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Abstract 
We propose a flexible joint longitudinal-survival framework to examine the 
association between longitudinally collected biomarkers and a time-to-event 
endpoint. More specifically, we use our method for analyzing the survival 
outcome of end-stage renal disease patients with time-varying serum albumin 
measurements. Our proposed method is robust to common parametric as-
sumptions in that it avoids explicit specification of the distribution of longi-
tudinal responses and allows for a subject-specific baseline hazard in the sur-
vival component. Fully joint estimation is performed to account for uncer-
tainty in the estimated longitudinal biomarkers that are included in the sur-
vival model.  
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1. Introduction 

In this paper, we propose a flexible joint longitudinal-survival framework for 
quantifying the association between longitudinally measured biomarkers (e.g., 
serum albumin) and time-to-death among end-stage renal disease (ESRD) pa-
tients. ESRD is a condition where the filtration performed by the kidneys has 
been reduced to a point at which life can no longer adequately be sustained. Ac-
cording to data from the National Institute of Diabetes and Digestive and Kid-
ney Diseases (NIDDK), over 850,000 persons in the United States are being 
treated for ESRD and many more suffer from early stage chronic kidney disease. 
The standard of care for adult ESRD patients that do not have access to a viable 
transplant is hemodialysis. 
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Hemodialysis patients experience high rates of morbidity and mortality. Mul-
tiple epidemiologic studies have shown that indices of protein-energy malnutri-
tion (PEM) are a strong predictor of total mortality among hemodialysis patients 
[1] [2]. Serum albumin, a protein biomarker and surrogate for nutritional status, 
is among the indices of PEM that have been associated with mortality. Fung et al. 
found that among hemodialysis subjects, baseline albumin level and the slope of 
albumin over time were independent risk factors for mortality, suggesting that 
the low albumin level is not simply a consequence of co-morbidities associated 
with dialysis but may be a precursor [1]. This analysis did not, however, consider 
other potential characteristics of the within-subject changes in serum albumin 
that may also be associated with mortality in this high risk population. It is nat-
ural to hypothesize that the rate of change in albumin at a given time and high 
within-subject variability in serum albumin measured over time may also be in-
dicative of increased mortality. That is, non-linear patterns or high instability 
around a patient’s first-order trend are likely an indication of nutritional insta-
bility (possibly due to inadequate dialyzing) and hence may be a risk factor for 
morbidity and mortality. While such associations are plausible, they have not 
been considered in the literature to the best of our knowledge. The reason for 
this is, at least partly, due to the difficulty in summarizing and efficiently es-
timating flexible subject-specific longitudinal trajectories in the context of a 
joint-longitudinal modeling framework. If these hypotheses were established, 
however, the resulting summary measures would provide nephrologists with ad-
ditional biomarkers to monitor ESRD patients and potentially decrease the risk 
of mortality in these patients. 

Survival analysis often involves evaluating effects of longitudinally measured 
biomarkers on mortality. When longitudinal measures are sparsely collected, 
incomplete, or prone to measurement error, including them directly as a tradi-
tional time-varying covariate in a survival model may lead to biased regression 
estimates [3]. To address this issue, one could apply a two-stage method, where 
the first stage consists of modeling the longitudinal components via a mixed-effects 
model, and in the second stage, the modeled values or their summaries (e.g., 
first-order trends) are included in a survival model [4] [5]. Standard approaches 
for analyzing longitudinal covariates include frequentist mixed effects models [6] 
[7] and Bayesian hierarchical models [8] [9]. In general, these approaches para-
meterize the population mean model as a function of potentially time-varying 
covariates, subject-specific deviations from the population mean via random ef-
fects, and residual variability by subject level variance-covariance matrices that 
generally account for serial auto-correlation. More recently, several authors have 
proposed Gaussian process (GP) models as an alternative to more standard lon-
gitudinal regression methods since they easily allow for flexible model specifica-
tion in a coherent probabilistic framework [10] [11]. 

Two-stage methods in general fail to account for uncertainty in the estimated 
longitudinal summary measures. To overcome this issue, several joint longitu-
dinal-survival models have been proposed [3] [12]-[20]. These models account 
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for uncertainty in longitudinal measures by modeling them simultaneously with 
the survival outcome. However, most existing joint models still rely on multiple 
restrictive parametric and semi-parametric assumptions and generally focus only 
on associating the first moment of the distribution of the longitudinal covariate 
with survival. In this paper, we address these issues by developing a flexible joint 
longitudinal-survival framework that avoids simple distributional assumptions 
on longitudinal measures and allows for subject-specific baseline hazard in 
modeling the survival outcome. 

In the current work, we present a joint longitudinal-survival model where flex-
ibility is achieved in the longitudinal component via the use of a Gaussian process 
prior with a parameter that captures within-subject volatility in time-varying bio-
markers. The survival component of our proposed method quantifies the associ-
ation between the longitudinally measured biomarkers and the risk of mortality 
using a Dirichlet process mixture of Weibull distributions. The clustering me-
chanism of the Dirichlet process provides a framework for borrowing informa-
tion when estimating subject-specific baseline hazards in the survival component. 
Estimation for the longitudinal and survival parameters is carried out simulta-
neously via Bayesian parameter posterior sampling approach. In contrast to 
most competing models, our proposed method provides the following advan-
tages: 1) it avoids relying on restrictive parametric assumptions; 2) it properly 
accounts for variability in longitudinal measures; 3) it provides a natural frame-
work to capture the association of both first and second moments of the distri-
bution of the longitudinal covariate with survival; and 4) its underlying me-
chanism for clustering patients can help clinicians to design more personalized 
treatments. 

The remainder of the manuscript is organized as follows: In Section 2 we 
present the underlying methodology for our proposed joint longitudinal-survival 
estimation framework. This section also provides examples of model formula-
tions that allow for the estimation of associations between various summary 
measures of a longitudinal trajectory and the risk of an event. Section 3 provides 
details on posterior evaluation of the presented model. In Section 4 we consider 
the empirical performance of the proposed methods using simulation studies. 
Section 5 considers the application of our model to assess the relationship be-
tween longitudinally sampled serum albumin and the risk of death among ESRD 
patients. Specifically, we consider data from a nutritional sub-study cohort of N 
= 1112 hemodialysis patients included in the United States Renal Data System 
(USRDS) [21]. Using our model, we show that real-time albumin, the derivative 
of the albumin trajectory, and the volatility of albumin are all significantly asso-
ciated with mortality in ESRD patients. We conclude in Section 6 with a discus-
sion of the proposed methods and potential future directions. 

2. Methodology 

In this section, we provide the details of our proposed joint modeling framework 
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for a longitudinal covariate, X , and a survival outcome, Y . Throughout this 
section, we consider n independent subjects where il  longitudinal measure-
ments, ijX , are obtained for subject i at time points ijt , 1, , ij l=  . Also, asso-
ciated with each subject, there is an observed survival time, { }min ,i i iY T C≡  
and event indicator [ ]1

i ii Y Eδ =≡ , where iT  and iC  denote the true event and 
censoring time for subject i, respectively. Further, we make the common as-
sumption that iC  is independent of iT  for all i, 1, ,i n=  . 

2.1. The Joint Model 

Our interest lies in estimating the effect of patient-specific longitudinal measures 
on a survival outcome. As such, we begin by specifying the joint model likelih-
ood using a similar approach as [16], where we define the contribution of each 
subject to the joint model likelihood as the multiplication of the likelihood func-
tion of the longitudinal measures for that subject and her/his time-to-event like-
lihood that is conditioned on her/his longitudinal measures. Let ( )i

Lf , ( )
|
i

S Lf , and 
( )
,
i

L Sf  denote the longitudinal likelihood contribution, the conditional survival 
likelihood contribution, and the joint likelihood contribution for subject i. One 
can write the joint longitudinal-survival likelihood function as  

( ) ( ) ( )( ), , |
1 1

.
n n

i i i
L S L S L S L

i i
f f f f

= =

= = ×∏ ∏                   (1) 

2.2. Longitudinal Component 

We motivate the development of the Gaussian process model for the longitudin-
al biomarker by first considering the following simple linear model for estimat-
ing the trend in the biomarker for a single subject i with an 1il ×  vector of 
measure biomarkers of iX  which is of the form  

( )
( )

( )

1

2
,

i

i i

i i
i

i il

X t
X t

X t

 
 
 

=  
 
 
 

X


                        (2) 

where 
( ) ( )( )0 0| , .L L

i i i iNβX  β Σ                      (3) 

with ( )
0
L

iβ  as the subject-specific intercept, ( )
0
L

iβ  is vector of repeated ( )
0
L

iβ  
value that is of size 1il × , and 2

i ii l lIσ ×=Σ . 
By adding a stochastic component that is indexed by time in the model, one 

can extend the model to capture non-linear patterns over time. Specifically, we 
consider a stochastic vector, W , that is a realization from a Gaussian process 
prior, ( )W t  with mean zero and covariance function ( ),C t t′ . Thus for subject 
i, ( ),

i i ii l l lN ×W C0 , where ( )1
, ,

i ilii t tW W ′
=W   and the ( ),j j′  element of 

i il l×C  is given by ( ),ij ijC t t ′ , { }, 1, , ij j l′∈  . We characterize the covariance 
function, 

i il l×C , using the following squared exponential form  
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( ) ( )22
2, e .ij ij

i i

t t
l l ij j ρκ ′− −
× ′ =C                    (4) 

In this setting, the hyperparameter 2ρ  controls the correlation length, and 
2κ  controls the height of oscillations [22], and ijt  and ijt ′  are two different 

time points. For notational simplicity, we define ( ) { }
22

e ; , 1, ,ij ijt t
i ij j lρ ′− − ′= ∈K  , 

and re-write our longitudinal model as  
( ) ( )( )2 2 2 2 2
0 0| , , , , ,

i i

L L
i i i i i i l lN Iβ κ ρ σ κ σ ×+X K β           (5) 

where 2σ  is assumed to be common across all subjects. The correlation 
length parameter 2ρ  controls the maximum distance in time between two 
time-dependent measurements to be still correlated. This distance for GP mod-
els is often called the practical range. Diggle and Ribeiro defined the practical 
range for GP as the distance in time between two time-dependent measurements 
where the correlation between those two measurements is 0.05 [23]. With the 
squared exponential covariance function, that practical range distance is of the 
form 23 ρ . For 2 0.1ρ = , the practical range distance is 5.7 months, a rea-
sonable range for albumin trajectories among patients with end-stage renal dis-
ease in the USRDS data motivating the present work. As such, we fix 2ρ  to 0.1 
for the remainder of the empirical assessments presented in this paper. With the 
longitudinal model specified in (5), the subject-specific parameter 2

iκ  will have 
the role of capturing within-subject volatility of the longitudinal measures. In 
the context of the motivating USRDS example, 2

iκ  will be of primary scientific 
interest as it reflects the within-subject volatility (Figure 1) in serum albumin 
over time, which we hypothesize to be negatively correlated with longer survival 
time. 

