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Abstract 

Financial Time Series Forecasting is an important tool to support both indi-
vidual and organizational decisions. Periodic phenomena are very popular in 
econometrics. Many models have been built aiding capture of these periodic 
trends as a way of enhancing forecasting of future events as well as guiding 
business and social activities. The nature of real-world systems is characte-
rized by many uncertain fluctuations which makes prediction difficult. In 
situations when randomness is mixed with periodicity, prediction is even 
much harder. We therefore constructed an ANN Time Varying Garch model 
with both linear and non-linear attributes and specific for processes with 
fixed and random periodicity. To eliminate the need for time series linear 
component filtering, we incorporated the use of Artificial Neural Networks 
(ANN) and constructed Time Varying GARCH model on its disturbances. 
We developed the estimation procedure of the ANN time varying GARCH 
model parameters using non parametric techniques.  
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1. Introduction 

Periodic phenomena such as business and temperature cycles appear in our daily 
life very often. Many models have been built aiding capture of these periodic 
trends as a way of enhancing forecasting of future events as well as guiding 
business and social activities. The nature of real world systems is characterized 
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by many uncertain fluctuations which makes prediction difficult. Prediction is 
made much harder when there is mixed periodicity and randomness especially 
when noise is very large and periodicity is covered up. Currently, time series 
analysis involves describing the observed values as a path of a stationary process 
by fitting the data using different non-structural models. One of the most used 
models is the Autoregressive Moving Average (ARMA) model. ARMA model 
was introduced by Whittle in 1951 and was popularised by BOX and Jenkins in 
1970. The model describes a time series as a stationary stochastic process which 
linearly combines an autoregressive polynomial of the current data to past data 
and a moving average polynomial of history noises up to lag q. When the time 
series is not stationary then de-trending and de-seasoning is needed. Consider-
ing the classical time series decomposition  

( ) ( ) ( ) ( ) ( )Y t T t S t C t X t= + + +                 (1) 

where ( )Y t  is the observed data, ( )T t  is the trend component, ( )S t  is the 
seasonal component, ( )C t  is the cyclic component and ( )X t  is the noise 
term. The ARMA model is applied to fit the noise term [1]. 

This method is quite limited due to inflexible assumption placed on the sea-
sonal component. Franses in [2] recommends that much attention should be 
placed in the seasonal fluctuations when dealing with econometric data. This is 
caused by randomness in the seasonal variation that can more precisely explain 
the behaviour of economic agents. Franses in [2] also observed that the non-seasonal 
fluctuations in many periodic observed macroeconomic time series are non sta-
tionary over time and hence insinuating possibility of dependence between sea-
sonal and non seasonal fluctuations in some time series. The classical decompo-
sition model is hence seen to be limited. In-order to solve this problem, many 
sophisticated models have been built based on the ARMA model. 

Autoregressive Conditional Heteroskedasticity (ARCH) model is also another 
commonly used model in financial time series. ARCH is a stationary non linear 
model. An ARCH(q) first models the stationary process by an AR(q) model, and 
takes the variance of the residual term as a q-th autoregressive polynomial relat-
ing to the history squared residuals back to lag q. The model was first proposed 
by Engle in 1982 and latter generalised by Bollerslev and Taylor in 1986 and 
termed as Generalised Autoregressive Conditional Heteroskedasticity (GARCH) 
model. 

These models have improved the application range to the real world problems 
in time series. However, in periodic phenomena, randomness and periodicity es-
timation is still considered separately. The GARCH model for example fits a pe-
riodic function to the seasonal trend and adds it to the ARMA type process of 
the residuals linearly. This is hence seen as a limitation of the model. 

The concept of random periodic processes describes the randomness and pe-
riodicity in stochastic process revolution simultaneously. It therefore inspires us 
to apply random periodic process to classical time series analysis as a way of de-
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scribing the random periodic phenomena. 

