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Abstract 
Mixture models have become more popular in modelling compared to stan-
dard distributions. The mixing distributions play a role in capturing the va-
riability of the random variable in the conditional distribution. Studies have 
lately focused on finite mixture models as mixing distributions in the mixing 
mechanism. In the present work, we consider a Normal Variance Mean mix-
ture model. The mixing distribution is a finite mixture of two special cases 

of Generalised Inverse Gaussian distribution with indexes 1
2

−  and 3
2

. The 

parameters of the mixed model are obtained via the Expectation-Maximization 
(EM) algorithm. The iterative scheme is based on a presentation of the nor-
mal equations. An application to some financial data has been done. 
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1. Introduction 

Mixture model provides a general framework for the construction new distribu-
tion. Often standard distribution has been considered as mixing distribution for 
the random variable. One way of extending this work is considering (finite) mix-
ture models as mixing distributions. Jorgensen, Seshadri and Whitmore [1] in-
troduced a finite mixture of Inverse Gaussian and Reciprocal Inverse Gaussian 
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distribution. They studied some properties. Further characteristics were obtained 
by Akman and Gupta [2], Gupta and Akman [3]. Gupta and Kundu [4] showed 
the model is versatile compared to the inverse Gaussian. 

Lindley distribution introduced by Lindley [5] is a finite mixture of exponen-
tial and gamma distribution. A detailed study of this one-parameter two com-
ponent (finite) mixture was given by Ghitany et al. [6]. Sankara [7] had used it as 
a mixing distribution to Poisson distribution. Shanker and Hogos [8] applied the 
Poisson-Lindley distribution to Biological Science data. 

Generalized Inverse Gaussian Distribution is a three parameter distribution 
based on the modified Bessel function of the third kind. Let us denote it by  

( ), ,GIG λ δ γ . It has several special and limiting cases. We have for example,  

Inverse Gaussian distribution; i.e. 
1 , ,
2

GIG δ γ − 
 

; reciprocal iverse Gaussian 

distribution, i.e., 
1 , ,
2

GIG δ γ − 
 

; Gamma ( ),0,GIG λ γ  distribution, Inverse 

Gamma ( ), ,0GIG λ δ ; 
3 , ,
2

GIG δ γ − 
 

, 
3 , ,
2

GIG δ γ 
 
 

 distributions, etc. 

Fisher [9] introduced the notion of “Weighted Distribution” which was later 
elaborated by Patil and Rao [10], Akaman and Gupta [2]; Gupta and Akaman  

[4]; Gupta and Kundu [4] showed that 
1 , ,
2

GIG δ γ 
 
 

 and the finite mixture  

 ( )1 1, , 1 , ,
2 2

pGIG p GIGδ γ δ γ   − + −   
   

 are weighted inverse Gaussian distri-

butions. 

In our present work, we show that a finite mixture of 
1 , ,
2

GIG δ γ − 
 

 and  

3 , ,
2

GIG δ γ 
 
 

 is also weighted Inverse Gaussian distributions. We have used  

the model as a mixing distribution in the Normal Variance Mean mixture. The 
mean and variance of the mixed model has been given. Parameter estimation has 
been done using the Expectation Maximization (EM) algorithm introduced by 
Dempster et al. [11]. Application to some financial data set has been performed 
and obtained satisfactory results. 

2. Proposed Model 

The Generalised Inverse Gaussian is a three parameter model presented as 

( ) ( )
1 2

21exp
2 2

zg z z
K z

λ λ

λ

γ δ γ
δ δγ

−     = − +   
     

            (1) 

0; , 0, 0z λ δ γ> −∞ < < ∞ > >  
with the raw properties 

( ) ( )
( )

r
rr K

E Z
K
λ

λ

δγδ
γ δγ

+ 
=  
   

https://doi.org/10.4236/ojs.2021.116056


C. B. Maina et al. 
 

 

DOI: 10.4236/ojs.2021.116056 965 Open Journal of Statistics 
 

where r can be positive or negative integers. 
Where ( )Kλ ω  is the modified Bessel function of the third kind of order λ  

evaluated at ω  with the following properties: 

( ) ( )K Kλ λω ω−=                        (2) 

