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Abstract 
The use of the three genetic models viz. additive, dominant and recessive in 
Genome-wide association study (GWAS) is a common and powerful approach 
to study the association between genetic variants and a trait (disease). The se-
lection of these models depends on the pattern of inheritance and the scope of 
the study. GWAS typically focuses on single-nucleotide polymorphism (SNPs) 
and common human diseases in a case-control setup. In order to study this 
type of association between the risk genotype and the phenotype for a given 
inheritance pattern, the use of these genetic models helps to identify the dis-
ease risk appropriately. This study provides an overview of the existing ge-
netic models (additive, dominant and recessive) and a practical demonstra-
tion of these model tests for the contingency tables of SNP genotypes and the 
disease phenotypes in a case-control setting. 
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1. Introduction 

The main goal of human genetics is to identify genetic risk factors for common 
and complex diseases [1] [2] [3] [4] [5]. The risks related to allelic variants of 
candidate genes for which there is evidence of linkage to disease susceptibility 
are determined [4] [6]. These studies collect valid and precise information on 
the causes, prevention, and treatment of disease [6]. 

The genetic association studies such as genome-wide association study (GWAS) 
is a powerful and complete analysis of the genetic association between certain 
observable traits and specific genetic variations in the form of Single Nucleotide 
Polymorphisms (SNPs). GWAS provides a relatively superficial approach to detect 
potential genetic contributors to phenotypes (common and complex diseases) 
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from a simple case-control setup [1] [3] [7]. These studies attempt to discover 
novel genes by testing huge number of SNPs for association [3]. 

The statistical analysis of genetic data can be performed for a study population 
when a well-defined phenotype is selected, and the genotypes are collected using 
a sound technique [4]. GWAS perform a series of single-locus statistic tests and 
examine the susceptibility of each SNP independently for association to the phe-
notype [1] [4]. 

The genotypic association tests examine the association between genotypes and 
the phenotype, where the genotypes for a SNP can also be grouped into different 
genotype models, such as additive, dominant or recessive models [4] [5]. 

The main objective of this paper is to provide a practical demonstration of three 
basic genetic models (additive, dominant, recessive) in the case-control GWAS 
studies for DNA sequencing data. 

2. Genetic Models 

The existing three genetic models can be rephrased as following. 
For a single SNP, the 3 genotypes together with a categorical phenotype with 

two categories can be presented in a 2 × 3 contingency table (Table 1). The 
counts in the table ( )11 12 13 21 22 23, , , , ,n n n n n n  are the numbers of samples in a 
case-control with a particular genotype and phenotype combination, where the 
SNP has two alleles (D = disease-causing allele and N = allele not causing the 
disease). 

Each model makes different assumptions about the genetic effect in the data. 
For a single SNP with the two alleles, N and D, the dominant model (for D al-
lele) assumes that having one or more copies of the D allele increases risk com-
pared to N. Hence, the genotypes DD or ND have the higher risk. In case of the 
recessive model (for D allele), the assumption is two copies of the D allele are 
required to alter the risk. Hence, the individuals with the genotype DD are com-
pared to individuals having genotypes ND and NN. A linear and uniform in-
crease is assumed based on the number of each copy of the disease-causing allele 
(D). Thus, the additive model (for D allele) assumes, if the risk for ND is k then 
the risk for DD is 2k [4] [8] [9]. 

Models with the Penetrance Function 

Penetrance functions represent one approach to modeling the relationship 
between SNPs and risk of disease [10] [11] [12]. The penetrance of a genetic dis-
order is measured by evaluating how often a particular phenotype occurs given a  

 
Table 1. A 2 × 3 table of genotype counts for a single SNP in a case control study. 

 NN ND DD 

Case 11n  12n  13n  
Control 21n  22n  23n  
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particular genotype. This measures the conditional probability ( )|P x g  of be-
ing affected with disease x  given a specific genotype g. Now, the probabilities 
of being affected depending on a disease-causing genotype with one disease- 
causing allele D and one allele not causing the disease N, can be expressed as 
[13] [14], 

( )0 affected |f P NN= , ( )1 affected |f P DN= , ( )2 affected |f P DD=   (1) 

Here, 0f  is the frequency of individuals who are affected without carrying a 
disease-causing allele (frequency of phenocopies). 

According to Bush (2012), different inheritance patterns (recessive, dominant, 
additive) can be expressed in terms of mathematical models (Table 2). Here, the 
phenotypes show full penetrance and no phenocopies. That is, no individual 
without the disease-causing genotype will become affected. 

For example, if a disease is transmitted in an additive fashion, the risk for a 
heterozygous person to be affected is half that of the person who is homozygous 
D as compared to an individual who is homozygous N. Hence, according to the 
penetrance probabilities shown in Table 2, ( )1 0 2 2f f f= + . 

On the other hand, these models could be represented with respect to the geno-
typic relative risks (GRR) under the assumption of phenocopies that is 0 0f >  
(Table 3). 

For 0 0f > , the GRR can be expressed in terms of the functions 0 1,f f  and 

2f  defined in Equation (1), 

( )
( )

1
1 1

0

|
GRR

|
P x DNf

f P x NN
γ = = = , ( )

( )
2

2 2
0

|
GRR

|
P x DDf

f P x NN
γ = = =      (2) 

So, the GRR presents the increased risk of an individual having a disease 
causing genotype over a person without disease-causing allele. By introducing 
the GRR, the three parameters ( 0 1 2,,f f f ) defined in Equation (1) are reduced to  

 
Table 2. Penetrances for simple Mendelian inheritance patterns. 