2. Statement of the Problem 

Financial Time Series Forecasting is an important tool to support both individu-
al and organizational decisions. The existing forecasting models which include 
the ARMA and ARCH models and their various forms are built under the li-
nearity and non linearity assumption respectively. This assumption creates a li-
mitation in forecasting complex real world problems which exhibit both linear 
and non linear properties. Further, these existing models concentrate only on 
random processes without considering that some processes exhibit random pe-
riodic properties. In addition, some processes also exhibit a mixture of fixed and 
random periodicity. This study therefore constructed a model with both linear 
and non-linear attributes and specific for processes with fixed and random pe-
riodicity. To eliminate the need for time series linear component filters, we in-
corporated the use of Artificial Neural Networks (ANN) which requires less 
background knowledge about the data.  

ANN-Time Varying GARCH model for processes with fixed and random pe-
riodicity will be applied in financial markets whose products fluctuate periodi-
cally and also affected by other periodic but random factors. For retailers, for in-
stance, the model may reveal consumer demand for winter clothes spikes at a 
distinct time period each year, information that would be important in forecast-
ing production and delivery requirements. 

3. Literature Review 

Financial time series analysis involves development of a model that describes the 
relationship between the variable past observations. This model is then used to 
predict the future when the time series is extrapolated. This approach is applied 
when limited knowledge on the process of generating data is available or there is 
no satisfactory explanatory model that relates the prediction variable to the ex-
planatory variables [3]. Time series forecasting have attracted many researchers 
leading to development and improvement of many models. In time series fore-
casting, model selection is very critical since it determines the accuracy of the 
forecasts. The determination of whether to fit a linear or non linear model is de-
pendent on the relationship between the current value and the past observations 
[1]. 

The concept of random periodicity was introduced by Feng and Zhao in the 
year 2015. They discovered that many periodic real world systems are subject to 
the influence of randomness. They proposed that the mix between periodicity 
and randomness may be best described by random periodic motion rather than 
a periodic motion. Liu in [4] regarded stationary process as a special kind of 
random periodic processes. Random periodic processes describe a mixed struc-
ture of seasonal and random patterns [5]. Liu in [4] used random periodic 
process to replace stationary process in the analysis of time series as a way of en-
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larging the application and enhance accuracy of ARMA model estimation. Zhao 
in [6] established an ergodic theory in the random periodic regime with periodic 
measures and random periodic processes. 

In his dissertation, [4] gave a counter example situation in which the classical 
times series additive structure is not sufficient as there is seasonal pattern in the 
irregular component. In the example, the de-seasoned data was stationary and 
satisfied an autoregressive equation. The autocorrelations and partial autocorre-
lations of residuals were near zero, which indicated the independency of noise. 
However, the autocorrelations and partial autocorrelations of squared residuals 
showed obvious periodic pattern, which indicated sufficient dependency of time 
in the volatility of noise. He also observed that the Shapiro-Wilk test rejected the 
“normal” hypothesis with very small p-value. But if tested on the periodic-point 
sequence of residuals, he observed that the Shapiro-Wilk test accepted that it sa-
tisfied a normal distribution. He therefore concluded that the standard proce-
dure to analyze a time series by the classical decomposition fails to obtain the 
correct result for a mixed season and randomness case. He hence developed an 
ARMA model for random periodic process to model the seasonal and irregular 
component simultaneously. 

We extend the work of [4] by considering that some processes also exhibit a 
mixture of fixed and random periodicity. We therefore constructed a model for 
processes with fixed and random periodicity to model financial time series 
which exhibit heteroscedastic property. To eliminate the need for time series li-
near component filters, we incorporated the use of Artificial Neural Networks 
(ANN) which do requires less background knowledge about the data. 

4. Methods 

1) Random Periodic Process 
A random periodic process of period τ  of the random dynamic system 
: M M+Φ ×Ω× →  is an  -measurable map :R M+ ×Ω→  such that 

for almost all ω∈Ω ,  

( )( ) ( ) ( ) ( ) ( )( ), , , , , ,t s R s R t s R s R sθ ω ω ω τ ω θ τ ωΦ = + + =        (2) 

for any ,s t∈ . 
For a statistical description, we usually do not know the exact expression of 

the dynamical system driving the time series. We only consider the second equa-
tion in 2 as the definition of random periodic process, while the first part is hid-
den in the time series evolution [4]. For detailed definition on random periodic 
path, its properties and periodic measure refer to [5]. 