We complete the specification of the longitudinal component of our joint 
model by extending (5) include a Gaussian process component such that  

( ) ( )( )2 2 2 2
0 0| , , , , , ,

i i

L L
i i i i i i l lN Iβ κ ρ σ σ ×+X W W β           (6) 

where iX  is a vector of longitudinal measures on subject i, iW  is a Gaussian 
process stochastic vector, ( )

0
L

iβ  is subject specific intercept for subject i, 2
iκ  is 

a subject-specific measure of volatility for subject i, 2ρ  is a fixed correlation 
length, 2σ  is a measurement error that is shared across all subjects, and finally 

i il lI ×  represents the identity matrix of size il  where il  is the number of longi-
tudinal measures on subject i. The Gaussian process stochastic vector iW  is 
distributed as a Gaussian process,  

( )2 2| , 0, ,
i

ind
i i i m i iGPκ κW t K



                     (7) 

where it  is a vector of the time points at which longitudinal measures on sub-
ject i were collected and ( )22

e ij ijt t
i

ρ ′− −
=K , with ijt  and ijt ′  are the thj  and 

thj′  element of the time vector it . We assume a Normal prior on the sub-
ject-specific random intercepts ( )

0
L

iβ  that is of the form  

( )
( )

00

. . 2
0 , ,LL

i i dL
i N

ββ
β µ σ 

 
 

  
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Figure 1. With a fixed correlation length parameter 2ρ , 2κ  parameter captures 
volatility in Gaussian process models with the squared exponential covariance function. 
In each plot, ten random realizations of the Gaussian process were selected (represented 
by the varying curves). Subfigure (a) has a 2κ  parameter of 0.01, subfigure (b) has a 2κ  
value of 0.5, and subfigure (c) has a 2κ  value of 1.0. In all plots, correlation length 2ρ  
is fixed to 0.1. 
 
where ( )

0
Lβ

µ  and 
0

2
Lβ

σ  are prior mean and prior variance respectively. 2
iκ , 

where { }1, ,i n∈   with n as the number of subjects in the study, are assumed  

to have a log-Normal prior with the prior mean 2κ
µ  and the prior variance 

2κ
σ  that is of the form  

( )2 2
. .2 2log-Normal , .i i d

i κ κ
κ µ σ                   (8) 

As previously noted, the correlation length 2ρ  is assumed to be fixed and 
known in our model (taken to be 0.1 for the empirical results presented here). 
Finally, the measurement error 2σ  is assumed to have a log-Normal prior of 
the form  

( )2 2
2 2log-Normal , ,

σ σ
σ µ σ                   (9) 

where 2σ
µ  and 2σ

σ  are the prior mean and the prior variance, respectively. 

2.3. Survival Component 

In order to quantify the association between a longitudinal biomarker and a 
time-to-event outcome, we define our survival component by using a multiplica-
tive hazard model of the form:  

( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( )

0| , e ,
s Ls L

i i ts L
i i i iT Tλ λ += Z ZZ Z ζ ζ            (10) 

where ( )s
iZ  is a vector of baseline covariates, ( )L

iZ  is a vector of longitudinal 
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covariates from the longitudinal component of the model, ( )0 iTλ  denotes the 
baseline hazard function, and ( )sζ  and ( )Lζ  are regression coefficients for the 
baseline survival covariates and the longitudinal covariates, respectively. 

We consider a Weibull distribution for the survival component to allow for 
log-linear changes in the baseline hazard function over time. Thus we assume  

( )Weibull , ,i iT τ λ
                    (11) 

where iT  is the survival time, τ  is the shape parameter of the Weibull distri-
bution, and { }exp iλ  is the scale parameter of the Weibull distribution. One 
can write the density function for the Weibull distribution above for the random 
variable iT  as 

( ) ( )exp1| , e .i i iT
i i if T T

τλ λττ λ τ −−=                 (12) 

In this case, the Weibull distribution is available in closed form providing 
greater computational efficiency. Under this parameterization, covariates can be 
incorporated into the model by defining ( ) ( ) ( ) ( )s s L L

i i iλ = +Z Zζ ζ . In particular, 
we specify our model as  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )0| , , , , Weibull , ,s L s L s s s L L
i i i i i i iT τ τ λ β= + +Z Z Z Zζ ζ ζ ζ  (13) 

where τ  is a common shape parameter shared across all subjects. ( )
0
s

iβ  is a 
subject specific coefficient in the model which allows for a subject-specific base-
line hazard. ( )s

iZ  and ( )sζ  are baseline covariates and their corresponding coef-
ficients, respectively. Finally, ( )L

iZ  and ( )Lζ  are coefficients linking the longi-
tudinal parameters of interest to the hazard for mortality. 

In order to avoid an explicit distributional assumption for the survival times, 
we specify our survival model as an infinite mixture of Weibull distributions that 
is mixed on the ( )

0
s

iβ  parameter. In particular, we use the Dirichlet process mix-
ture of Weibull distributions that is defined as  

( )
( ) ( )
0 0

2 2
0 | , , ,s s
s

i i iN
β β

β µ σ µ σ 
 
 

                  (14) 

| ,i G Gµ                          (15) 

( )( )0, ,SG DP Gα                      (16) 

where ( )
0

2
sβ

σ  is a fixed parameter, iµ  is a subject-specific mean parameter 
from a distribution G with a DP prior, ( )Sα  is the concentration parameter of 
the DP and 0G  is the base distribution. By placing a Dirichlet process prior on 
the distribution of ( )

0
s

iβ , we allow patients with similar baseline hazards to clus-
ter together which subsequently provides a stronger likelihood to estimate the 
baseline hazards. For other covariates in the model, we assume a multivariate 
normal prior of the form  

( ) ( )( ) ( )2
0, , ,s L MVN Iσ0ζ ζ                  (17) 

where 2
0σ  is a prior variance and I is an identity matrix. 
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The shared scale parameter τ  is considered to have a Log-Normal prior of 
the form 

( )log-Normal , ,a bτ ττ                     (18) 

where aτ  and bτ  are fixed prior location and prior scale parameters, respec-
tively. 

Finally, we assume that information about the concentration parameter of the 
Dirichlet process can be specified with the prior  

( ) ( ) ( )( ), ,S S Sa bα αα Γ                     (19) 

where ( )Saα  and ( )Sbα  are fixed prior shape and prior scale parameters, respec-
tively. 

2.4. Linking the Two Components 

The proposed modeling framework easily allows for associating multiple sum-
maries of the longitudinal biomarker with the time-to-event outcome. Here we 
consider three alternative models that incorporate various summary measures of 
the longitudinal trajectory that are easily and flexibly estimated using the GP 
model presented in Section 2.2: 

Model I: directly modeling longitudinal outcome at each event time t as a co-
variate in the survival model:  

( ) ( )L i
iZ X t=                         (20) 

Model II: modeling both the value of the longitudinal covariate and also the 
average rate at which the biomarker changes for each subject. We define this av-
erage rate as a weighted area under the derivative curve of the biomarker trajec-
tory  

( ) ( )( ) ( ) ( )10 1 0 1

0
,    with  d .L

i i AUC AUCZ X t X X Q u X u u
ττ τ τ τ
τ

− −′ ′ ′= = ∫        (21) 

0 1
AUCX τ τ−′  is a time-dependent covariate that is a weighted average of the deriva-

tive of the biomarker trajectory, that is denoted by ( )X u′  from 0τ  to 1τ  where 

1τ  is the time of death for each subject. This average area under the derivative 
curve can be a weighted average with weights ( )Q u . 

Model III: modeling summary measures of the longitudinal trajectory. Moti-
vated by our primary scientific question of interest, we lastly consider random 
intercepts and subject-specific volatility as summary measures of interest:  

( ) ( )( )2
0 ,L L

i i iZ β κ=                       (22) 

Below, we will explain these three models in more detail.  

2.4.1. Model I: Associating Survival at Time t and the Longitudinal  
Biomarker at Time t 

This model quantifies the association between a longitudinal biomarker of in-
terest and the time-to-event outcome by directly adjusting for the biomarker 
measured values in the survival component. While biomarkers are usually 

https://doi.org/10.4236/ojs.2021.115046


S. A. Masouleh et al. 
 

 

DOI: 10.4236/ojs.2021.115046 786 Open Journal of Statistics 
 

measured at discrete times, the survival event of interest happens on a continuous 
basis. Frequentist models most commonly use the so-called last-observation-carried 
forward (LOCF) technique where the biomarker value at each even time is as-
sumed to be the same as the last measured value for that biomarker. In contrast, 
our joint flexible longitudinal-survival model provides a proper imputation me-
thod for the biomarker values at each individual’s event time. In particular, in 
each iteration of the MCMC, given the sampled parameters for each individual 
and by using the flexible Gaussian process prior, there exists posterior trajecto-
ries of biomarker for that individual. Our method then considers the posterior 
mean of those trajectories as the proposed trajectory for that individual’s bio-
marker values over time at that iteration. The trajectory, then, can be used to 
impute the time-dependent biomarker covariate value inside the survival com-
ponent. More specifically, consider the longitudinal biomarker iX  of the form  

( ) ( )( )2 2 2 2 2
0 0| , , , , ,

i i

L L
i i i i i i l lN Iβ κ ρ σ κ σ ×+X K β           (23) 

where ( )
0
L

iβ  is subject-specific random intercept for subject i, ( )
0
L

iβ  is a vector 
of repeated subject-specific intercept ( )

0
L

iβ  that is of size 1il × , 2
iκ  is sub-

ject-specific measure of volatility in the longitudinal biomarker for individual i, 
2ρ  is a fixed measure of correlation length, 2σ  is the measurement error 

shared across all subjects, iK  is a an i il l×  matrix with it’s jj′  element as 
( )22

e ij ij

jj

t t
i

ρ ′

′

− −
=K  where il  is the number of longitudinal biomarker measures 

on subject i, and 
i il lI ×  is the identity matrix. 

