax Factor Analysis 

We will now describe simplimax FA (SimpFA). This is the procedure minimizing 
(6), using the solution from SbCFA as a starting configuration. Specifically, we 
minimize the negative of the log likelihood (see (8)), with •B Λ  is substituted 
into Λ, over B, Λ, Ψ, and Φ subject to card(å) = c (see (4)). We call this procedure 
simplimax FA (SimpFA), as this is a new FA procedure, and the minimization of 
the simplimax function (17) fulfills a key role as will be seen in the next paragraph. 

The EM algorithm described in Appendix A1 can also be used for SimpFA. 
The algorithm for SimpFA differs from that for the other FA procedures, in that 
the former includes the step for minimizing (8) over both B and Λ with Ψ and Φ 
fixed. An innovative feature in the algorithm is to use Kiers’ [13] [14] majorization 
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method for dealing with difficulties in treating (8) as a function of B and Λ. In 
that method, an auxilary function that majorizes (8) is minimized. For this mini- 
mization, 

( ) 2, |spx = • −B W B WΛ Λ ,                 (19) 

i.e., the simplimax function in (17) with H = W, fulfills a key role. Here,  
1 1

C C Ctr− −′ ′ ′= + −W Q CΛ Λ Ψ Ψ Λ  with Q and C defined in A.1 and ΛC is the cur-
rent Λ value (before update), see Appendix A4 for a derivation. 

3.5. Multiple Runs of SimpFA Following SbCFA 

Here, we describe the procedures in SimpFA following SbCFA, in which SbCFA 
provides the initial values of the parameters in SimpFA providing the final so-
lution. We take a multiple run approach for SimpFA following SbCFA, in or-
der to reduce the possibility of selecting a local minimizer as the optimal solu-
tion: the algorithm of SbCFA followed by SimpFA is run multiple times by 
starting SbCFA with mutually different initial values, and the best solution is 
selected among the multiple SimpFA solutions. The procedure is listed as fol-
lows: 

Stage 1. For S, perform EFA to provide ΛE and set l = 1. 
Stage 2. For each of 1, ,100l = � , perform the following sub-stages: 
Stage 2.1. Initialize T to Tl and perform simplimax. Express the resulting B as 

Bl. 
Stage 2.2. For S, perform CFA using Bl as B. Express the resulting Λ, Ψ, and Φ 

as l
�Λ , l

�Ψ , and l
�Φ , respectively, with their set { }, ,l l l l=� � � �Θ Λ Ψ Φ . 

Stage 2.3. For S, perform SimpFA with Λ, Ψ, and Φ initialized at l
�Λ , l

�Ψ , 
and l

�Φ , respectively. Express the resulting Λ, Ψ, and Φ as Λl, Ψl, and Φl, re-
spectively, with their set { }, ,l l l l=Θ Λ Ψ Φ . 

Stage 3. Select { }ˆ ˆ ˆ, ,Λ Ψ Φ  with ( ) ( )ˆ ˆ ˆ, , | min , , |l l l lf f=S SΛ Ψ Φ Λ Ψ Φ  as the 

optimal solution. 
Here, the initial value Tl for T in Stage 2.1 is chosen as follows: Tl is obtained by 
the varimax rotation for ΛE if l = 1; otherwise, Tl is set to ( )0

1
0 0

2diag −′T T T  with 
the elements in T0 chosen randomly: the resulting Tl can be substituted into T. 
In Figure 2, the above stages are graphically illustrated, so that they can be cap-
tured visually. 

3.6. Selection of Cardinality by Information Criteria 

The final solution { }ˆ ˆ ˆ, ,Λ Ψ Φ  resulting in Stage 3 (the last subsection) depends 
on the cardinality c value in (8). We thus use { }ˆ ˆ ˆ, ,c c cΛ Ψ Φ  for the solution 

{ }ˆ ˆ ˆ, ,Λ Ψ Φ  for a particular value of c. The best value for c can be selected with 
the procedure (9). This can be rewritten using { }ˆ ˆ ˆ, ,c c cΛ Ψ Φ  as 

Choose the { }ˆ ˆ ˆ, ,
c c c∗ ∗ ∗Λ Ψ Φ  for the value ( )

min max
arg minc cc IC c∗

≤ ≤=    (20) 

with cmin and cmax defined as (10). 
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Figure 2.Graphical illustration of Stages 1 - 3. 