( ) ( ) ( )1 1
1
2

K K Kλ λ λω ω ω
ω + −
∂

= − +  ∂
               (3) 

( ) ( ) ( )1K K Kλ λ λ
λω ω ω

ω ω +
∂

= −
∂

                 (4) 

( ) ( ) ( )1 1
2 K K Kλ λ λ
λ ω ω ω
ω + −= −                  (5) 

( ) ( )
( )

22

1 1

4 2 1
e 1

2 ! 8

n

n
i i

i
K

n
ω

λ

γ
ω

ω ω

∞
−

= =

 − −
 =

π
+

 
 

∑∏              (6) 

If 1
2

nλ = + , where n is a positive integer, then we have 

Corollary 1 

( ) ( )
( ) ( )1

12

!
e 1 2

2 ! !

n i

n i

n i
K

i n i
ωω ω

ω
−−

+ =

 +
= +

π


−  
∑              (7) 

For more properties see Abramowitz and Stegun [12]. 
The GIG has a number of special cases when the parameter λ  take specific 

values. In particular when 1
2

λ = −  we obtain the Inverse Gaussian distribution 

presented as 

( ) ( )
3 2

22 1exp exp
22

f z z z
z

δ δδγ γ
−   

= − +     π
            (8) 

and when 3
2

λ =  we obtain the special case presented as 

( )
( )

13 2
22e 1exp

22 1
f z z z

z

δγγ δ γ
δγ

   = − +  
+    π

            (9) 

3. Weighted Inverse Gaussian Distribution 

Let Z be a random variable with pdf ( )f z . A function of Z, ( )w Z  is also a 
random variable with expectation 

( ) ( ) ( )dE w Z w z f z z
∞

−∞
=   ∫  

( )
( )

( )1 d
w z

f z z
E w Z

∞

−∞
∴ =

  
∫

 
Thus 

( ) ( )
( )

( ) ,
w z

g z f z x
E w Z

= −∞ < < ∞
  

               (10) 

is a weighted distribution. It was introduced by Fisher [9] and elaborated by Pa-
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til and Rao [10]. 
Now, suppose ( ),Z IG γ δ  the Inverse Gaussian distribution with parame-

ters γ  and δ , Let 

( )
2

1
1

Zw Z
δγ

= +
+

                       (11) 

( )
3

3E w Z γ δ
γ
+

=                         (12) 

( ) ( )
3 2

3 1
1

zg z f zγ
δγγ δ

 
∴ = + ++  

                (13) 

which is also a finite mixture of 
1 , ,
2

GIG δ γ − 
 

 and 
3 , ,
2

GIG δ γ 
 
 

. That is 

( ) ( )1 3, , 1 , ,
2 2

g z pGIG p GIGδ γ δ γ   = − + −   
     

with 
3

3p γ
γ δ

=
+  

The mean and variance for the weighted distribution are 

[ ] ( )
( )

4 3 2 23

3 5

1 3 3
1

E Z
δγ δγ δ γ δ γ δγ

γ δ γ δγ

 + + + +
=  

+ +  
          (14) 

( )
( )( )

4 3 2 2

2 3

1 3 3
1

δγ δγ δ γ δ γ δ

γ δγ γ δ

+ + + +
=

+ +
                 (15) 

( )
( )( )( )( )

( ) ( )

26 5 4 4 3 3 2 2 3

26 3

1 10 45 105 105 1

1

var Z

δγ δγ δ γ δ γ δ γ δ γ δ δγ γ δ

γ δγ γ δ

+ + + + + + + +
=

+ +

 (16) 

( )( )
( ) ( )

24 3 2 2

26 3

1 3 3

1

δγ δγ δ γ δ γ δ

γ δγ γ δ

+ + + +
−

+ +
                                (17) 

4. Construction of the Mixed Model 

Consider the distribution ( )| ,X Z N z zµ β+  and the random variable Z fol-
lowing a weighted Inverse Gaussian distribution as given in formula (10). 