2) Decomposition of Time Series with fixed and Random periodicity 
A time series is normally decomposed into four components namely trend, 

seasonal, cyclical and random. When these four components are believed to be 
independent then an additive model is employed. When the components are not 
necessarily independent then a multiplicative model is assumed [1]. Consider 
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the classical decomposition model of time series  

( ) ( ) ( ) ( ) ( )Y t T t S t C t X t= + + +                  (3) 

where ( )Y t  is the observed data, ( )T t  is the trend, ( )S t  is the seasonal 
component ( )C t  is the cyclical component and ( )X t  is the random compo-
nent. In some situations, there is seasonal pattern in the irregular component, in 
which the classical additive structure is not sufficient [4]. The insufficiency of 
the classical decomposition to figure out the mixed structure of the seasonal and 
noise components inspires us to make modification to it. We attempt to use 
random periodic process to describe the seasonal and noise components simul-
taneously. The modified model is as follows:  

( ) ( ) ( ) ( ) ( )fY t T t S t C t R t= + + +                  (4) 

where  

( ) ( ) ( )R t S t X t=                        (5) 

and ( )fS t  is the fixed periodic component. Therefore ( )R t  is a random pe-
riodic process with the following properties:  

1) ( )2E R t  < ∞  .  

2) ( )E R t    is a deterministic periodic function of time t.  
3) The autocovariance function of random periodic process is periodic func-

tion of time t on both indexes.  
( )Y t  is therefore a process with fixed and random periodicity. 

4.1. Periodic Time Series Models 

Introduction 
The introduction of periodic models into economics dates back to the late 1980s. 
By then, the focus was on describing trending consumption and income data, 
and the use of periodic models for out-of-sample forecasting.  

The fixed periodic models assume that the coefficients of the underlying mod-
el are purely repetitive, that is, they vary with the fixed period s. That is, the 
number of the coefficients is s times more than the standard coefficients in the 
standard stochastic model. A fixed periodic model therefore permits a different 
standard stochastic model for each fixed period s. On the other hand, random 
periodic models have all the coefficients vary with time t. That is, all the coeffi-
cients are different from each other even if they are in the same random period 
τ . Therefore, the major difference between fixed and random periodicity is that 
the same time points in different periods will have the same behaviour in fixed 
periodicity but there will be small fluctuations between different periods in ran-
dom periodicity.  

The following are the graphical representation of fixed periodicity, random 
periodicity and a combination of fixed and random periodicity (Figures 1-3). 
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Figure 1. Periodic time series with fixed periodicity 10s = . 

 

 

Figure 2. Periodic time series with random periodicity 10τ = . 
 

 

Figure 3. Periodic time series with fixed periodicity 10s =  and random periodicity 
10τ = . 
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4.2. Model for Processes with Fixed and Random Periodicity 
4.2.1. ANN-Time Varying GARCH Model 
Next we construct an ANN-Time Varying GARCH model for processes with 
fixed and random periodicity. Define the process with fixed periodicity s and 
random periodicity τ  as ( )Y t  to be an ANN-Time Varying GARCH process, 
if for each t,  

,t t tY Rµ= +                           (6) 

where 

0
1 1

,
m d

t j j ij t is
j i

f V V Yµ α α −
= =

 = + + 
 

∑ ∑                  (7) 

,t t tR Zσ=                            (8) 

such that 

( ) ( ) ( )2 2

1 1

p q

t i t i i t i
i i

w t t R tσ φ θ σ− −
= =

= + +∑ ∑                (9) 

and tZ  is an i.i.d white noise. Therefore, the model is an ANN model with 
Time Varying GARCH disturbances. Where, 

1) jα  ( 1,2, ,j m=  ) and ijV  ( 1,2, ,j m=   and 1,2, ,i d=  ) are the 
hidden and input connection weights respectively.  

2) 0α  and jV  ( 1,2, ,j m=  ) are the output and hidden layers connection 
bias respectively.  

3) d is the number of nodes in the input layer.  
4) m is the number of nodes in the hidden layer.  
5) f is the hidden layer transfer function.  
6) tR  is a random periodic process.  
7) ( ).w , ( ).φ  and ( ).θ  are non negative functions of time t.  
Hence, the ANN model of (7) in fact performs a nonlinear functional map-

ping from the past observations 2 3, , ,t s t s t sY Y Y− − −   to the future value tY  there-
fore making connection weights of the model vary with period s. 