 
As IC(c) in (20), we consider using either of Akaike’s [15] information criterion 

(AIC) or Schwarz’s [16] Bayesian information criterion (BIC), which are particu-
larly popular in the information criteria. AIC and BIC can be calculated as 

( ) ( ) ( )ˆ ˆ ˆ2 , , | 2c c cAIC c f cκ= +SΛ Ψ Φ ,              (21) 

( ) ( ) ( )ˆ ˆ ˆ2 , , | logc c cBIC c f n cκ= +SΛ Ψ Φ ,             (22) 

respectively, for a particular value of c. Here, n is the number of observations, 
and κ(c) = c + α with α the number of unique variances plus the number of in-
ter-factor correlations. Thus, (21) or (22) is substituted into IC(c) in (20). Whether 
we should use (21) or (22) is assessed in the next section. 

4. Simulation Study 

We performed a simulation study to assess the proposed procedure in the last 
section, with respect to [1] how often the c value in (8) is selected correctly by 
AIC and BIC; [2] how similar the SbCFA and SimpFA solutions are; [3] how 
well parameter values are recovered. The procedures for synthesizing and ana-
lyzing data in the study are described in the first subsection, then the results for 
[1] [2] and [3] are reported in the following ones. 

4.1. Data Synthesis and Analysis 

With p = 12, and m =3, we set the true {Λ, Ψ, Φ} as in Table 1 and sampled n = 
300 rows of an n × p data matrix X from the p-variate normal distribution whose 
average is 0p and covariance matrix is defined as ′= +Σ ΛΦΛ Ψ , see (1). The 
resulting X provided the sample covariance matrix S = n−1X′X. We replicated 
this procedure 200 times to have 200 matrices S. 

For each S, we carried out the procedure of SimpFA following SbCFA with the 
selection of the best c by (20), using both AIC and BIC. It gives the SimpFA so-
lutions { }ˆ ˆ ˆ, ,

c c c∗ ∗ ∗Λ Ψ Φ , which are classified into two types according to whether 
c was chosen by AIC or BIC. 

4.2. Correctness of Selected Cardinality 

Let ctrue denote the true Card(Λ). As found in Table 1, ctrue = 15. On the other  
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Table 1. True parameters in Λ, Ψ1p, and Φ with blank cells indicating zero elements. 

Λ Ψ1p Φ 

−0.9 
  

0.2 1 0.2 −0.3 

0.8 
  

0.3 0.2 1 0.1 

0.7 
  

0.5 −0.3 0.1 1 

0.6 −0.6 
 

0.4 
   

 
0.9 

 
0.2 

   

 
−0.8 

 
0.4 

   

 
0.7 

 
0.5 

   

 
0.6 −0.6 0.3 

   

  
0.9 0.2 

   

  
0.8 0.3 

   

  
−0.7 0.5 

   
−0.6 

 
0.6 0.4 

   
 

hand, c* expresses Card(Λ) selected by the proposed procedure (20). We ob-
tained the deviation c* − ctrue for each of the 200 data set. The averages (standard 
deviation) of these deviations over all data sets are 2.43 (1.40) when using AIC 
and 0.34 (0.62) when using BIC. This result shows that AIC tends to overesti-
mate Card(Λ). Moreover, the mean absolute bias |c* − ctrue| for BIC was smaller 
than that for IC for 184 data sets among the 200 ones. This result shows that BIC 
is substantially better than AIC. Accordingly, we take only the BIC-based solu-
tion into consideration from here. 