Genotype 
Genetic model 

General Recessive Dominant Additive 

NN 0f  0 0 0 

DN 1f  0 1 1 

DD 2f  1 1 2 

 
Table 3. Genotype relative risks under the assumption of phenocopies. 

Genotype GRR 
Genetic Model 

Recessive Dominant Additive 

DD 2γ  γ  γ  2 1γ −  

DN 1γ  1 γ  γ  

Restriction  1 1γ =  1 2γ γ=  2 12 1γ γ= −  
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the two parameters ( 1γ  and 2γ ). For an additive model, the risk could be ex-
pressed as 2 12 1γ γ= −  (Table 3). 

3. Genotype Data Preparation 

The individual SNP genotype data for single SNPs were generated for 1000 indi-
viduals via computer simulation in R-programming language. Then, these 1000 
individuals were randomly allocated to the cases and the controls with the equal 
probability of cases (0.5) and controls (0.5). This random allocation was re-
peated for 1000 times. The independence test of single SNP was performed in 
each repetition using the proportion trend test [15] for the three genetic models 
(additive, dominant and recessive) and the Pearson chi-squared test [16]. The three 
p-values were recorded from the independence tests of the three genetics models 
along with the p-value from the Pearson chi-squared test in each repetition. 

4. Results and Discussion 

Figure 1 is presenting the histograms of the p-values obtained from the four 
types of independence tests using three genetic models (additive, dominant,  

 

 
Figure 1. The histogram of the p-values from the three genetic model tests and the Pear-
son chi-square test. (a) Pearson chi-square; (b) Additive; (c) Dominant; (d) Recessive. 
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recessive) along with the Pearson chi-squared test. Apparently, a flat shaped dis-
tribution is observed over the shape of the four histograms shown in Figure 1. 
That is, the p-values from each of the independence tests have the uniform dis-
tribution under the null hypothesis. The test of uniformity using the Kolmogo-
rov-Smirnov (K-S) test also implies that the p-values from each test follow the 
uniform distribution. The obtained p-values from the K-S test are 0.835, 0.689, 
0.796 and 0.6255, for the additive, dominant, recessive models and the Pearson 
chi-squared test, respectively. 

But, the critical examination of the Figure 1 implies that not all the null hy-
pothesis are actually true. A little fluctuation in the heights of the bars in each 
histogram indicates that there is a small percentage of null hypothesis that are 
not true (non-null). Different existing correction methods could be applied here 
in order to control such false discovery rate (FDR). 

The p-values from each of the three genetic model tests were plotted against 
the chi-square ( 2χ )-values along with the Pearson chi-squared test (Figure 2). 
All of the plots are showing that the p-values are getting smaller for increasing 
values of the corresponding 2χ -statistic. 

 

 
Figure 2. The plot of the p-values from the three genetic model tests along with the 
Pearson chi-square test. (a) Additive and Pearson chi-square; (b) Dominant and Pearson 
chi-square; (c) Recessive and Pearson chi-square. 
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Apparently, the curve shapes and features of the three tests are seems to be the 
similar with the Pearson chi-squared test. But, the differences in the results are 
observed by investigating the Figure 3. Figure 3 is presenting the pairwise dif-
ference plots between the p-values and 2χ -values of each of the three tests with 
the Pearson chi-squared test. A positive relation is observed in each of the plot, 
where many values are grouped together near the origin. This is because, the 
tables corresponding to these cases have relatively smaller deviations from the 
Pearson chi-squared test in terms of the p and 2χ -values. 

On the other hand, the 3-dimensional scatter plot of the p-values from the 
three genetic tests in Figure 4 is indicating that the three genetic tests are pro-
ducing different p-values having a positive relation among them for different 
tables obtaining from shuffling of the phenotypes. 

The result shows, a table with the fixed genotype counts are producing differ-
ent results while applying the different genetic tests. Also, for a fixed sample size,  

 

 
Figure 3. The plot of the absolute pairwise differences between the p-values and 2χ - 
values of each of the three genetic model tests with the Pearson chi-squared test. (a) Ad-
ditive and Pearson chi-square; (b) Dominant and Pearson chi-square; (c) Recessive and 
Pearson chi-square. 
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Figure 4. The relation among the p-values of the three genetic model tests (Additive, 
Dominant and Recessive). 

 
the application of a particular genetic test are resulting different p-values for the 
tables that are producing by shuffling the phenotypes. 

5. Conclusion 

This paper is a practical demonstration of the three genetic model tests for the 
SNP genotype data. Here, the simulated SNP genotype data used in the analysis. 
But, this application could be extended for the real datasets. The basic structure 
of both the simulated and real data would be the same. So, the directions of the 
results would be the same for both the cases. On the other hand, the choice of a 
proper model is important in such association studies, which generally depends 
on the inheritance pattern of a disease. So, the investigation of the suitability of 
these models depending inheritance patterns of disease would be the future di-
rections of this research. The appropriate selection of genetic model in associa-
tion studies will enhance to detect the risks related to allelic variants of candidate 
genes. The result of this paper indicates that different genetic model tests are 
producing different p-values for a table of fixed sample size and genotype counts. 
Also, for the same test, different p-values are obtaining for all the tables while 
the tables were constructed by the shuffling of the phenotypes of the given table. 
Hence, the models should be correctly chosen according to the mode of inherit-
ance (dominant, additive and recessive). 
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