In general the integral formulation for constructing Normal Weighted Inverse 
Gaussian (NWIG) distributions is presented as 

( )
( ) ( )

( )

2
21

22
0

e e e d
2

xx z
zw z

f x z z
E w Z

δ φβ µ αδγδ
  − − + ∞ −   =

  π ∫           (18) 

One of the attractive feature of constructing distributions using mixture ap-
proach is that properties of the mixed model can be expressed in terms of the 
properties of the mixing distribution. In the Normal Variance Mean mixing me-
chanism we obtain 
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( )
2

e
2

t
X Z

tM t M tµ β
 

= + 
   

( ) ( )E X E Zµ β= +  

( ) ( ) ( )2Var X E Z Var Zβ= +  

( ) ( ) ( )3
3 33X var Z Zµ β β µ= +  

( ) ( ) ( ) [ ] ( )4 2 2 2
4 4 36 6 3X Z Z E Z var Z E Zµ β µ β µ β  = + + +    

The mixing mechanism has also been used by Barndorff-Nielsen Barndorff- 
Nielsen [13] in constructing the Generalized Hyperbolic Distribution (GHD); 
Eberlein and Keller [14] worked on the hyperbolic distribution; Barndorff-Nielsen 
[15] introduced the Normal Inverse Gaussian (NIG) distribution; Aas and Haff 
[16] considered the Generalized hyperbolic skew Student’s t distribution. It’s our 
objective to construct a Normal Weighted Inverse Gaussian mixture. For our 
case 

( )
( )

3 2

3 1
1

w z Z
E w Z

γ
δγγ δ

 
= + ++    

                 (19) 

Therefore the mixed model becomes, 

( ) ( )
( )

( )

( )
( )

( )

2
2

2
2

1
3 2

22
3 0

1
3 1 1

21 1
3 0

e e 1 e d
12

e e e d
12

x
z

zx

x
z

zx

zf x z z

zz z

δ φ
αδγ

β µ

δ φ
αδγ

β µ

δγ
δγγ δ

δγ
δγγ δ

 
 − +
 ∞− −  

 
 − +− −  ∞− − −  

 
= + ++  

 
= + +

π

π + 

∫

∫
 

( )
( )

( )
( )

( )( )

( ) ( )( )

( )

( ) ( )
( )

( ) ( )( )
( )

( ) ( ) ( )
( ) ( ){ } ( )( )

( ) ( )( )
( )( )

( ) ( ){ }

1
3

13

1

3

13

3
2 2

13

1
3

2 2
13

e e

1

e e
1

e e 1
1

e e
1

1

x

x

x

x

x
f x K x

K xx

x
K x

x

x K x
x

x
x K

β µδγ

β µδγ

β µδγ

β µδγ

δ φδγ αδ φ
αγ δ

αδ φδ φ
α δγ

δ φδγ α αδ φ
α δγγ δ δ φ

δγ α δγ δ φ αδ φ
γ δ αδ δγ φ

γ φ
α δγ δ φ αδ

α γ δ δγ

−
−

−

−

−
−

  = 
 +  

   + 
+    

  = + 
++   

= + +
+ +

= + +
+

π

π

+

π

π
( )( )xφ

 (20) 

With the following properties 

( ) ( )
( )( )

4 3 2 2

2 3

1 3 3
1

E X
δγ δγ δ γ δ γ δ

µ β
γ δγ γ δ

+ + + +
= +

+ +
           (21) 
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( ) ( )
( )( )
( )( )( )( )

( ) ( )

( )( )
( ) ( )

4 3 2 2

2 3

26 5 4 4 3 3 2 2 3

2
26 3

24 3 2 2

26 3

1 3 3
1

1 10 45 105 105 1

1

1 3 3

1

var X
δγ δγ δ γ δ γ δ

γ δγ γ δ

δγ δγ δ γ δ γ δ γ δ γ δ δγ γ δ
β

γ δγ γ δ

δγ δγ δ γ δ γ δ

γ δγ γ δ

+ + + +
=

+ +

 + + + + + + + +
−  + +

+ + + + −
+ + 

(22) 

The log-likelihood function 

( )

( ) ( )( )( ) ( )

( ) ( ) ( )( )
( )( )( )

( ) ( ) ( ) ( )( )