4.3. Equivalence of SbCFA and SimpFA Solutions 

It was found that 98 percent of the 200 solutions of SimpFA were equivalent to 
those of the SbCFA ones used for initializing the SimpFA parameters: no itera-
tion in the SimpFA algorithm was required. Also in the remaining two percent 
of the runs, SbCFA and SimFA solutions were almost equivalent, with the aver-
age of the differences between the two solutions over the 200 data sets being 
0.001. Here, the difference is defined as  

( ) ( ){ }
11 1

ˆ ˆ ˆ 1
c c c c c c

pm p m m∗ ∗ ∗ ∗ ∗ ∗− + − + − + − −� � �Λ Λ Ψ Ψ Φ Φ  with  

1 i j ijγ= Σ ΣΓ  denoting the L1 norm of a matrix Γ = (γij) and { }, ,
c c c∗ ∗ ∗
� � �Λ Ψ Φ  

being the SbCFA counterpart of { }ˆ ˆ ˆ, ,
c c c∗ ∗ ∗Λ Ψ Φ . 

The above results do not show that the SimpFA (following SbCFA) is useless, 
as SimpFA serves for showing the equivalence of its solution to the SbCFA one, 
which allows us to find the optimality of the SbCFA solution. 

4.4. Recovery of Parameters 

We assess how well the true parameter values are recovered by the SimpFA solu-
tion { }ˆ ˆ ˆ ˆ, ,

c c c c∗ ∗ ∗ ∗=Θ Λ Ψ Φ , which is provided by (20) with IC(c) = BIC(c). As 
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the indices standing for the badness in the recovery for Λ, Ψ, and Φ,we obtained 
( )true 1

ˆ
c

pm∗ −Λ Λ , true 1
ˆ

c
p∗ −Ψ Ψ , and true 1

ˆ
c

M∗ −Φ Φ , respectively. Fur-
ther, for assessing the incorrectness in identifying the true zero and nonzero 
loadings, we recorded MIR0 = the number of the true zero loadings estimated as 
nonzero/(pm − c), and MIR# = the number of the true nonzero loadings esti-
mated as zero/c, for each data set, with M = m(m − 1). Here MIR stands for mi-
sidentification rate. 

The statistics of the resulting five index values over the 200 data sets are presented 
in Table 2. It shows that the proposed procedure recovered { }ˆ ˆ ˆ, ,

c c c∗ ∗ ∗Λ Ψ Φ , i.e., 
the links of variables to factors and parameter values, fairly well, except that the 
95 percentile for factor correlations can be considered large. These results allow 
us to conclude that the true CFA model can be recovered satisfactorily, though 
the estimates of factor correlations might deviate from the true counterparts in a 
few cases. 

5. Real Data Demonstration 

In order to demonstrate how useful our proposed procedure is, we apply it to 
two data sets that have already been analyzed by CFA with zero constraints se-
lected by users. The solutions of the latter user-based CFA are compared with 
those for our proposed procedure. 

The first data set is Carlson and Mulaik’s [17] personality trait data matrix of 
n = 280 (participants) × p = 15 (personality traits). Its correlation matrix (Mu-
laik, 2010, p. 198) has been analyzed by Mulaik [2] using CFA with his selected 
constraints, and its solution is shown in Mulaik (2010, p. 437) and also in Table 
3 together with the solution of the proposed procedure. Here, the latter solution 
is the same as the one of SbCFA before SimpFA: iteration was not required in 
the SimpFA algorithm. Comparing the BIC values in Table 3, we can find that 
the solution of the proposed procedure was better than Mulaik’s [2] one. 

Another data set is Kojima’s housing preference one with n = 1120 (partici-
pants) and p = 13 (features). It describes to what degree the participants wish to  

 
Table 2. Percentiles, average (Avg) and standard deviation (SD) of each index over200 
data sets. 

Index 
Percentiles 

Avg. SD 
5 25 50 75 95 

( )tru 1e
ˆ

c
pm∗ −Λ Λ

 
0.011 0.013 0.015 0.017 0.088 0.023 0.035 

tr 1ue
ˆ

c
p∗ −Ψ Ψ

 
0.029 0.035 0.039 0.045 0.053 0.040 0.008 

tr 1ue
ˆ

c
M∗ −Φ Φ

 
0.020 0.035 0.049 0.069 0.227 0.071 0.089 

MIR0 0.000 0.000 0.000 0.000 0.095 0.006 0.026 

MIR# 0.000 0.000 0.000 0.067 0.200 0.032 0.067 
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Table 3. Solution for personality trait data, with blank cells indicating zero elements. 