For a new time-point *t , predicted albumin biomarker for individual i is *X  
and can be written as  

( )* * * *| , , , ,iX t N µ ΣX t                     (24) 

where the conditional posterior mean *µ  is  

( ) ( )( )* * 1
0 0, ,LL

i X i iK t Kµ β β−= + −t X                 (25) 

and the conditional posterior variance *Σ  is  

( ) ( ) ( )* * * * 1 *, , , ,XK t t K t K K t− ′Σ = − t t                (26) 

where ( )* ,K t t  is defined as  

( ) ( )22 *
* 2, e ,

t
iK t

ρ
κ

− −
=

t
t                     (27) 

and 1
XK −  is defined as  

( )( ) 11 2, .
i iX l lK K Iσ

−−
×= +t t                    (28) 

In order to relate the biomarker value at each time point t to the risk of the 
event of interest at that time point, we formulate the survival component of the 
model as  

( ) ( ) ( ) ( ) ( )( )0| , , Weibull , ,
i i

s s s s
i X i i i X iT X tτ ζ τ λ β ζ= + +Zζ ζ      (29) 

where iT  is the survival time, τ  is the shape parameter of the Weibull distri-
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bution, ( )sζ  is a vector of coefficients relating baseline survival covariates to the 
risk of the occurrence of the event of interest, 

iXζ  is the coefficient that relates 
the biomarker value at time t and the risk of the event occurring at that time 
point, iλ  is the natural log of the scale parameter in the Weibull distribution, 

( )
0
s

iβ  is the subject-specific baseline hazard for subject i, ( )s
iZ  is a vector of sur-

vival coefficients, and ( )iX t  is the biomarker value at time t. 

2.4.2. Model II: Associating Survival at Time t with the Longitudinal  
Biomarker Value and the Derivative of the Biomarker Trajectory  
at Time t 

It is natural to hypothesize that, beyond the biomarker value, the direction of 
local change in the biomarker value may be of value in predicting survival. To 
address this, we can extend our proposed model I by including a measure of the 
marginal slope of the biomarker over a specified interval of time. In particular, 
we define this average slope from time 0τ  to 1τ  as the area under the deriva-
tive of the trajectory curve of the biomarker from 0τ  to 1τ . More generally, this 
area under the curve can be a weighted sum where weights are chosen according 
to the scientific question of interest. One may hypothesize that the area under 
the derivative curve that is closer to the event time should be weighted higher 
compared to times that are farther away from survival time t. In general, we de-
fine a weighted area under the derivative curve of the form  

( ) ( )10 1

0
d ,AUCX Q u X u u

ττ τ
τ

−′ ′= ∫                   (30) 

where 0τ  and 1τ  are arbitrary time points chosen according to the scientific 
question of interest, ( )Q t  is a weight, and ( )X t′  represents the derivative of 
the biomarker evaluated at time t. In particular, we consider two weighted ap-
proaches. The first specifies a weight of the form  

( )
1 0

1 .Q t
τ τ

=
−

                       (31) 

The second specifies a weight of the form  

( )
1, if
0, otherwise.

it T
Q t

=
= 


                    (32) 

Under the first weighting scheme, AUCX ′  will be the area under the derivative 
with equal weights, whereas the second weighting scheme leads to the pointwise 
derivative value at the event time. Under this model, the survival component of 
our joint model will now include two longitudinal covariates: the biomarker 
value ( )iX t , and the average derivative of the biomarker trajectory, AUCX ′ . 

The derivative of the Gaussian process is still a Gaussian process with the 
same hyperparameters 2ρ  and 2κ . Therefore, using the same idea of model-
ing the trajectory of the biomarker, we can also model the derivative of the trajec-
tory. In Model I, we proposed using the posterior mean of all plausible biomark-
er trajectories as the proposed trajectory for each subject in order to impute 
biomarker values at any time point t inside the survival component of the model. 
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Similarly, we propose using the posterior mean of all plausible derivative trajec-
tories for each subject in order to compute the average derivative up until time t. 
Given the fact that differentiation is a linear operation, one can easily compute 
the posterior mean of the derivative curve by simply switching the order of the 
differentiation and the expectation as 

( )( ) ( ) ( )( )( )
.ii

i

E X tX t
E X t E

t t

∂∂ 
′ = = 

∂ ∂ 
              (33) 

Hence, by using Formula (25) and by taking the derivative of the posterior 
mean trajectory of the biomarker with respect to time *t , the posterior mean of 
the derivative of the biomarker trajectory is of the form  

( )( )( ) ( ) ( ) ( )( )( )
*

2 * * 1
0* 2 , ,

i L
X i i

E X t
t K t K

t
ρ β−

∂ ′= − − −
∂

t t X        (34) 

where ( )( )*
iE X t  denotes the posterior mean of the biomarker trajectory as a 

function of time *t , 2ρ  is the correlation length, *t  is the time-point at 
which we desire to impute the biomarker value and the average derivative of the 
biomarker trajectory, ( )

0
L

iβ  is subject-specific random intercept, ( )* ,K t t  is 
defined as in (27), and 1

XK −  is defined as in (28). 
Given the biomarker value ( )iX t  and the average derivative value ( ),AUC iX t′ , 

the survival component of our proposed joint model is of the from  
( )

( ) ( ) ( ) ( ) ( )( )0 ,

| , , ,

Weibull , ,
i i

i i

s
i X X

s s s
i i i X i X AUC i

T

X t X t

τ ζ ζ

τ λ β ζ ζ

′

′ ′= + + +Z

ζ

ζ
     (35) 

where iT  is the survival time, τ  is the shape parameter of the Weibull distri-
bution, ( )sζ  is a vector of coefficients relating baseline survival covariates to the 
risk of the occurrence of the event of interest, 

iXζ  is the coefficient that relates 
the biomarker value at time t and the risk of the event at time t, 

iXζ ′  is the coef-
ficient that relates the average derivative of the biomarker trajectory up until t 
and the risk of the event at that time point, iλ  is the natural log of the scale pa-
rameter in the Weibull distribution, ( )

0
s

iβ  is the subject-specific baseline hazard 
for subject i, and ( )s

iZ  is a vector of survival coefficients. 

2.4.3. Model III: Associating Survival at Time t with the Volatility of a  
Subject-Specific Biomarker Marker Trajectory 

The longitudinal model we have proposed provides a natural parameter for de-
scribing subject-specific volatility in a biomarker over time. Specifically, one can 
summarize the longitudinal trajectory of biomarker by using ( )

0
L
iβ  as a measure 

of subject-specific intercept of longitudinal biomarker as well as 2
iκ  as a meas-

ure of volatility of those trajectories. The survival component of the model is 
then of the form  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )
20

20

0

2
0 0

| , , , ,

Weibull , ,

i i

i i

L Ls s
i i

L Ls s s L
i i i i i

T β κ

β κ

τ β ζ ζ

τ λ β ζ β ζ κ= + + +Z

ζ

ζ
       (36) 

where iT  is the survival time, τ  is the shape parameter of the Weibull distri-
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bution, ( )sζ  is a vector of coefficients relating baseline survival covariates to the 
risk of the occurrence of the event of interest, ( )

0i

L
βζ  is the coefficient that relates 

the subject specific random intercept ( )
0

L
iβ  and the risk of the event, ( )

2
i

L
κ

ζ  is 
the coefficient that relates the subject-specific measure of volatility of the bio-
marker measure and the risk of the event, iλ  is the natural log of the scale pa-
rameter in the Weibull distribution, ( )

0
s

iβ  is the subject-specific baseline hazard 
for subject i, and ( )s

iZ  is a vector of survival coefficients. 

3. Posterior Distribution 

Consider the joint longitudinal-survival likelihood function, ,L Sf , introduced in 
Equation (1). Let ω  be a vector of all model parameters with the joint prior 
distribution ( )π ω . The posterior distribution of the parameter vector ω  can 
be written as  

( ) ( ),| , ,L Sfπ π∝ ×X Yω ω                   (37) 

where X  and Y  denote longitudinal and time-to-event data respectively, and 

,L Sf  is the joint model likelihood function in (1). 
The posterior distribution of the parameters in our proposed joint model is 

not available in closed form. Hence, samples from the posterior distribution of 
the model parameters are obtained via Markov Chain Monte Carlo (MCMC) 
methods. We use a hybrid sampling technique where in each iteration of the 
MCMC, we first sample subject-specific frailty terms in the survival model using 
Neal’s Algorithm 8. Then given the sampled frailty terms, we use the Hamilto-
nian Monte Carlo [24] to draw samples from the posterior distribution. Prior 
distributions on parameters of the joint model were explained in details in Sec-
tions 2.2 and 2.3, and we assume independence among model parameters in the 
prior (i.e. ( )π ω  is the product of the prior components specified previously). 
We provide further detail on less standard techniques for sampling from the 
posterior distribution when using a GP prior and issues in evaluating the surviv-
al portion of the likelihood function when time-varying covariates are incorpo-
rated into the model. 

3.1. Evaluation of the Longitudinal Likelihood 

The longitudinal component of our model uses the Gaussian process technique. 
Gaussian process models are typically computationally challenging to fit because 
in each iteration of the MCMC the evaluation of the log-posterior probability 
becomes computationally challenging as the number of measurements increases. 
In particular, consider our proposed longitudinal model introduced in Section 
2.2 where  

( ) ( )( )2 2 2 2
0 0| , , , , , ,

i i

L L
i i i i i i l lN Iβ κ ρ σ σ ×+X W W β             (38) 

( )2 2| , 0, ,
ii i i m i iGPκ κW t K


                    (39) 

with iX  denoting a vector of longitudinal measures on subject i, iW  a Gaus-
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sian process stochastic vector, ( )
0
L

iβ  a subject specific intercept for subject i, 
2
iκ  a subject-specific measure of volatility for subject i, 2ρ  a fixed correlation 

length, 2σ  a measurement error that is shared across all subjects, 
i il lI ×  de-

noting the identity matrix of size il  with il  the number of longitudinal meas-
ures on subject i, it  a vector of the time points at which longitudinal measures  

on subject i were collected, and ( )22

e ij ijt t
i

ρ ′− −
=K , where ijt  and ijt ′  are the thj  

and thj′  element of the time vector it . 