1

3

1

2 2
1

3

1

2 2
1

1 1 1

log log

13log log 1 log
2

log 1 log

3 log log 1

1 log log 1 log
2

n

i
i

n

i i
i

i i

n

i
i

n n n

i i i
i i i

l L f x

x x

x K x

n n x n n

x x K x

γ δγ β µ α γ δ δγ φ

α δγ δ φ αδ φ

γ δγ β βµ α γ δ δγ

φ α δγ δ φ αδ φ

=

=

=

= = =

= =

= + + − − π + + −


 + + + +   

= + + − − π + +

 − + + + + 

∑

∑

∑

∑ ∑ ∑

 (23) 

5. Maximum Likelihood Estimation via  
Expectation-Maximization (EM) Algorithm 

EM algorithm is a powerful technique for maximum likelihood estimation for 
data containing missing values or data that can be considered as containing miss-
ing values. It was introduced by Dempster et al. [11]. 

Assume that the true data are made of an observed part X and unobserved 
part Z. This then ensures the log likelihood of the complete data ( ),i ix z  for  

1,2,3, ,i n= �  factorizes into two parts [17]. i.e., 

( ) ( )

( ) ( )

1 1

1 1

log log log

log log

n n

i i i
i i

n n

i i i
i i

L f x z g z

f x z g z

= =

= =

= +

= +

∏ ∏

∑ ∑
 

where 

( )1
1
log

n

i i
i

l f x z
=

= ∑
 

and 

( )2
1
log

n

i
i

l g z
=

= ∑
 

[18] applied EM algorithm to mixtures which he considered to consist of two 
parts; the conditional pdf is for observed data and the mixing distribution is based 
on an unobserved data, the missing values. 
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5.1. M-Step for Conditional pdf 

Since the conditional distribution for the six models is normal distribution as 
presented in formula (5.2), we have 

( ) ( )2

1
1 1

1log 2 log
2 2 2

n n
i i

i
i i i

x znl z
z

µ β

= =

− −
= − π − −∑ ∑

 

Therefore 

( )1
1

ˆˆ0 0
n

i i
i

l x zµ β
β =

∂
= ⇒ − − =

∂ ∑
 

i.e., 
1 1

ˆˆ 0
n n

i i
i i

x n zµ β
= =

− − =∑ ∑  

ˆˆ x zµ β∴ = −  

where 1
n i
i

x
x

n=
= ∑  and 1

n i
i

z
z

n=
= ∑ . 

Similarly, 

1
1 1

1 ˆˆ0 0
n n

i

i ii i

x
l n

z z
µ β

µ = =

∂
= ⇒ − − =

∂ ∑ ∑
 

1 1 1

1 1ˆ ˆ 0
n n n

i

i i ii i i

x
x z n

z z z
β β

= = =

∴ − + − =∑ ∑ ∑
 

1 1

1

1

ˆ
1

n ni
i i

i i

n
i

i

x x
z z

n z
z

β
= =

=

−
∴ =

−

∑ ∑

∑
 

M-Step for the Mixing Distribution 

( ) ( ) ( )

( )

3
2

2 2
2

1 1 1 1

log 3 log log 2 log 1 log
2

3 1log 1 log
2 2 2

n n n n

i i i
i i i ii

nl n n n n n

z z z
z

δ γ δγ δγ γ δ

δ γδγ
= = = =

= + + − π − + − +

+ + + − − −∑ ∑ ∑ ∑
   (24) 

Maximizing with respect to δ  and γ  we have the following representa-
tion 

2
2

2 3
1 1

3 0
1 1

n n

i
i i i

n nz
z

δ δγ δγ
δγ δγ γ δ= =

 
− + + = + + + + 
∑ ∑            (25) 

2 3
2

2 3
1 1

1 0
1 1

n n

i ii i

n n
z z

γ δγ γδ
δγ δγ γ δ= =

 
− + + = + + + + 
∑ ∑            (26) 

Both equations are quadratic in γ  and δ  respectively. 