Equation (8) is a Time Varying GARCH(p, q) process with time varying pa-
rameters ( ) ( ), iw t tφ  and ( )i tθ . 

The estimation of parameters for the model will be done using non parametric 
techniques.  

4.2.2. Assumptions of the Model 
1) ( )Y t  is a non-stationary process which can be decomposed as follows: 

( ) ( ) ( ) ( ) ( )Y t T t S t C t R t= + + +                  (10) 

where ( )T t  is the trend, ( )fS t  is the fixed periodic component with period s, 
( )C t  is the cyclical component and ( )R t  is the random periodic component 

with period τ .  
2) ( )R t  is a random periodic process with the following properties:  
a) ( ) 1| 0tE R t − =   .  
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b) ( ) 2
1| t tVar R t σ− =   .  

c) The autocovariance function of random periodic process ( )R t  is periodic 
function of time t on both indexes. 

( ) ( ), ,R Rt r t rγ γ τ τ= + +                    (11) 

for any ,t r∈   
Proof: 

( ) ( ) ( )( ) ( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )

( ) ( )( ) ( ) ( )( )
( )

, , ,

, ,

, ,

, .

R

R

t r R t m t R r m r

R t m t R r m r

R t m t R r m r

t r

γ τ τ τ ω τ τ ω τ

θ τ ω θ τ ω

ω ω

γ

 + + = + − + + − + 
 = − − 
 = − − 

=






   (12) 

3) The conditional variance 2
tσ  of tR  given information available up to 

time 1t − , has an autoregressive structure and is positively correlated to its own 
recent past and to recent values of the squared returns 2

tR . This captures the 
idea of volatility (conditional variance) being “persistent”: large (small) values of 

2
tR  are likely to be followed by large (small) values. 

4.3. Determination of Parameters 
4.3.1. Determination of ANN Parameters 
The Artificial Neural Network model has a number of parameters to be esti-
mated prior to its application. The topology of the ANN is as follows Figure 4. 
 

 

Figure 4. Topology of artificial neural network. 
 

Further, an appropriate activation function needs first to be selected before 
the parameters are estimated. These parameters include biases, weights con-
necting the inputs with the hidden nodes ijV  ( 1,2, ,j m=   and 1,2, ,i d=  ), 
weights linking the hidden nodes to the output node jα  ( 1,2, ,j m=  ), num-
bers of input nodes d and number of hidden nodes m. 

Determination and selection of input nodes in the input layer and the number 
of hidden nodes in the output layer forms the major problems in artificial neural 
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network specification. Problems, which can occur due to poor selection of the 
parameters, include: increased input dimensionality, increased computational 
complexity, increased memory requirements, increased learning difficult, 
mis-convergence, poor model accuracy and problem of understanding results 
from complex models [7]. 

Activation function 
The activation function is a mathematical “gate” in between the input feeding 

the current neuron and its output going to the next layer [8] [9]. It can be as 
simple as a step function that turns the neuron output on and off, depending on 
a rule or threshold. Or it can be a transformation that maps the input signals in-
to output signals that are needed for the neural network to function. The Com-
mon Nonlinear Activation Functions include: The sigmoid/logistic function 
which is defined as:  

( ) ( )
1

1 exp
f x

x
=

+ −
                        (13) 

The logistic function has smooth gradient, bounded outputs and clear predic-
tions advantages. However, the function is computationally expensive, not zero 
centred and has a vanishing gradient. The hyperbolic tangent function which is 
defined as  

( ) ( )
1tanh 2 1,

1 exp 2
x

x
 

= −  + − 
                  (14) 

unlike the the sigmoid function it is zero centred. Other activation functions in-
clude Rectified Linear Unit (ReLu) which is computationally efficient despite 
having the dying ReLu problem. The Leaky ReLU function despite solving the 
ReLu dying problem does not provide consistent predictions for negative input 
values. The parametric ReLu unlike leaky ReLU, this function provides the slope 
of the negative part of the function as an argument. It is, therefore, possible to 
perform backpropagation. We however adopt and apply the hyperbolic tangent 
activation function 14 since it zero centred and bounded. 