Variable 
User-based CFA:BIC= 924.1 Proposed: BIC = 12.3 

Λ Ψ1p Λ Ψ1p 

Friendly 0.85 
  

0.53 0.85 
  

0.29 

Sympathetic 0.92 
  

0.39 1.03 
 

-0.19 0.15 

Kind 0.93 
  

0.38 1.10 
 

-0.28 0.11 

Affectionate 0.90 
  

0.43 0.90 
  

0.19 

Intelligent 
 

0.88 
 

0.48 
 

0.88 
 

0.23 

Capable 
 

0.93 
 

0.38 
 

0.93 
 

0.15 

Competent 
 

0.93 
 

0.38 
 

0.93 
 

0.15 

Smart 
 

0.90 
 

0.43 
 

0.90 
 

0.19 

Talkative 
  

0.80 0.60 
  

0.80 0.35 

Outgoing 
  

0.95 0.32 
  

0.95 0.10 

Gregarious 
  

0.89 0.45 
  

0.89 0.21 

Extrovert 
  

0.90 0.44 
  

0.90 0.19 

Helpful 0.73 0.22 
 

0.59 0.74 0.20 
 

0.35 

Cooperative 0.72 0.23 
 

0.60 0.73 0.21 
 

0.36 

Sociable 0.17 
 

0.83 0.34 0.18 
 

0.81 0.12 

Factor Φ  Φ  
1 1.00 0.22 0.56 

 
1.00 0.25 0.64 

 
2 0.22 1.00 0.30 

 
0.25 1.00 0.30 

 
3 0.56 0.30 1.00 

 
0.64 0.30 1.00 

 
 

live in the houses featured by the variables. The correlation matrix for this data 
set is presented in Table 4, as it is described in Japanese and not easily available. 
This matrix has been analyzed by Kojima using CFA with his selected con-
straints, and its solution was shown in Kojima and also in Table 5 with the solu-
tion of the proposed procedure. Here, this solution differs from the SbCFA 
counterpart: iteration was required in the SimpFA algorithm. In Table 5, BIC 
shows that the solution of the proposed procedure was better. 

In both of the above examples, the proposed procedure outperformed in the 
BIC values, but its solutions are similar to the counterparts of CFA with users’ 
selected constraints (Table 3 and Table 5). This similarity shows that the se-
lected constraints were rational. However, the proposed procedure is fully com-
putational and does not require any users’ effort for considering constraints. 
This property would be helpful as soon as there is some uncertainty as to which 
loadings to constrain to 0. 

6. Conclusions 

A problem in the confirmatory factor analysis (CFA) is that users must select  
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Table 4. Correlation matrix for Kojima’s (2013) housing preference data. 

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 Food services 1.000 0.423 0.404 0.127 0.179 0.132 0.148 0.214 0.225 0.252 0.125 0.122 0.192 

2 Tea services 0.423 1.000 0.751 0.187 0.267 0.115 0.188 0.223 0.265 0.300 0.144 0.097 0.193 

3 Home for the old 0.404 0.751 1.000 0.238 0.276 0.178 0.239 0.249 0.281 0.325 0.174 0.147 0.220 

4 Lush greenery 0.127 0.187 0.238 1.000 0.411 0.399 0.350 0.286 0.274 0.273 0.150 0.192 0.176 

5 Walking and joking 0.179 0.267 0.276 0.411 1.000 0.545 0.330 0.302 0.296 0.333 0.235 0.248 0.224 

6 Large park 0.132 0.115 0.178 0.399 0.545 1.000 0.298 0.327 0.229 0.362 0.173 0.242 0.143 

7 River and lake 0.148 0.188 0.239 0.350 0.330 0.298 1.000 0.266 0.205 0.240 0.140 0.153 0.161 

8 Communal events 0.214 0.223 0.249 0.286 0.302 0.327 0.266 1.000 0.417 0.554 0.338 0.293 0.324 

9 Multigenerational living 0.225 0.265 0.281 0.274 0.296 0.229 0.205 0.417 1.000 0.371 0.223 0.171 0.222 

10 Active community 0.252 0.300 0.325 0.273 0.333 0.362 0.240 0.554 0.371 1.000 0.286 0.291 0.283 

11 Interactions for hobbies 0.125 0.144 0.174 0.150 0.235 0.173 0.140 0.338 0.223 0.286 1.000 0.335 0.452 

12 House party 0.122 0.097 0.147 0.192 0.248 0.242 0.153 0.293 0.171 0.291 0.335 1.000 0.333 

13 Utilizing own’s careers 0.192 0.193 0.220 0.176 0.224 0.143 0.161 0.324 0.222 0.283 0.452 0.333 1.000 

 
Table 5. Solution for housing preference data, with blank cells indicating zero elements. 