In order to sample from the posterior distribution of 2
iκ  and 2σ  parame-

ters, one can consider a marginal distribution of the following form  

( ) ( )( )2 2 2 2 2
0 0| , , , , .

i i

L L
i i i i i i l lN Iβ κ ρ σ β κ σ ×+X K            (40) 

The marginal distribution above has log-density of the form  

( )( )( )

( )( ) ( ) ( )( )

2 2 2
0

2 2

T 12 2
0 0

log | , , ,

1constant log
2

1 ,
2

i i

i i

L
i i i

i i l l

L L
i i i i l l i i

f

I

I

β κ ρ σ

κ σ

β κ σ β

×

−

×

= − +

− − + −

X

K

X K X

           (41) 

that is the log contribution of subject i to the longitudinal likelihood (i.e. 
( )( )log i

Lf , where here and throughout, ( )log ⋅  denotes the natural log func-
tion). 

Sampling from the posterior distribution of 2
iκ  and 2σ  requires evaluation 

of the log-density in Equation (41) that involves evaluation of the determinant 
and the computation of the inverse of the covariance matrix at each iteration of 
the MCMC. This process requires ( )2

iO l  memory space and a computation 
time of ( )3

iO l  per subject, with il  as the number of within subject measure-
ments. 

For our proposed model, we defined ( )2

e ij ijt t
i

ρ ′− −
=K  with a fixed 2ρ  para-

meter. This means iK  can be pre-computed before starting posterior sampling 
using MCMC. Furthermore, we propose using the eigenvalue decomposition 
technique for a faster log-posterior probability computation. Our proposed me-
thod was motivated by [25] and is as follows. 

Consider the covariance matrix 2 2
i ii i l lIκ σ ×+K  in the marginal log-density in 

Equation (41). Our goal is now to propose a method that makes computation of 
the inverse and the determinant of this covariance function as efficient as possi-
ble. As shown earlier, iK  can be pre-computed before starting the MCMC process 
as it does not involve any parameter. Consider the eigenvalue decomposition of 

T
i Q Q= ΛK , where Λ  is a diagonal matrix with the eigenvalues of iK  as the 

diagonal elements, and Q is the corresponding matrix of eigenvectors. 2
iκ  is a 

scalar parameter that is sampled in each iteration of the MCMC. Multiplication 
of 2

iκ  times the matrix iK  implies the eigenvalues of this matrix will be 2
iκ  

times bigger where the eigenvectors remain the same. Hence, we can conclude 
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that the eigenvalue decomposition of the matrix 2
i iκ K  is of the form 

( )2 2 T
i i iQ Qκ κ= ΛK , where Q and Λ  are elements of the eigenvalue decompo-

sition of the pre-computed matrix iK . Given the pre-computed eigenvalue de-
composition of the matrix iK , at each iteration of the MCMC, the determinant 
of the covariance function of the marginal log-density in Equation (41) can be 
computed as  

( )
( )

( )

( )

2 2 2 T 2

2 2 T

2 2

1

2 2

1

log log

log

log

log .

i i i i

i i

i

i

i i l l i l l

i l l

l

i ik
k

l

i ik
k

I Q Q I

Q I Q

κ σ κ σ

κ σ

κ λ σ

κ λ σ

× ×

×

=

=

+ = Λ +

= Λ +

 
= + 

 

= +

∏

∑

K

           (42) 

In Equation (42), ikλ ’s are pre-computed eigenvalues of the matrix iK  
whereas iκ  and 2σ  are parameters sampled at each iteration of the MCMC. 

Similarly and by using the same trick, we can compute the term  
( )( ) ( ) ( )( )T 2 2
0 0i i

L L
i i i i l l i iIβ κ σ β×− + −X K X  in a more computationally efficient as 

( )( ) ( ) ( )( )
( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

T 12 2
0 0

T 12 T 2
0 0

T 12 2 T
0 0

T 12 2 T
0 0 .

i i

i i

i i

i i

L L
i i i i l l i i

L L
i i i l l i i

L L
i i i l l i i

L L
i i i l l i i

I

Q Q I

Q I Q

Q I Q

β κ σ β

β κ σ β

β κ σ β

β κ σ β

−

×

−

×

−

×

−

×

− + −

= − Λ + −

= − Λ + −

= − Λ + −

X K X

X X

X X

X X

          (43) 

In Equation (43), iX  is the data matrix and is fixed, Q and Λ  are pre- 
computed eigenvector and diagonal eigenvalue matrices corresponding to the 
eigenvalue decomposition of the matrix iK . Finally, by utilizing an eigenvalue 
decomposition, instead of evaluating the term ( ) 12 2

i ii i l lIκ σ
−

×+K , one can 
simply evaluate ( )( )12 2 T

i ii l lQ I Qκ σ
−

×Λ + , where the term ( ) 12 2
i ii l lIκ σ

−

×Λ +  in 
the middle is simply the inverse of a diagonal matrix. 

3.2. Evaluation of the Survival Likelihood 

Here we consider evaluation of the survival component of the decomposed joint 
likelihood. Consider the observed survival time for subject i that is denoted by 

it  and is distributed according to a Weibull distribution with shape parameter 
τ  and scale parameter ( )exp iλ , where ( ) ( ) ( ) ( ) ( )S S L L

i i i tλ = +Z Zζ ζ , where 
( )S
iZ  and ( ) ( )L

i tZ  are vectors of covariates for subject i, with potentially 
time-varying covariates, corresponding to the survival and the longitudinal co-
variates respectively, and ( )Sζ  and ( )Lζ  are vectors of survival and longitu-
dinal coefficients respectively. One can write the hazard function ( )ih t  as  

( ) 1e .i
ih t tλ ττ −=                        (44) 
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The survival function ( )iS t  can be written as 

( ) ( ) ( )0 d expe e .
t

i ih w w t
iS t

τλ− −∫= =                    (45) 

Consider survival data on n subjects, some of whom may have been censored. 
Let event indicator iδ  that is 1 if the event is observed, and 0 otherwise. The 
survival likelihood contribution of subject i can be written in terms of the hazard 
function ( )ih t  and the survival function ( )iS t  as  

( ) ( ) ( ) ( ) ( )0 d
| e .

tii i ih w wi
S L i i i i i if h t S t h tδ δ −∫= =               (46) 

The overall survival log-likelihood can be written as  

( ) ( )( ) ( )( ) ( )( )| 0
1 1

log log log d .i
n n ti

S L i i i i
i i

L f h t h w wδ
= =

= = −∑ ∑ ∫        (47) 

The hazard function in the Equation (44) includes some time-varying cova-
riates which often makes the integral of the hazard function non-tractable. In 
this case, one can estimate the integral using rectangular integration as follows 
Algorithm 1. 

4. Simulation Studies 

In this section, we evaluate our proposed models using a simulation study. We 
simulated 200 datasets that resembled the real data on end stage renal disease 
patients that was obtained from the United States Renal Data System (USRDS). 
To this end, we first simulated longitudinal trajectories with 2κ ’s which are 
sampled from a uniform distribution from 0 to 1. We fixed 2 0.1ρ =  for all 
subjects. The subject-specific intercepts for albumin trajectories were randomly 
sampled from the Normal distribution ( )25.0, 0.5N µ σ= = . We simulate 9 to 
12 longitudinal albumin values per subject. Using the simulated albumin trajec-
tories, we generated survival times from the Weibull distribution in Equation (13) 
that is of the following form for each of the proposed models  
 Model I: 

( ) ( ) ( )( )0| , Weibull , 0.5 ,s
i i i i iT X t X tτ τ λ β= +             (48) 

 Model II: 

( ) ( ) ( ) ( )( )0 ,| , Weibull , 0.3 0.5 ,s
i i i i i AUC iT X t X t X tτ τ λ β ′= + +      (49) 

 Model III: 

( ) ( ) ( )( )2 2
0 0| , , , Weibull , 0.5 0.3 0.7 .s L

i i i i i i i iT Age X t Ageτ κ τ λ β β κ= + + − +  (50) 

 

 
Algorithm 1. Integration of survival hazard with time-varying covariates. 
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In all simulations, ( )
0
s

iβ  are simulated from a mixture of two Normal distri-
butions of the form ( ) ( ) ( )2 21.5, 1 1 1.5, 1i iN Nθ µ σ θ µ σ= − = + − = = , where 

iθ  is distributed Bernoulli with parameter 0.5p = . 
Finally, the censoring times were sampled from a uniform distribution and 

independently from the simulated event times with an overall censoring rate of 
20%. 

All results are from 200 simulated datasets of size 300n =  subjects each. For 
each dataset, we fit our proposed joint models with 10,000 draws where the first 
5000 considered as a burn-in period. Relatively diffuse priors were considered 
for all parameters. Details of the priors used in the simulations as well as the re-
sults follow. 

4.1. Simulation Results for Model I 

In order to compare our proposed joint longitudinal-survival model that is ca-
pable of flexibly modeling longitudinal trajectories with simpler models with ex-
plicit functional assumptions on the longitudinal trajectories, we simulated lon-
gitudinal data once from quadratic polynomial longitudinal trajectory curves 
and another time from random non-linear curves. We then fit our joint model 
with a Gaussian Process longitudinal component as well as a joint model with 
the explicit assumption that the longitudinal trajectories are from a quadratic 
polynomial curve. As a comparison model, we also fit a two-stage Cox model 
where in stage one longitudinal data are modeled using our proposed Gaussian 
process longitudinal model and in the second stage, given the posterior mean 
parameters from the longitudinal fit, a Cox proportional hazard will fit the sur-
vival data. 