Bias and Connection Weights 
When the activation function is defined we select the training/learning algo-

rithm which is appropriate. The parameter space includes the vector of the ma-
trix ( )( )1 ijW V=  of weights connecting the inputs with the hidden neurons and 
the matrix ( )( )2 jW α=  of weights linking the hidden neurons to the output 
neuron and a vector of biases b. To estimate ( )1 2, ,W W bΨ = , we minimize the 
following error function. 

( ) ( )2

1

ˆ
N

t t
i

E Y Y
=

Ψ = −∑                      (15) 

The optimization techniques for minimizing the error function 15 are referred 
to as learning rules [7]. The generalised delta rule method also referred to as the 
error back propagation is the best known method which continuously modifies 
connection weight to reduce the difference between the required and the actual 
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output. For the learning process, the data must be divided in two sets: the train-
ing data set, which is used to calculate the error gradients and to update the 
weights; and the validation data set, which allows selecting the optimum number 
of iterations to avoid overlearning. 

In this method the weights are adjusted as follows: 
1

1

r r

r r

V V V
α α α

+

+

= + ∆

= + ∆
                       (16) 

We have the rth iteration weights as:  

( )1
1 ,r r

j j
j

Eδ
α α λ

δα
+ Ψ
= −                    (17) 

for 1, ,j m=   and 1λ  is the step gain. 
Similarly,  

( )1
2 ,r r

ij ij
ij

E
V V

V
δ

λ
δ

+ Ψ
= −                    (18) 

for 1, , ; 1, ,i d j m= =   and 2λ  is the step gain. The weights are adjusted 
until a stopping criterion is met. This method is however slow and unstable. 

This rule has various variations such as gradient descent with momentum, 
gradient descent with adaptive learning rate, quasi-Newton, conjugate gradient, 
Scaled conjugate gradient and Levenberg-Marquardt. In spite of various mod-
ified back propagation training algorithms, some crucial limitations of the stan-
dard back propagation technique such as slow convergence rate still remain un-
resolved [3]. Standard batch backpropagation is the most popular training me-
thod of all, but it is slow, unreliable, and requires the tuning of the learning rate, 
which can be a tedious process [7]. We hence discuss and apply the Quasi New-
ton method which is very fast and reliable. 

The Quasi Newton method starts by inputing an initial set of weights 0Ψ  
from which ( )2 0,iS Y Ψ  is determined. From the second order Taylor operation 
principles ( )2 1

1,S Y Ψ  can be found.  
1 0 1

0 0B A−Ψ = Ψ −                      (19) 

where 1
0 0B A−  represents the change direction. 0B  represents the direction an-

gle while 0A  represents the direction size. The direct off-diagonal elements of 
the matrix 0B  are evaluated as  

( )02 ,2

0 0, 0, .
iY

d m

SB δ
δ δ

Φ

=
Φ Φ

                     (20) 

While the direct diagonal elements of matrix 0B  are evaluated as  

( )

( )

02 ,2

0 20,
.

iY

d

SB δ

δ

Φ

=
Φ

                      (21) 

The minimization then continuous from iteration 1 to 2 until the stopping 
criterion is met. Generally, the iterations are given as:  
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1 1 .r r
r rB A+ −Ψ = Ψ −                      (22) 

However, the Hessian matrix B may become non-singular. This means that 
1

rB−  would be undefined. The method solves the problem by numerically ap-
proximating rB . The method redefines the general equation as  

1 1 ,r r
r r rM B A+ −Ψ = Ψ −                    (23) 

where rM  is the step length. By letting,  
1 1 ,r r

r r r ra M B A+ −= Ψ −Ψ =                  (24) 

represent the change in parameters in the rth iteration and  
1 .r r

rb A A+= +                       (25) 

The method has  

.r a r rB a b+ =                        (26) 

Therefore, 1rB +  is the ratio of the change in the gradient to the change in the 
parameters. 

The Stopping rules commonly used are:  
1) 1r r ε+Φ −Φ < , for 0ε >  but small.  

2) ( ) ( )1, ,r rS Y S Y ε+Φ − Φ < , for 0ε >  but small.  