Variable 
(A) User-based CFA: BIC = 10915.5 (B) Proposed: BIC = 10864.2 

Λ Ψ1p Λ Ψ1p 

Food services 0.48 
   

0.77 0.39 
 

0.16 
 

0.76 

Tea services 0.86 
   

0.27 0.89 
   

0.21 

Home for the old 0.88 
   

0.23 0.81 0.09 
  

0.28 

Lush greenery 
 

0.59 
  

0.65 
 

0.58 
  

0.67 

Walking and joking 
 

0.74 
  

0.46 
 

0.82 −0.11 
 

0.45 

Large park 
 

0.69 
  

0.52 −0.18 0.78 
  

0.48 

River and lake 
 

0.49 
  

0.77 
 

0.48 
  

0.77 

Communal events 
  

0.74 
 

0.45 −0.17 
 

0.84 
 

0.40 

Multigenerational living 
  

0.55 
 

0.70 
  

0.55 
 

0.70 

Active community 
  

0.73 
 

0.47 
  

0.72 
 

0.49 

Interactions for hobbies 
   

0.66 0.57 
   

0.67 0.55 

House party 
   

0.53 0.72 
 

0.15 
 

0.43 0.73 

Utilizing own’s careers 
   

0.66 0.57 
   

0.67 0.55 

Factor Φ  Φ  
1 1.00 0.38 0.46 0.32 

 
1.00 0.41 0.50 0.28 

 
2 0.38 1.00 0.65 0.47 

 
0.41 1.00 0.69 0.44 

 
3 0.46 0.65 1.00 0.65 

 
0.50 0.69 1.00 0.62 

 
4 0.32 0.47 0.65 1.00 

 
0.28 0.44 0.62 1.00 

 

https://doi.org/10.4236/ojs.2021.116062


J. Y. Cai et al. 
 

 

DOI: 10.4236/ojs.2021.116062 1057 Open Journal of Statistics 
 

what pairs of variables and factors are linked, in other words, what loadings are 
to be zero or nonzero, in a subjective manner. To deal with this problem, we 
proposed the procedure of SimpFA following SbCFA for computating an opti-
mally suitable CFA model and its solution without relying on any user’s judg-
ment. The simulation study showed that the true CFA model and parameter 
values can be recovered fairly well by the proposed procedure. Real data exam-
ples demonstrated that it can outperform CFA with users’ selected constraints in 
terms of the BIC statistic. 

In Section 4.3, we found the SbCFA solutions to be equivalent to SimpFA in 
almost all cases. In particular, the good performance of SbCFA was somewhat 
surprising. To theoretically study, reasons for such a SbCFA performance are 
considered as a subject for a future study. 
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Appendix 
A1. EM Algorithm for Factor Analysis 

In Rubin and Thayer’s (1982) EM algorithm for FA, anauxiliary function of (8) 
is defined as 

( ) ( )1 1, , | log tr 2 log trφ − −′ ′= + − + + +Λ Ψ Φ Ψ Ψ Λ Λ Λ Φ ΦS S C Q Q . (A1) 

Here, C = SA and Q = A′SA + U, with A and U being computed as 

( ) 1−′= +ΛΦΛ Ψ ΛΦA  and ( ) ( ) 11 2 1 2 1 1 2 1 2
m

−
− ′= + Φ Φ Λ Ψ ΛΦ ΦU I  (A2) 

using the current Λ,Ψ, and Φ values. In the EM algorithm, (A1) rather than (8) 
is minimized iteratively. This minimization is known to allow (8) to be mini-
mized (Rubin & Thayer, 1982). This fact also holds true, when Λ is constrained 
as = •Λ ΛB . Thus, the minimization of (8) in EFA, SbCFA (5) or (5′), and 
SimpFA (6) or (6′) is attained with the EM algorithm. 