In particular, we generate synthetic longitudinal and survival data on 300 
subjects, each with 9 to 12 within subject longitudinal albumin measures. Under 
the scenario where the longitudinal data are generated from quadratic poly-
nomial longitudinal trajectories, we consider quadratic polynomial curves of the 
form  

( ) 2
0 1 2 ,L

ij i i ijX t tβ β β ε= + + +                    (51) 

where the true value of 0iβ  are simulated from the Normal distribution 

( )25, 1N µ σ= = , 1iβ  are simulated from the Normal distribution  

( )20.5, 0.01N µ σ= − = , 2β  is set to be equal to −0.1, and finally ijε  is the 
measurement error that is independent across measures and across subjects and 
are simulated from the Normal distribution ( )0, 0.1N µ σ= = . 

Under the second scenario, longitudinal albumin values are generated from 
random non-linear curves. In particular, we generate random non-linear albu-
min trajectories that are realizations of a Gaussian process that are centered 
around the subject-specific random intercepts ( )

0
L
iβ  that are generated from the 

Normal distribution ( )25, 1N µ σ= = . We consider a Gaussian process with the 
squared exponential covariance function with the correlation length of 2 0.1ρ =  
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and the subject-specific measures of volatility 2
iκ  that are generated from the 

uniform distribution ( )0,1U . 
For each simulation scenario, once longitudinal measures are generated, we 

generate survival data where survival times are distributed according to the 
Weibull distribution ( )Weibull , iτ λ , where the shape parameter τ  is set to 1.5 
and iλ , which is the log of the scale parameter of the Weibull distribution, is set 
to ( ) ( )0 1

S
i iX tβ β+ , where ( )

0
S

iβ  are generated from an equally weighted mixture 
of two Normal distributions of ( )21.5, 1N µ σ= − =  and ( )21.5, 1N µ σ= = , 

1β  is fixed to −0.5, and ( )iX t  is the longitudinal value for subject i at time t 
that is already simulated in the longitudinal step of the data simulation. 

Our proposed joint longitudinal-survival model assumes the Normal prior 

( )25, 4N µ σ= =  on the random intercepts 0
iβ , the log-Normal prior  

( )log-Normal 1,2−  on 2
iκ , the log-Normal prior ( )log-Normal 1,1−  on 2σ , 

the log-Normal prior ( )log-Normal 0,1  on τ , the Normal prior  

( )20, 25N µ σ= =  on the survival shared intercept 0β , the Normal prior 

( )20, 25N µ σ= =  on the survival coefficient 1β , the Gamma prior ( )3,3Γ  
on the concentration parameter of the Dirichlet distribution, and the Normal 
prior ( )20, 25N µ σ= =  as the base distribution of the Dirichlet distribution. 

As the results in Table 1 show, when data are simulated with a longitudinal 
trajectories that are quadratic polynomial curves, the joint polynomial model 
performs better in terms of estimating the albumin coefficient in the survival 
model with a smaller mean squared error compared to our proposed joint lon-
gitudinal-survival. In real world settings, however, the true functional forms of 
the trajectories of the biomarkers are not known and are unlikely to follow a 
simple parametric trajectory. Under a general case where the biomarker trajec-
tories can be any random non-linear curve (Scenario 2), our proposed joint 
model outperforms the joint polynomial model. Further, our joint modeling 
 
Table 1. Model I simulation results - joint longitudinal-survival data were generated un-
der two scenarios: one when longitudinal measures are sampled from the quadratic po-
lynomial trajectories (Scenario 1) and another when longitudinal measures are sampled 
from random non-linear curves (Scenario 2). Under each scenario, we considered three 
estimation approaches: a two-stage Cox proportional model with longitudinal trajectories 
with parameters that set to the posterior mean of a Gaussian process longitudinal model 
that is fit separately, a joint longitudinal-survival model with the assumption that longi-
tudinal trajectories are quadratic polynomial (Joint Polynomial Model), and our pro-
posed joint longitudinal-survival with a flexible Gaussian process longitudinal component 
(Joint Model). 

Covariate 
of Interest 

True 
Parameter 

Value 

Two-Stage Cox Joint Polynomial Model Joint Model 

Mean SD MSE Mean SD MSE Mean SD MSE 

Scenario 1     

Albumin (t) −0.5 −0.273 0.056 0.119 −0.495 0.019 0.003 −0.441 0.105 0.012 

Scenario 2     

Albumin (t) −0.5 −0.258 0.080 0.125 −0.380 0.080 0.034 −0.462 0.110 0.010 
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framework that is capable of estimating differential subject-specific log baseline 
hazards provides significantly better coefficient estimates compared to the pro-
portional hazard Cox model. Estimates under the Cox model are marginalized 
over all subjects and due to the non-collapsibility aspect of this model [26] [27], 
coefficient estimates shrink toward 0. 

4.2. Simulation Results for Model II 

In Model II, not only do we adjust for the current value of albumin value, but we 
also adjust for a weighted average slope of albumin over a specified time interval. 
This new model differentiates between the risks of death for a patient whose al-
bumin value is improving compared to another patient with the same albumin 
level whose albumin is deteriorating. We consider the two weighted derivative 
averages given in (31) and (32). The first weighting scheme in (31) leads to the 
area under the derivative curve. The second weighting scheme in (32) results in a 
point-wise derivative of albumin at each event time. 

We generate synthetic data for 300 subjects each with 9 to 12 longitudinal 
measurements where longitudinal albumin values are generated from a Gaussian 
process that is centered around the subject-specific random intercepts ( )

0
L
iβ  

which are generated from the Normal distribution ( )25, 1N µ σ= = . We con-
sider a Gaussian process with the squared exponential covariance function with 
the correlation length of 2 0.1ρ =  and the subject-specific measures of volatili-
ty 2

iκ  that are generated from the uniform distribution ( )0,1U . Once longitu-
dinal measures are generated, we generate survival data where survival times are 
distributed according to the Weibull distribution ( )Weibull , iτ λ , where the 
shape parameter τ  is set to 1.5 and iλ , which is the log of the scale parameter 
in Weibull distribution, is set to ( ) ( ) ( )0 1 2 ,

S
i i AUC iX t X tβ β β ′+ + , where ( )

0
S

iβ  are 
generated from an equally weighted mixture of two Normal distributions of 

( )21.5, 1N µ σ= − =  and ( )21.5, 1N µ σ= = , 1β  is fixed to 0.3, 2β  is fixed 
to 0.5, ( )iX t  is the longitudinal value for subject i at time t and ( ),AUC iX t′  is 
the average slope of albumin. 

Our proposed joint longitudinal-survival model assumes the Normal prior 

( )25, 4N µ σ= =  on the random intercepts 0
iβ , the log-Normal prior  

( )log-Normal 1,2−  on 2
iκ , the log-Normal prior ( )log-Normal 1,1−  on 2σ , 

the log-Normal prior ( )log-Normal 0,1  on τ , the Normal prior  

( )20, 25N µ σ= =  on the survival shared intercept 0β , the Normal prior 

( )20, 25N µ σ= =  on the survival coefficient 1β , the Normal prior  

( )20, 25N µ σ= =  on the survival coefficient 2β , the Gamma prior ( )3,3Γ  
on the concentration parameter of the Dirichlet distribution, and the Normal 
prior ( )20, 25N µ σ= =  as the base distribution of the Dirichlet distribution. 

As a comparison to our proposed approach, we also fit a two-stage Cox model 
where the longitudinal curve of albumin and its derivative curve are estimated 
using hyper-parameters set as the posterior median of a Bayesian Gaussian 
Process model. As we can see from Table 2, our joint model provides closer  
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Table 2. Model II simulation results - joint longitudinal-survival data were generated for 
300 subjects each with 9 to 12 within subject measurements where longitudinal albumin 
values are generated from a Gaussian process that is centered around the subject-specific 
random intercepts ( )

0
L
iβ  which are generated from the Normal distribution  

( )25, 1N µ σ= = . We consider a Gaussian process with the squared exponential cova-

riance function with the correlation length of 2 0.1ρ =  and the subject-specific meas-
ures of volatility 2

iκ  that are generated from the uniform distribution ( )0,1U . Once 

longitudinal measures are generated, we generate survival data where survival times are 
distributed according to the Weibull distribution ( )Weibull , iτ λ , where the shape para-

meter τ  is set to 1.5 and iλ , which is the log of the scale parameter in Weibull distribu-

tion, is set to ( ) ( ) ( )0 1 2 ,
S

i i AUC iX t X tβ β β ′+ + , where ( )
0
S

iβ  are generated from an equally 

weighted mixture of two Normal distributions of ( )21.5, 1N µ σ= − =  and  

( )21.5, 1N µ σ= = , 1β  is fixed to 0.3, 2β  is fixed to 0.5, ( )iX t  is the longitudinal 

value for subject i at time t and ( ),AUC iX t′  is the average slope of albumin. We fit our 

proposed joint longitudinal-survival model as well as a two-stage Cox proportional ha-
zard model as a comparison model. 

Covariate of 
Interest 

True 
Parameter 

Value 

Two-Stage Cox Joint Model 

Mean SD MSE Mean SD MSE 

Case 1 - Uniform Weights        

Albumin (t) 0.3 0.191 0.099 0.022 0.303 0.109 0.008 

Area under the derivative curve (t) 0.5 0.346 0.179 0.053 0.449 0.188 0.030 

Case 2 - Point-Wise Weights        

Albumin (t) 0.3 0.142 0.095 0.033 0.261 0.104 0.009 

( )( )d Albumin
d

t
t

 0.5 0.412 0.123 0.022 0.477 0.152 0.013 

 
estimates to the coefficient values with a smaller mean squared error compared 
with the two-stage Cox model. Our proposed model is capable of detecting dif-
ferential subject-specific baseline hazards whereas the Cox model is not capable 
of differentiating between subjects and provides estimates that are marginalized 
across all subjects. Further, the simulation results show the capability of our 
method in detecting the true underlying longitudinal curves and the ability of 
our method on properly estimating the average derivative of those curves. 