3) ( )1, rS Y +Φ  is less than a specified lower bound.  
4) r is greater than a specified number of iterations.  
It is worth noting that rule (4) can be applied together with rule (1), rule (2) 

and rule (3). 
Number of nodes in Input Layer 
The number of input nodes is the number of lags that will be considered as 

inputs in the neural network input layer. To determine which lags to include in 
an input set Y of variables, autocorrelations and partial autocorrelations analysis 
together with AIC and its variation have been used, but they have not been very 
helpful [7]. Other methods such as network pruning have been developed but 
they have a problem associated with computation of the elements of the Hessian 
matrix which are the second derivatives of the error function with respect to the 
training weights. 

The automatic relevance determination method developed by Mackay (1992) 
and Neal (1996) defines a prior over the regression parameters that embody the 
concept of uncertain relevance, so that the model is effectively able to infer 
which variables are relevant and then switch the others off thus preventing those 
inputs from causing significant over-fitting [7]. This method may be applied to 
any univariate time series problem if an autoregressive neural network (ARNN) 
is to be fitted to the data. An improvement of Mackay’s ARD method uses a sub 
set of the weights, with a clear cut method of selecting the set to ensure that the 
effects of a particular input lag are well represented [10]. This method is compu-
tationally fast, as it requires no evaluation of eigenvalues of the Hessian matrix, 
which is not easy [7]. 
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Number of nodes in Hidden Layer 
A multi layer feedforward network with at least one hidden layer and a suffi-

cient number of hidden nodes is powerful enough to represent any form of time 
series [7]. Deciding the number of neurons in the hidden layers is a very impor-
tant part of deciding your overall neural network architecture. Using too few 
neurons in the hidden layers will result in something called underfitting. Under-
fitting occurs when there are too few neurons in the hidden layers to adequately 
detect the signals in a complicated data set. Using too many neurons in the hid-
den layers can result in several problems. First they may result in overfitting. 
Overfitting occurs when the neural network has so much information processing 
capacity that the limited amount of information contained in the training set is 
not enough to train all of the neurons in the hidden layers [11]. Secondly, large 
number of neurons in the hidden layers can increase the time it takes to train the 
network. 

Several researchers have proposed some rules of thumb for determining an 
optimal number of hidden units for any application. One rule of thumb is for the 
size of this hidden layer to be somewhere between the input layer size and the 
output layer size [12]. Blum in [12] also suggested that the size of the hidden 
layer should never be more than twice as large as the input layer. Another rule of 
thumb is that there should be as many hidden nodes as dimensions needed to 
capture 70 - 90 percent of the variance of the input data set [6]. However, most 
of those rules are not applicable to most circumstances as they do not consider 
the training set size and the complexity of the data set to be learnt [11].  

Another selection algorithm, a critical value is chosen arbitrarily first. The fi-
nal structure is built up through the iteration that a new node is created in the 
hidden layer when the training error is below the critical value [13]. On the oth-
er hand, [14] proposed an approach which is similar to [13] but removes nodes 
when small error values are reached. Rivals in [15] also provided a selection 
procedure for neural networks based on least squares estimation and statistical 
tests. Xu and Chen, in [11] developed a novel mathematical method for deter-
mining the number of hidden nodes in the hidden layer.  

( )( )1 2
logm C N d N=                     (27) 

where m is the number of hidden nodes, d is the input dimension of the target 
function, N is the number of training pairs, and C is a constant which does not 
depend on any function. Another method is the geometric pyramid rule which 
roughly approximates the number of hidden neurons using the following func-
tion:  

,m d O= ∗                         (28) 

where m is the number of hidden neurons, d is the number of input nodes and 
O is the number of outputs. 

The most commonly used rule in determining the size of hidden layer is to 
train a network successfully with one hidden node then two and so on as one 
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monitors the error for the validation data set. This error decreases with every 
increment in number of hidden nodes m until overfitting begins. At this point 
training is stopped and this m is taken to be the best choice. 