5.2. E-Step 

Posterior Expectation 
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( )

( )

( )

( )

( )

2
2

2
2

2
2

2
2

1
2 22

0

1
2 22

0

1
2 1 20 1

0

1
1 1 21 1

0

1 e d
1

1 e d
1

1 e d
2 1

1 e d
2 1

x
z

z

x
z

z

x
z

z

x
z

z

zz z z
E Z X

z z z

zz z

zz z

δ φ
α

δ φ
α

δ φ
α

δ φ
α

δγ

δγ

δγ

δγ

 
 − +
 ∞ −  

 
 − +
 ∞ −  

 
 − +−  ∞ −  

 
 − +−  ∞ − −  

 
+ + =

 
+ + 

 
+ + =

 
+ + 

∫

∫

∫

∫

 

( )( ) ( ) ( )( )

( ) ( )( ) ( )
( ) ( )( )

( )( ) ( ) ( )( )

( )
( )

( ) ( )( )

( ) ( ) ( )( ) ( )( ) ( )( )
( ) ( ) ( )( )

2
2

0

1

1 1

2
2

0 2

1

3
3 2

0 2

2 2
1

1

1

1

1

1

1

K xx
K x

x x
K x K x

K xx
K x

x
K x

x

x
x K x K x

x K x

αδ φδ φ
αδ φ

α δγ

δ φ δ φ
αδ φ αδ φ

α α δγ

αδ φδ φ
αδ φ

δγα

δ φα αδ φ
α δγδ φ

δ φ
αδ δγ φ αδ φ αδ φ

α
α δγ δ φ αδ φ

−

 
 +

+  =
 
  +

+  

+
+=

 
 +

+  

+ +
=

 + + 

    (27) 

Similarly, 

( )

( )

( )

( )

2
2

2
2

2
2

2
2

1
2 21 2

0

1
2 22

0

1
0 1 22 1

0

1
1 1 21 1

0

1 e d
11

1 e d
1

1 e d
2 1

1 e d
2 1

x
z

z

x
z

z

x
z

z

x
z

z

zz z z
E X

Z
z z z

zz z

zz z

δ φ
α

δ φ
α

δ φ
α

δ φ
α

δγ

δγ

δγ

δγ

δ φ

 
 − +
 ∞ − −  

 
 − +
 ∞ −  

 
 − +−  ∞ − −  

 
 − +−  ∞ − −  

 
+ +   = 

 
 
+ + 

 
+ + =

 
+ + 

=

∫

∫

∫

∫

( ) ( )( ) ( )( )

( ) ( ) ( )( )

2
0

2

1

1

1

1
1

K xx
K x

x x
K x

αδ φ
αδ φ

α δγ

δ φ δ φ
αδ φ

α α δγ

−

−

 
  +

+  
    
    +     +     
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( ) ( )( ) ( )( )

( )
( )

( ) ( )( )

( )( ) ( ) ( )( )

( ) ( )( )
( ) ( )( )

( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( ) ( )( )

2 0

22

1

2
2

2 0

3
3 2

1

3 2
2 0

3
2 3 2

1

1

1

1

1

1

1

K x
K x

x

x
K x

x
x

K x K x

x
x K x

K x x K x

x x K x

αδ φα αδ φ
δγδ φ

δ φα αδ φ
α δγδ φ

δ φ
α αδ φ αδ φ

δγ

δ φ
αδ φ αδ φ

α δγ

α δγ αδ φ αδ φ αδ φ

α δ δγ φ δ φ αδ φ

+
+

=
 
 +

+  

+
+=

 
 + +
  

+ +
=

 
+ + 

 

   (28) 

Similarly 

( )
( ) ( ) ( )( ) ( )( ) ( )( )

( ) ( ) ( )( )
22 2 4

1 32

4 2 2
1

1

1

x K x x K x
E z X

x K x

δγ α δ φ αδ φ δ φ αδ φ

δγ α α δ φ αδ φ

+ +
=

 + + 
 (29) 

The posterior expectations for the k-th iteration are: 
( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( )( ) ( ) ( )( )

( )
( ) ( ) ( ) ( )( )

( )( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )

33
2

0 2

2 2

1

1

1

k
i

k k
k k k k k k k k k k k

k

k k k k k k k k

s

x
x K x K x

x K x

δ φ
α δ δ γ φ α δ φ α δ φ

α

α δ γ δ φ α δ φ

+ +
=

 + +  

 