4.3. Simulation Results for Model III 

In model III, we test the association between the summary measures of the 
longitudinal biomarker trajectories and the survival outcomes. In particular, 
we consider the relation between the summary measures of subject-specific 
random intercept ( )

0
L

iβ  and subject-specific measure of volatility 2
iκ  and sur-

vival times. 
We generate synthetic data for 300N =  subjects each with 9 to 12 longitu-

dinal measurements where longitudinal albumin values are generated from a 
Gaussian process that is centered around the subject-specific random intercepts 
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( )
0

L
iβ  which are generated from the Normal distribution ( )5, 1N µ σ= = . We 

consider a Gaussian process with the squared exponential covariance function 
with the correlation length of 2 0.1ρ =  and the subject-specific measures of 
volatility 2

iκ  that are generated from the uniform distribution ( )0,1U . Once 
longitudinal measures are generated, we generate survival data where survival 
times are distributed according to the Weibull distribution ( )Weibull , iτ λ , 
where the shape parameter τ  is set to 1.5 and iλ , which is the log of the scale 
parameter in Weibull distribution, is set to ( ) ( ) ( )2

0 1 2 0 3
S L L

i i iAgeβ β β β β κ+ + + , 
where ( )

0
S

iβ  are generated from an equally weighted mixture of two Normal 
distributions of ( )21.5, 1N µ σ= − =  and ( )21.5, 1N µ σ= = , 1β  is fixed to 
0.5, 2β  is fixed to −0.3, 3β  is fixed to 0.7, Age  is a standardized covariate 
that is generated from the Normal distribution ( )20, 1N µ σ= = , ( )

0
L

iβ  is sub-
ject-specific random intercepts of the longitudinal trajectories, and ( )2 L

iκ  are 
subject specific measure of volatility of the longitudinal trajectories. 

Our proposed joint longitudinal-survival model assumes the Normal prior 

( )25, 4N µ σ= =  on the random intercepts 0
iβ , the log-Normal prior  

( )log-Normal 1,2−  on 2
iκ , the log-Normal prior ( )log-Normal 1,1−  on 2σ , 

the log-Normal prior ( )log-Normal 0,1  on τ , the Normal prior  

( )20, 25N µ σ= =  on the survival shared intercept 0β , the Normal prior 

( )20, 25N µ σ= =  on the survival coefficient 1β , the Normal prior  

( )20, 25N µ σ= =  on the survival coefficient 2β , the Gamma prior ( )3,3Γ  
on the concentration parameter of the Dirichlet distribution, and the Normal 
prior ( )20, 25N µ σ= =  as the base distribution of the Dirichlet distribution. 

We fit our proposed joint survival-longitudinal model (model III) as well as a 
two-stage Cox proportional hazard model as a comparison model. The two-stage 
Cox model is a simple Cox proportional hazard model with covariate ( )

0
L
iβ  and 

( )2 L
iκ  that are posterior medians from a separate longitudinal Gaussian process 

model. As the results in Table 3 show, our proposed joint model provides closer 
estimates to the true coefficients that also have significantly smaller mean 
squared error compared to the two-stage Cox model. Our proposed joint model 
is capable of detecting the differential subject-specific baseline hazards. Unlike 
our model, Cox model is blind to the subject-specific baseline hazards and 
hence, provides coefficient estimates that are marginalized over all subjects. 
These marginalized estimates from the Cox model shrink toward 0 as the Cox 
model with a multiplicative hazard function is non-collapsible. 

As one can see in the joint model results in Table 3, the coefficient estimate 
for ( )2 Lκ  is not as close to the true coefficient value compared with other coef-
ficient estimates. This is due to the fact that only 9 to 12 longitudinal measures 
per subject, there exists many plausible ( )2 L

iκ  values that flexibly characterize 
the trajectory of the measured albumin values. This additional variability in 
plausible ( )2 L

iκ  values has caused the coefficient estimate to shrink toward 0. 
Larger number of within subject longitudinal measures will provide more preci-
sion in estimating the true underlying ( )2 L

iκ  and will lead to a coefficient  
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Table 3. Model III simulation results - joint longitudinal-survival data were generated for 
300 subjects each with 9 to 12 longitudinal measurements where longitudinal albumin 
values are generated from a Gaussian process that is centered around the subject-specific 
random intercepts ( )

0
L
iβ  which are generated from the Normal distribution  

( )25, 1N µ σ= = . We consider a Gaussian process with the squared exponential cova-

riance function with the correlation length of 2 0.1ρ =  and the subject-specific measures 
of volatility 2

iκ  that are generated from the uniform distribution ( )0,1U . Once longi-

tudinal measures are generated, we generate survival data where survival times are dis-
tributed according to the Weibull distribution ( )Weibull , iτ λ , where the shape parame-

ter τ  is set to 1.5 and iλ , which is the log of the scale parameter in Weibull distribution, 

is set to ( ) ( ) ( )2
0 1 2 0 3
S L L

i i iAgeβ β β β β κ+ + + , where ( )
0
S

iβ  are generated from an equally 

weighted mixture of two Normal distributions of ( )21.5, 1N µ σ= − =  and  

( )21.5, 1N µ σ= = , 1β  is fixed to 0.5, 2β  is fixed to −0.3, 3β  is fixed to 0.7, Age  is 

a standardized covariate that is generated from the Normal distribution ( )20, 1N µ σ= = , 
( )
0
L

iβ  are subject-specific random intercepts of the longitudinal trajectories, and ( )2 L
iκ  

are subject specific measures of volatility of the longitudinal trajectories. We fit our pro-
posed joint longitudinal-survival model as well as a two-stage Cox proportional hazard 
model as a comparison model. 

Covariate of 
Interest 

True 
Parameter 

Value 

Two-Stage Cox Joint Model 

Mean SD MSE Mean SD MSE 

Age (scaled) 0.5 0.262 0.124 0.070 0.492 0.149 0.013 

Baseline Albumin ( ( )
0

L
iβ ) −0.3 −0.141 0.118 0.040 −0.284 0.116 0.008 

( )2 L
iκ  0.7 0.414 0.212 0.127 0.595 0.271 0.042 

 
estimate closer to the true value. In order to confirm this fact, we simulated ad-
ditional data once with 36 within subject measures and another time with 72 
within subject measures. Table 4 shows the results of fitting our proposed joint 
longitudinal-survival model to datasets that include subjects with 9 to 12 within 
subject measurements, to datasets with subjects with 36 within subject mea-
surements, and to datasets with subjects with 72 within subject measurements. 
As the results show, with larger number of within subject measurements, coeffi-
cient estimate for ( )2 L

iκ  is closer to the true value. This is due to the fact that 
with larger number of within subject albumin measurements, there exists a 
stronger likelihood to estimate the subject-specific volatility measures 2

iκ , and 
hence, there is less uncertainty about the estimated value of volatility measures. 

5. Application of the Proposed Joint Models to Data from the  
USRDS 

In this section, we apply our proposed joint longitudinal-survival models to data 
on 1112n =  end stage renal disease patients participating in the Dialysis Mor-
bidity and Mortality Studies (DMMS) nutritional study that is obtained from the 
United States Renal Data System (USRDS) [21]. For every participating patient  
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Table 4. Model III simulation results with datasets with 36il =  and 72il =  within 

subject measurements. In order to test the sensitivity of the ( )2 Lκ  coefficient estimate to 
the number of within subject measurements, il , we simulated joint longitudinal-survival 
data once when each subject has 36 within subject measurements and another time when 
each subject has 72 within subject measurements. Under each scenario, we simulated 200 
datasets each with 300 subjects. Other simulation parameters remained the same as the 
simulation parameters used in Table 3. This means, we simulated longitudinal data from 
Gaussian process that is centered around the subject-specific random intercepts ( )

0
L
iβ  

which are generated from the Normal distribution ( )25, 1N µ σ= = . We consider a 

Gaussian process with the squared exponential covariance function with the correlation 
length of 2 0.1ρ =  and the subject-specific measures of volatility 2

iκ  that are generated 

from the uniform distribution ( )0,1U . Once longitudinal measures are generated, we 

generate survival data where survival times are distributed according to the Weibull dis-
tribution ( )Weibull , iτ λ , where the shape parameter τ  is set to 1.5 and iλ , which is 

the log of the scale parameter in Weibull distribution, is set to ( ) ( ) ( )2
0 1 2 0 3
S L L

i i iAgeβ β β β β κ+ + + , 

where ( )
0
S

iβ  are generated from an equally weighted mixture of two Normal distributions 

of ( )21.5, 1N µ σ= − =  and ( )21.5, 1N µ σ= = , 1β  is fixed to 0.5, 2β  is fixed to −0.3, 

3β  is fixed to 0.7, Age  is a standardized covariate that is generated from the Normal 

distribution ( )20, 1N µ σ= = , ( )
0
L

iβ  are subject-specific random intercepts of the longi-

tudinal trajectories, and ( )2 L
iκ  are subject specific measures of volatility of the longitu-

dinal trajectories. 

Covariate of 
Interest 

True 
Parameter 

Value 

Joint Model ( 12il = ) Joint Model ( 36il = ) Joint Model ( 72il = ) 

Mean SD MSE Mean SD MSE Mean SD MSE 

Age (scaled) 0.5 0.492 0.149 0.013 0.493 0.144 0.015 0.495 0.145 0.016 

( )
0
L

iβ  −0.3 −0.284 0.116 0.008 −0.308 0.116 0.006 −0.295 0.115 0.007 

( )2 L
iκ  0.7 0.595 0.271 0.042 0.639 0.284 0.043 0.651 0.293 0.039 

 
in the study, up to 12 albumin measurements were taken uniformly over two 
years of follow-up. The presented analyses are restricted to only the patients who 
had at least nine albumin measurements in order to provide sufficient data for 
modeling the trajectory and the volatility of albumin. The censoring rate in the 
data is at 43% over a maximal follow-up time of 4.5 years. 

Using the same data, Fung et al. [1] showed that both baseline albumin level 
and the slope of albumin over time are significantly associated with mortality in 
ESRD patients. In this section, we recreate those results, but also implement the 
models described in Sections 2.4.2 and 2.4.3 to quantify the roles of the deriva-
tive of the albumin trajectory and the volatility of albumin as predictors of mor-
tality. 