4.3.2. Time Varying GARCH Parameters 
Next we consider the following model 

,t t tR Zσ=                           (29) 

such that  

( ) ( ) ( )2 2

1 1

p q

t i t i i t i
i i

w t t R tσ φ θ σ− −
= =

= + +∑ ∑               (30) 

and tZ  is an i.i.d white noise.  
Equation (29) is a time varying GARCH(p, q) model. As a process of obtain-

ing meaningful asymptotic theory, the domain of parameter functions of Equa-
tion (29) is rescaled to unit interval. Therefore, we study the following process,  

2 2

1 1
, 1, 2, ,

p q

t i t i i t i
i i

t t tw R t n
n n n

σ φ θ σ− −
= =

     = + + =     
     

∑ ∑ 
      (31) 

The stochastic process tR  is therefore said to be a Time Varying GARCH if 
it satisfies 31. The functions ( ) ( ) ( ), , 0w u u uφ θ ≥  ( ]0,1u∀ ∈  ensures non- 
negativity of 2

tσ . We define ( ) ( ) ( ), , 0w u u uφ θ =  for 0u < . Rescaling tech-
niques as such does not affect estimation procedure and are common in non pa-
rametric regression [10].  

Rohan and Ramanathan in [16] developed a two step local polynomial non 
parametric estimation procedure for time varying GARCH(1, 1) process. We 
therefore generalise the local polynomial non parametric procedure to estimate 
the parameters for time varying GARCH(p, q) process. 

We first state the following technical assumptions: 
1) There exists 0δ >  such that  

( ) ( )
1 1

0 1 , 0 1
p q

i i
i i

u u uφ θ δ
= =

< + ≤ − ∀ < ≤∑ ∑              (32) 

2) There exist finite constants 1 2 1, , , p qM M M + +  such that ( ]1 2, 0,1u u∀ ∈ ,  

( ) ( )1 2 1 1 2w u w u M u u− ≤ −  

( ) ( )1 1 1 2 2 1 2u u M u uφ φ− ≤ −  

  

( ) ( )1 2 1 1 2p p pu u M u uφ φ +− ≤ −  

( ) ( )1 1 1 2 2 1 2pu u M u uθ θ +− ≤ −  

  

( ) ( )1 2 1 1 2q q p qu u M u uθ θ + +− ≤ −  

Assumption (i) is similar to stationarity condition for GARCH(p, q) model. A 
well defined and unique solution for time varying GARCH(p, q) process re-
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quires this condition to hold. The local stationarity of the time varying 
GARCH(p, q) requires the Lipschitz continuity condition for the parameters de-
fined in assumption (ii). We do not make any assumptions on the density func-
tion of tR . 

We define a stationary GARCH(p, q) process which can locally approximate 
the original time varying GARCH(p, q) process 31 in the neighbourhood of a 
fixed point 0U . Let ( ) ( ]0 , 0,1tR u u∈  be a process with the following proper-
ties; 

1) ( )0 1| 0t tE R u −  =  . 
2) ( ) ( )2

0 1 0|t t tVar R u uσ−  =  . 
Then, ( )0tR u  is said to follow a stationary GARCH(p, q) process which is 

associated with 31 at time point 0u  if it satisfies;  

( ) ( )0 0 ,t t tR u u Zσ=                        (33) 

such that, 

( ) ( ) ( ) ( )2 2
0 0 0 0

1 1
, 1, 2, ,

p q

t i t i i t i
i i

u w u u R u t nσ φ θ σ− −
= =

= + + =∑ ∑ 
   (34) 

which is a stationary ergodic process if assumption (1) holds. Using recursive 
substitution and strong law of large numbers it can be shown that the process 34 
has a well defined solution given by  

( ) ( ) ( ) ( ) ( )2 2
0 0 0 0 0

1 1 11

ˆ ,
p qa

t i t b j
a i jb

u w u u Z u w uσ φ θ
∞

−
= = ==

 
= + + 

 
∑ ∑ ∑∏     (35) 

such that 2 2ˆ 0t tσ σ− →  almost sure, if 2
0σ  is finite with probability one. 

The local polynomial estimation of the time varying GARCH(p, q) can be 
done in two steps. The first step involves obtaining a preliminary estimate of 2

tσ  
using a time varying ARCH(p) model. The second step involves reaching the es-
timators of time varying GARCH(p, q) parameter functions.  