The EM algorithm for EFA, SbCFA, and SimpFA can be summarized as 
follows: 

Step 1. Initialize Λ,Ψ, and Φ, with B also initialized in SimpFA. 
Step 2. Obtain C and Q in (A.1) through (A.2). 
Step 3. Minimize (A.1) over Ψ with Λ and Φ fixed. 
Step 4. Minimize (A.1) over Λ with Ψ and Φ fixed, with “over Λ“ replaced by 

“over B and Λ under (4)” only in SimpFA. 
Step 5. Minimize (A.1) over Φ with Ψ and Λ fixed. 
Step 6. Transform Φ and Λ so that Φ is a correlation matrix and finish if 

convergence is reached; otherwise. Go back to Step 2. 
Here, the minimization in Step 3 is attained when the ith diagonal elements in Ψ 
are updated as 2ii ii i i i isψ ′ ′= − +c Qλ λ λ  ( 1, ,i p= � ), with i′λ  the ith row of Λ, 

i′c  that of C, and sii the (i,i) element of S. The task of Step 5 is attained simply 
by updating Φ as Φ = Q. This is because Φ may be regarded simply as a cova- 
riance matrix during the iteration and finally be transromed into a correlation 
matrix. Thus, ifconvergenceisreachedin Step 6, we must transform Φ and Λ as 

( ) ( )1 2 1 2
R diag diag− −=Φ Φ Φ Φ  and ( )1 2

R diag=Λ Λ Φ , then regard the resulting 
ΦR and ΛR as the solutions of Φ and Λ, respectively. Here, we should notice that 
the transformation does not change the value of (8), which is shown by ′ =ΛΦΛ

( )( )1 1− − ′D D D DΛ Φ Λ  with D an m × m diagonal matrix. Convergence in Step 6 
is defined here as the decrease in (6) from the previous round being less than 
10−6. The details in Steps 1 and 4 differ among EFA, SbCFA, and SimpFA, as 
described in the next paragraphs. 

The initialization in Step 1 is detailed here. In EFA, the eigenvalue decomposition 
of S defined as S = L∆2L′ is used, with ∆2 the p × p diagonal matrix whose diagonal 
elements are arranged in descending order, and LL′ = Ip. That is, the initial Λ and Ψ 
are set to Lm∆m and ( )2diag m m m′− ∆S L L , respectively, in EFA, with 2

m∆  the first 
m × m diagonal block of ∆2 and Lm the p × m matrix containing the first m columns 
of L. In SbCFA, the initial Ψ is set to the one obtained in the preceding EFA, while 

https://doi.org/10.4236/ojs.2021.116062


J. Y. Cai et al. 
 

 

DOI: 10.4236/ojs.2021.116062 1060 Open Journal of Statistics 
 

the initial Λ and Φ are set to the matrices •ΛB  and TT′, respectively, that are 
obtained by the preceding simplimax rotation. In SimpFA, Λ, Ψ, and Φ are 
intialized at their SbCFA solution and B at its simplimax rotation solution. 

The minimization in Step 4 is attained by the update of Λ with Λ = CQ−1 in 
EFA and the row-wise ( ) 1

i i i i i i
−′ ′= B B QB B cλ  ( 1, ,i p= � ) in SbCFA. Here, Bi 

is the mi × m binary matrix satisfying 
im i i′′ =1 B b  with i′b  the ith row of the 

link matrix B = (bij) defined as (2) and i mim ′= b 1 : for example, if [ ]1,0,1i =′b ,  

then 
1 0 0
0 0 1i
 

=  
 

B . The Step 4 in SimpFA is detailed in Appendix A4. 

A2. Algorithm for Simplimax Rotation 

The algorithm for the simplimax rotation can be summarized as follows: 
Step 1. Initialize T 
Step 2. Update B and Λ as (18) with H = ΛET−1 

Step 3. Update T with Browne’s (1972) algorithm 
Step 4. Finish if convergence is reached; otherwise, go back to Step 2. 
How T is initialized is described in the section for the whole process of the 

proposed procedure. The convergence is defined that the decrease in (16) from 
the previous round is less than 10−6 in this paper. 