In order to adjust for other potential confounding factors, our proposed mod-
els also include patient’s age, gender, race, smoking status, diabetes, an indicator 
of whether the patient appeared malnourished at baseline, BMI at baseline, base-
line cholesterol, and baseline systolic blood pressure. The adjusted covariates are 
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consistent with those originally presented in Fun et al. [1]. In the results that are 
presented, all joint models were run for 10,000 posterior samples where the ini-
tial 5000 samples are discarded as burn-in samples. 

5.1. Association between Survival at Time t and Serum Albumin at  
Time t 

Table 5 shows the estimated coefficients from our model and a last-observation 
carried forward (LOCF) Cox model, for comparison. The estimated relative risk  
 
Table 5. Estimated relative risk and corresponding 95% credible region from our pro-
posed joint model where we adjust for time-dependent albumin value that is imputed 
from the longitudinal component of the model. For comparison, we also fit a last-observation 
carried forward Cox proportional hazards model with last albumin value carried forward 
where we report coefficients estimates, 95% confidence interval, and p-value for the esti-
mated coefficients. In both models, we adjust for potential confounding factors as re-
ported by Fung et al. [1]. 

Covariates 
No. of 
Cases 

No. of 
Deaths 

LOCF Cox Model 

p-value 

Joint Model 

Relative Risk 
(95% CI) 

Relative Risk 
(95% CR) 

Age (10y) 1112 630 1.44 (1.35-1.53) <0.001 1.45 (1.36, 1.55) 

Sex      

Men 560 312 1.0  1.0 

Women 552 318 0.96 (0.81, 1.13) 0.60 0.97 (0.82, 1.16) 

Race      

White 542 350 1.0  1.0 

Black 482 243 0.81 (0.68, 0.96) 0.01 0.79 (0.67, 0.94) 

Other 88 37 0.52 (0.37, 0.74) <0.001 0.49 (0.34, 0.69) 

Smoking      

Nonsmoker 645 337 1.0  1.0 

Former 307 197 1.17 (0.98, 1.41) 0.09 1.20 (0.99, 1.44) 

Current 160 96 1.52 (1.19, 1.94) <0.001 1.53 (1.21, 1.95) 

Diabetes      

No 716 363 1.0  1.0 

Yes 396 267 1.66 (1.40, 1.97) <0.001 1.69 (1.43, 2.00) 

Undernourished      

No 958 517 1.0  1.0 

Yes 154 113 1.39 (1.12, 1.72) 0.003 1.35 (1.08, 1.66) 

BMI (per-5 kg/m2 decrement) 1112 630 1.08 (1.00, 1.17) 0.07 1.08 (1.00, 1.17) 

Cholesterol (per 20 mg/dL) 1112 630 0.97 (0.93, 1.00) 0.08 0.96 (0.93, 1.00) 

Systolic blood pressure 
(per 10 mm/Hg) 

1112 630 0.98 (0.95, 1.02) 0.38 0.98 (0.95, 1.02) 

Serum albumin(t) 
(1-g/dL decrement) 

1112 630 2.48 (2.00, 3.07) <0.001 4.54 (3.03, 5.55) 
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associated with all time-invariant baseline survival covariates are similar be-
tween the two models. The relative risk associated with every one unit decre-
ment in serum albumin is, however, larger under our proposed joint model 
compared to the last-observation carried forward Cox model. This is expected as 
our model is capable of estimating subject-specific albumin trajectories over 
time and is capable of accurately testing the association between albumin at time 
t and the risk of death at time t. The LOCF Cox model, on the other hand, uses 
the most recent albumin measure which in reality might be quite different than 
the albumin value at the time of death. In both models, albumin is identified as a 
significant risk factor of mortality. In particular, based on the results from our 
proposed joint, it is estimated that every 1 g/dL decrement in albumin is asso-
ciated with a 4.5 times higher risk of death in ESRD patients. 

5.2. Association between Survival at Time t and the Derivative of  
the Serum Albumin Trajectory 

Other than the albumin value at the time of death, the average slope of albumin 
over time might also be a risk factor of mortality in ESRD patients. Here, we ad-
just for the area under the derivative curve of the albumin trajectory from the 
time that the follow-up starts until the survival time which is either the time of 
death or the censoring time. Table 6 shows the results from our proposed model. 
Based on the results, we estimate that every one g/dL decrement in albumin is 
associated with a 3.95-fold increase in the risk of death. Also, lower average slope 
of albumin, that is every 1 g/dL/month decrease in the average slope, is asso-
ciated with a 2.3-fold higher risk of death. This is consistent with the results of 
Fung et al. [1]. 
 
Table 6. Estimated relative risk and corresponding confidence intervals from our pro-
posed joint models considering the relationship between survival and the derivative of 
albumin and the volatility of albumin. Potential confounding factors, as reported by Fung 
et al. [1], were also adjusted in the model but we have been removed them from the table 
for brevity. 

Covariates 
No. of 
Cases 

No. of 
Deaths 

Joint Model 

Relative Risk 
(95% CI) 

Association with derivative of albumin    

Serum Albumin(t) (1-g/dL decrement) 1112 630 3.95 (3.18, 4.71) 

Average Derivative of Serum Albumin 
(1-g/dL/month decrement) 

1112 630 2.33 (1.40, 3.73) 

Association with volatility of albumin    

Baseline Albumin ( ( )
0

L
iβ ) (1-g/dL decrement) 1112 630 5.54 (4.19, 6.94) 

( )2 L
iκ  (increase in volatility) 1112 630 1.23 (1.02, 1.41) 

1: One may only consider the local effect of average serum albumin slope by computing 
the area under the derivative from 6 months prior to death up until the time of death. 
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5.3. Association between Survival at Time t and the Volatility of  
Serum Albumin 

Fung et al. [1] showed that the baseline albumin and the slope of albumin over 
time are two independent risk factors of mortality among the end-stage renal 
disease patients. It is natural to also hypothesize that the volatility of albumin 
could be a risk factor of mortality among these patients. Here we consider two 
summary measures of the trajectories of the longitudinal albumin values, one the 
baseline albumin measures ( ( )

0
L
iβ ), and another the subject-specific volatility 

measure of albumin ( ( )2 L
iκ ). The bottom rows of Table 6 show results from this 

model fit. These result indicate that both baseline serum albumin the volatility of 
albumin are also significant risk factors of mortality. Specifically, we estimate 
that a one unit increase in 2κ , which indicates a higher volatility, is associated 
with 1.2 times higher risk of death. Figure 2 shows albumin trajectories of 10 
randomly sampled individuals. 
 

 
Figure 2. Actual longitudinal albumin trajectories of 10 randomly selected individuals with end-stage renal disease that were 
selected from the USRDS data. Hollow circles are the actual measured albumin values, red lines are the posterior median fitted 
curves from our proposed Model III, and the dashed blue lines are the corresponding 95% posterior prediction intervals for the 
fitted trajectories. The title of each plot shows the posterior median of the volatility measure 2κ  for the subject whose albumin 
measures are shown in the plot. 
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6. Discussion 

Monitoring the health of patients often involves recording risk factors over time. 
In such situations, it is essential to evaluate the association between those longi-
tudinal measurements and survival outcome. To this end, joint longitudinal- 
survival models provide an efficient inferential framework. 

We proposed a joint longitudinal-survival framework that avoids some of the 
restrictive assumptions commonly used in the existing models. Further, our 
methods propose a stronger link between longitudinal and survival data through 
an introduction of new ways of adjusting for the biomarker value at time t, ad-
justing for the average derivative of the biomarker over time, and moving 
beyond the first-order trend and accounting for volatility of biomarker measures 
over time. 

Our proposed method can be considered as an extension of the joint model 
proposed by [16] in that we use the same idea of dividing the joint likelihood in-
to a marginal longitudinal likelihood and conditional survival likelihood. However, 
instead of fitting quadratic trajectories, we use a flexible longitudinal model 
based on the Gaussian processes. Further, for the survival outcome, instead of 
assuming a piecewise exponential model, we use a flexible survival model by in-
corporating the Dirichlet process mixture of Weibull distributions. Our pro-
posed modeling framework is capable of modeling additional summary meas-
ures of longitudinally measured biomarkers and relating them to the survival 
outcome in a time-dependent fashion. 

Despite its flexibility and novelty, our approach has some limitations. By using 
the Bayesian non-parameteric Dirichlet process and the Gaussian process tech-
niques, we provide a flexible modeling framework that avoids common distribu-
tional assumptions; however, these techniques are generally not scalable when 
the number of subjects and the number of within subject measurements increase. 
Furthermore, the survival component of our model still relies on the propor-
tional hazards assumption. In future work, our methodology can be extended to 
include a more general non-proportional hazards framework that can also in-
clude time-dependent coefficients inside the survival model. Additionally, the 
use of alternatives to common MCMC techniques, including parallel-MCMC 
methods and variational methods, may lead to greater computational efficiency 
and scalability for larger datasets. 