( )
( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

3 2

2 0

32 3
2

1

1

1

k k k k k k k k k k k k

k
i

k k k k k k k k k k

K x x K x
w

x x K x

α δ γ α δ φ α δ φ α δ φ

α δ δ γ φ δ φ α δ φ

+ +
=

 
+ + 

    
( )

( ) ( )( ) ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )
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Now, define the iterative scheme as follows: 
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let 
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using the square root transformation, we have 
( )11 kk tγ ++ =                         (31) 

Similarly, define 
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using the square root transformation, we have 
( )11 kk sδ ++ =                         (36) 

and the k-th iteration for the loglikelihood is given by 
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6. Application 

Let ( tP ) denote the price process of a security at time t, in particular of a stock. 
In order to allow comparison of investments in different securities we shall in-
vestigate the rates of return defined by 

1log logt t tX P P−= −  
The data used in this research is for the s & p 500 weekly returns for the pe-

riod 3/01/2000 to 1/07/2013 with 702 observations. The histogram for the weekly 
log-returns shows that the data is negatively skewed and exhibiting heavy tails. 
The Q-Q plot shows that the normal distribution is not a good fit for the data 
especially at the tails (Figure 1). 
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Table 1 provides descriptive statistics for the return series in consideration. 
We observe that the excess kurtosis of 6.408709 indicates the leptokurtic beha-
viour of the returns. The log-returns has a distributions with relatively heavier 
tails than the normal distribution. We observe skewness of −0.7851156 which 
indicates that the two tails of the returns behave slightly differently. 

We now fit the proposed model to s & p500 weekly log-returns. Using the 
sample estimates and the NIG estimators we obtain the following estimates as 
initial values for the EM algorithm (Table 2). 

ˆ ˆˆ ˆ0.6556607, 0.1257455, 0.8310044, 0.1690855α β δ µ= = − = = . 

Stopping Criterion 
The stopping criterion is when 

( ) ( )

( )

1k k

k

l l tol
l

−−
<                        (38) 

 
Table 1. Summary Statistics for RRC weekly log-returns. 

Minimum Standard.dev skewness exc.kurtosis Maximum Mean N 

−8.722261488 1.157893 −0.7851156 6.408709 4.931805023 0.006697 702 

 

 
Figure 1. Histogram and Q-Q plot for s & p500 weekly log-returns. 
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Table 2. Maximum likelihood parameter estimates via EM-algorithm. 

Parameter Starting Values EM ( 310tol −= ) EM ( 510tol −= ) EM ( 1010tol −= ) 

α̂  0.6556607 1.025172 1.025056 1.025061 

β̂  −0.1257455 −0.082968 −0.082969 −0.082988 

δ̂  0.8310044 0.8571405 0.8570473 0.8570354 

µ̂  0.1690855 0.1506045 0.150692 0.1507229 

Loglikelihood  −1048.305 −1048.288 −1048.301 

No. iteration  9 12 32 

AIC  2104.61 2104.576 2104.602 

 

 
Figure 2. Fitting Proposed Model to s & p500 weekly log returns. 

 
where tol is the tolerance level chosen; e.g. 10−6. 

The proposed model fits the data set well as illustrated in Figure 2. Expressing 
the proposed model in terms of its components we have 

( )
3

3 3

3 , , , ,
2

f x NIG GHDγ δ α δ β µ
γ δ γ δ

 = × + ×  + +  
         (39) 

Using the parameter estimates 0.242793p = . Therefore, the finite mixture 

for these data sets is more weighted to the GHD when 3
2

λ =  than to the NIG. 
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7. Conclusions 

In this work, we have considered a normal variance mean mixture when the mix-
ing distribution is a weighted inverse Gaussian distribution. In specific, we have 
shown that a finite mixture of two special cases of generalised inverse Gaussian  

distribution of indexes 1
2

−  and 3
2

 is itself a weighted inverse Gaussian dis-

tribution. 
Further, we have constructed a Normal Weighted Inverse Gaussian distribu-

tion, studied its properties and estimated the parameters using the Expectation 
Maximization (EM) algorithm. The initial values were based on Karlis [18] for-
mulation method of moments estimates of the NIG distribution. We obtained a 
monotonic convergence for the iterative scheme proposed. The model is a good 
alternative for the NIG distribution. 
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