A3. Derivation of (18) 

The simplimax function ( ) 2, |spx = • −Λ ΛB H B H  in (17) can be rewritten as 

( ) ( )( ) ( ) ( )
2 2 2

, , ,, | ij ij ij ij iji j i j i jspx b h h hλ ⊥ ⊥∈ℵ ∈ℵ ∈ℵ
= − + ≥∑ ∑ ∑ΛB H .   (A3) 

with H = (hij). Here, ℵ  denotes the set of the index pairs (i, j) for bij = 1, while 
⊥ℵ  is the set of (i, j) for bij = 0, and we have used  

( )( ) ( )
2 2

, ,ij ij ij iji j i jb h hλ⊥ ⊥∈ℵ ∈ℵ
− =∑ ∑ . The inequality in (A.3) shows that the lower 

limit of ( ), |spx ΛB H  is ( )
2

, iji j h⊥∈ℵ∑  which is attained if bijλij = hij. Further-
more, the limit ( )

2
, iji j h⊥∈ℵ∑  is minimal when ⊥ℵ  contains the (i, j) for  

2 2
ij ij q

h h ≤   , with q pm c= −  and 2
ij q

h    the qth smallest 2
ijh  value among  

2
ijh , 1, ,i p= � ; 1, ,j m= � . This can be rewritten as (18). That is, (17) is at-

tained for (18). 

A4. Majorization Algorithm for SimpFA Loadings 

Let us rewrite (A.1) as ( )* constφ +Λ , where const is a part independent of  
= •Λ ΛB  and 

( )* 1 1 1 12tr tr tr 2trφ − − − −′ ′ ′ ′= − + = −Λ Ψ Λ Ψ Λ Λ Ψ Λ Λ Ψ ΛC Q Q C .    (A4) 

This minimization over •ΛB  is found to be the task of Step 4 in Appendix 
A1 for SimpFA. Using C= −∆ Λ Λ  or C= +Λ Λ ∆  with ΛC the current Λ val-
ue, (A4) can be rewritten as 

( ) ( ) ( ) ( )
( )

* 1 1
C C C

* 1
C

tr 2tr

tr tr2

φ

φ

− −

−

′ ′= + + − +

′= + +

Λ Ψ Λ ∆ Λ ∆ Ψ Λ ∆

Λ Ψ ∆ ∆ ∆

Q C

Q V
      (A4′) 
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with 1 1
C C

− −′ ′ ′= −Λ Ψ Ψ ΛV Q C . Kiers (1990, Theorem 1) shows that 1tr −Ψ ∆ ∆Q  
in (A4′) satisfies the inequality 21tr α− ′ ≤Ψ ∆ ∆ ∆Q , i.e., 21tr α− ′ ≤Ψ ∆ ∆ ∆Q , 
where α is the greatest eigenvalue of 1− ⊗Ψ Q , with ⊗  denoting the Kroneck-
er product. Using that inequality, a function majorizing (A4′) can be defined as 

( ) ( ) ( )2 2 2*
C Ctr 2tr gη φ β β β= + + = + − −Λ Λ ∆ ∆ Λ ∆V V V ,  (A5) 

with β ≥ α and β ≥ 0: (14) satisfies ( ) ( ) ( ) ( )* *
C Cφ η η φ= ≥ ≥Λ Λ Λ Λ  if Λ is the 

minimizer of ( )*
Cφ Λ . Since only 2β −∆ V  is a function of Λ with β ≥ 0 on 

the right side of (A5), the task of Step 4 is attained by minimizing  
( ) 2*η = −Λ ∆ V . From C= −∆ Λ Λ , we can rewrite ( )*η Λ  as  
( ) 2 2*

Cη = − − = −Λ Λ Λ ΛV W , which is the simplimax function (19), with 

C= +ΛW V . Thus, B and Λ to be obtained in Step 4 are given by (18) with H = 
(hij) and [ ]

2
ch  replaced by W = (wij) and [ ]

2
cw , respectively. Here, [ ]

2
cw  is the cth 

largest value of all elements in ( )2
ijw• =W W . 
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