Often times in monitoring the health of patients, multiple longitudinal risk 
factors are measured. One can use our proposed modeling framework in this 
paper in order to build a joint longitudinal-survival model with multiple longi-
tudinal processes, where each process is modeled independently from other lon-
gitudinal processes. In reality, however, one expects a patient’s longitudinal risk 
factors to be correlated. A methodology that is capable of modeling multiple 
biomarkers simultaneously by taking the correlation between biomarkers into 
account would be beneficial and remains an area of open research. 

https://doi.org/10.4236/ojs.2021.115046


S. A. Masouleh et al. 
 

 

DOI: 10.4236/ojs.2021.115046 804 Open Journal of Statistics 
 

Acknowledgements 

Parts of this research were supported by the National Institutes of Health under 
Grant Nos. R01AG053555 and P30AG066519 (DLG). 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Fung, F., Sherrard, D.J., Gillen, D.L., Wong, C., Kestenbaum, B., Seliger, S., Ball, A. 

and Stehman-Breen, C. (2002) Increased Risk for Cardiovascular Mortality among 
Malnourished End-Stage Renal Disease Patients. American Journal of Kidney Dis-
eases, 40, 307-314. https://doi.org/10.1053/ajkd.2002.34509  

[2] Wong, C.S., Hingorani, S., Gillen, D.L., Sherrard, D.J., Watkins, S.L., Brandt, J.R., 
Ball, A. and Stehman-Breen, C.O. (2002) Hypoalbuminemia and Risk of Death in 
Pediatric Patients with End-Stage Renal Disease. Kidney International, 61, 630-637.  
https://doi.org/10.1046/j.1523-1755.2002.00169.x  

[3] Prentice, R.L. (1982) Covariate Measurement Errors and Parameter Estimation in a 
Failure Time Regression Model. Biometrika, 69, 331-342.  
https://doi.org/10.1093/biomet/69.2.331  

[4] Dafni, U.G. and Tsiatis, A.A. (1998) Evaluating Surrogate Markers of Clinical Out-
come When Measured with Error. Biometrics, 54, 1445-1462.  
https://doi.org/10.2307/2533670  

[5] Tsiatis, A.A., Degruttola, V. and Wulfsohn, M.S. (1995) Modeling the Relationship 
of Survival to Longitudinal Data Measured with Error. Applications to Survival and 
cd4 Counts in Patients with Aids. Journal of the American Statistical Association, 
90, 27-37. https://doi.org/10.1080/01621459.1995.10476485  

[6] Verbeke, G. and Molenberghs, G. (2000) Linear Mixed Models for Longitudinal 
Data. Springer, New York. https://doi.org/10.1007/978-1-4419-0300-6  

[7] Pinheiro, J.C. and Bates, D.M. (2000) Mixed Effects Models in S and S-Plus. Sprin-
ger, New York. https://doi.org/10.1007/b98882  

[8] Christensen, R., Johnson, W., Branscum, A. and Hanson, T.E. (2010) Bayesian Ideas 
and Data Analysis: An Introduction for Scientists and Statisticians. CRC Texts in 
Statistical Science, CRC Press, Boca Raton. 

[9] Gelman, A., Carlin, J.B., Stern, H.S. and Rubin, D.B. (2003) Bayesian Data Analysis. 
Chapman and Hall, London. https://doi.org/10.1201/9780429258480  

[10] Shi, J.Q., Wang, B., Murray-Smith, R. and Titterington, D.M. (2007) Gaussian 
Process Functional Regression Modeling for Batch Data. Biometrics, 63, 714-723.  
https://doi.org/10.1111/j.1541-0420.2007.00758.x  

[11] Liu, Q., Lin, K.K., Andersen, B., Smyth, P. and Ihler, A. (2010) Estimating Replicate 
Time Shifts Using Gaussian Process Regression. Bioinformatics, 26, 770-776.  
https://doi.org/10.1093/bioinformatics/btq022  

[12] Bycott, P. and Taylor, J. (1998) A Comparison of Smoothing Techniques for cd4 
Data Measured with Error in a Time-Dependent Cox Proportional Hazards Model. 
Statistics in Medicine, 17, 2061-2077.  
https://doi.org/10.1002/(SICI)1097-0258(19980930)17:18%3C2061::AID-SIM896%3
E3.0.CO;2-O  

https://doi.org/10.4236/ojs.2021.115046
https://doi.org/10.1053/ajkd.2002.34509
https://doi.org/10.1046/j.1523-1755.2002.00169.x
https://doi.org/10.1093/biomet/69.2.331
https://doi.org/10.2307/2533670
https://doi.org/10.1080/01621459.1995.10476485
https://doi.org/10.1007/978-1-4419-0300-6
https://doi.org/10.1007/b98882
https://doi.org/10.1201/9780429258480
https://doi.org/10.1111/j.1541-0420.2007.00758.x
https://doi.org/10.1093/bioinformatics/btq022
https://doi.org/10.1002/(SICI)1097-0258(19980930)17:18%3C2061::AID-SIM896%3E3.0.CO;2-O
https://doi.org/10.1002/(SICI)1097-0258(19980930)17:18%3C2061::AID-SIM896%3E3.0.CO;2-O


S. A. Masouleh et al. 
 

 

DOI: 10.4236/ojs.2021.115046 805 Open Journal of Statistics 
 

[13] Hanson, T.E., Branscum, A.J. and Johnson, W.O. (2011) Predictive Comparison of 
Joint Longitudinal-Survival Modeling: A Case Study Illustrating Competing Ap-
proaches. Lifetime Data Analysis, 17, 3-28.  
https://doi.org/10.1007/s10985-010-9162-0  

[14] Wang, Y. and Taylor, J.M.G. (2001) Jointly Modeling Longitudinal and Event Time 
Data with Application to Acquired Immunodeficiency Syndrome. Journal of the 
American Statistical Association, 96, 895-905.  
https://doi.org/10.1198/016214501753208591  

[15] Faucett, C.L. and Thomas, D.C. (1996) Simultaneously Modelling Censored Surviv-
al Data and Repeatedly Measured Covariates: A Gibbs Sampling Approach. Statis-
tics in Medicine, 15, 1663-1685.  
https://doi.org/10.1002/(SICI)1097-0258(19960815)15:15%3C1663::AID-SIM294%3
E3.0.CO;2-1  

[16] Brown, E. and Ibrahim, J. (2003) A Bayesian Semiparametric Joint Hierarchical 
Model for Longitudinal and Survival Data. Biometrics, 59, 221-228.  
https://doi.org/10.1111/1541-0420.00028  

[17] Wulfsohn, M.S. and Tsiatis, A.A. (1997) A Joint Model for Survival and Longitu-
dinal Data Measured with Error. Biometrics, 53, 330-339.  
https://doi.org/10.2307/2533118  

[18] Song, X., Davidian, M. and Tsiatis, A.A. (2002) An Estimator for the Proportional 
Hazards Model with Multiple Longitudinal Covariates Measured with Error. Biosta-
tistics, 3, 511-528. https://doi.org/10.1093/biostatistics/3.4.511  

[19] Law, N.J., Taylor, J.M.G. and Sandler, H. (2002) The Joint Modeling of a Longitu-
dinal Disease Progression Marker and the Failure Time Process in the Presence of 
cure. Biostatistics, 3, 547-563. https://doi.org/10.1093/biostatistics/3.4.547  

[20] Erango, M.A. and Goshu, A.T. (2019) Bayesian Joint Modelling of Survival Time 
and Longitudinal CD4 Cell Counts Using Accelerated Failure Time and Generalized 
Error Distributions. Open Journal of Modelling and Simulation, 7, 79-95.  
https://doi.org/10.4236/ojmsi.2019.71004   

[21] USRD (U S Renal Data System) (2010) USRDS 2010 Annual Data Report: Atlas of 
Chronic Kidney Disease and End-Stage Renal Disease in the United States. National 
Institutes of Health, National Institute of Diabetes and Digestive and Kidney Dis-
eases, Bethesda. 

[22] Banerjee, S., Carlin, B.P. and Gelfand, A.E. (2014) Hierarchical Modeling and Anal-
ysis for Spatial Data. CRC Press, New York. https://doi.org/10.1201/b17115  

[23] Diggle, P.J. and Ribeiro, P.J. (2007) Model-Based Geostatistics. 1st Edition, Springer 
Series in Statistics, Springer, New York. https://doi.org/10.1007/978-0-387-48536-2  

[24] Neal, R.M. (2011) Handbook of Markov Chain Monte Carlo. Chapman & Hall/CRC 
Press, Boca Raton. 

[25] Flaxman, S, Gelman, A., Neill, D., Smola, A., Vehtari, A. and Gordon Wilson, A. 
(2015) Fast Hierarchical Gaussian Processes. Manuscript in Preparation. 

[26] Struthers, C. and Kalbiesch, J. (1986) An Estimator for the Proportional Hazards 
Model with Multiple Longitudinal Covariates Measured with Error. Biometrika, 73, 
363-369. https://doi.org/10.1093/biomet/73.2.363  

[27] Martinussen, T. and Vansteelandt, S. (2013) On Collapsibility and Confounding Bi-
as in Cox and Aalen Regression Models. Lifetime Data Analysis, 19, 279-296.  
https://doi.org/10.1007/s10985-013-9242-z 

 

https://doi.org/10.4236/ojs.2021.115046
https://doi.org/10.1007/s10985-010-9162-0
https://doi.org/10.1198/016214501753208591
https://doi.org/10.1002/(SICI)1097-0258(19960815)15:15%3C1663::AID-SIM294%3E3.0.CO;2-1
https://doi.org/10.1002/(SICI)1097-0258(19960815)15:15%3C1663::AID-SIM294%3E3.0.CO;2-1
https://doi.org/10.1111/1541-0420.00028
https://doi.org/10.2307/2533118
https://doi.org/10.1093/biostatistics/3.4.511
https://doi.org/10.1093/biostatistics/3.4.547
https://doi.org/10.4236/ojmsi.2019.71004
https://doi.org/10.1201/b17115
https://doi.org/10.1007/978-0-387-48536-2
https://doi.org/10.1093/biomet/73.2.363
https://doi.org/10.1007/s10985-013-9242-z

	A Flexible Joint Longitudinal-Survival Model for Analyzing Longitudinally Sampled Biomarkers
	Abstract
	Keywords
	1. Introduction
	2. Methodology
	2.1. The Joint Model
	2.2. Longitudinal Component
	2.3. Survival Component
	2.4. Linking the Two Components
	2.4.1. Model I: Associating Survival at Time t and the Longitudinal Biomarker at Time t
	2.4.2. Model II: Associating Survival at Time t with the Longitudinal Biomarker Value and the Derivative of the Biomarker Trajectory at Time t
	2.4.3. Model III: Associating Survival at Time t with the Volatility of a Subject-Specific Biomarker Marker Trajectory


	3. Posterior Distribution
	3.1. Evaluation of the Longitudinal Likelihood
	3.2. Evaluation of the Survival Likelihood

	4. Simulation Studies
	4.1. Simulation Results for Model I
	4.2. Simulation Results for Model II
	4.3. Simulation Results for Model III

	5. Application of the Proposed Joint Models to Data from the USRDS
	5.1. Association between Survival at Time t and Serum Albumin at Time t
	5.2. Association between Survival at Time t and the Derivative of the Serum Albumin Trajectory
	5.3. Association between Survival at Time t and the Volatility of Serum Albumin

	6. Discussion
	Acknowledgements
	Conflicts of Interest
	References