Step 1. We estimate the prior 2
tσ  using time varying ARCH(p) model;  

2 2

1
,

p

t i t i
i

t R
n

σ φ −
=

 =  
 

∑                     (36) 

which can also be defined as  

( )2 2 2 2
0

1
1 .

p

t i t i t t
i

t tR R Z
n n

φ φ σ−
=

   = + + −   
   

∑             (37) 

Treating ( )2 2 1t tZσ −  as error we use local polynomial technique to estimate 
the functions ( ) , 0,1, ,i u i pφ =   as described in [16]. Therefore, given a Kernel 
function ( )K ⋅ , we get the estimator at point 0u  by minimizing,  

( ) ( )1

2
2 2

0 0 0
1 0 1

.
g pn k

j k ik j i j h j
j p k i

L R R u u K u uφ φ −
= + = =

  
= − + − −  

  
∑ ∑ ∑     (38) 

where g is the polynomial degree, t
t u
n
= , ( )

1
1 1

1 ..hK K
h h

   
=    
   

 and 1h  is the 
bandwidth. 

Therefore, the initial 2
tσ  is given by,  
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2 2
0

1

ˆ ˆˆ .
p

t i t i
i

t t R
n n

σ φ φ −
=

   = +   
   

∑                   (39) 

Step 2. We use the conditional variance initially estimated in Step 1 to get the 
estimates of the time varying GARCH(p, q) parametric functions. We can write 
35 as  

( ) ( )

2 2 2

1 1

2 2 2 2

1

ˆ

ˆ 1 .

p q

t i t i i t i
i i

q

t i t i t t
i

t t tR w R
n n n

t Z
n

φ θ σ

σ σ σ

− −
= =

− −
=

     = + +     
     

  −Θ − + −  
  

∑ ∑

∑
            (40) 

Here, for a particular choice of bandwidth ( )2 2ˆt tE σ σ−  is asymptotically 
negligible. Treating ( )2 2 1t tZσ −  as error we use local polynomial technique to 
estimate the functions ( ) , 0,1, ,i u i pφ =   and ( ) , 0,1, ,i u i qθ =   as described 
in [16]. The estimates at point 0u  are obtained by minimizing  

( ) ( )
2

2

2 2 2
2 0 0

2 0 1 1
.

g p qn k
t k i t i j t j t h t

t k i j
L R w R u u K u uφ θ σ− −

= = = =

  
= − + + − −     
∑ ∑ ∑ ∑   (41) 

where g is the polynomial degree, t
t u
n
= , ( )

2
2 2

1 ..hK K
h h

   
=    
   

 and 2h  is 
the bandwidth. 

The final estimates for 2
tσ  in time varying GARCH(p, q) is obtained using 

these estimates as follows  

2 2 2

1 1

ˆ ˆˆ ˆ .
p q

t i t i j t i
i j

t t tw R
n n n

σ φ θ σ− −
= =

     = + +     
     

∑ ∑                 (42) 

Bandwidth Selection 
The bandwidth governs the complexity of the model, and therefore the choice 

of the smoothing parameter h is of crucial importance for every kernel regres-
sion. Generally, we have to choose the bandwidth carefully to balance the bias 
and variance. A large bandwidth over-smooths the data resulting to underfitting, 
whereas a small bandwidth restricts neighbourhood size resulting in overfitting 
[17]. The data-driven bandwidth selection procedures most commonly used are, 
direct plug-in method, cross-validated bandwidth method, least-squares 
cross-validation method, smoothed cross-validation method, and the contrast 
method. Using the cross validation method based on the best linear predictor of 

2
tR  given the past. The bandwidth h is chosen for which  

( ) 2 2 2

2 1 1

1 ˆ ˆˆ ,
1

p qn

t i t i j t i
t i j

t t tCV h R w R
n n n n

φ θ σ− −
= = =

      = − + +      −       
∑ ∑ ∑    (43) 

is minimum, where the estimators are obtained through local polynomial tech-
nique by leaving the tth observation. The bandwidth selection procedure is com-
putationally too cumbersome, especially when n is large [16]. For a simplified 
version of cross validation method to reduce the computational complexity and 
make the bandwidth selection easy and doable refer to [16]. 

In random periodic case we apply a fixed value for bandwidth h which is pro-
portional to random periodicity τ . That is,  
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.h
n
τ

=                           (44) 

Therefore, we will only consider τ  nearest neighbours of 0u  for each tar-
get covariate 0u . 

Kernel Function 
The kernel function choice ( )K u  determines the local neighborhood’s shape 

over which the smoothing is performed. The kernel function has the following 
properties: 

1) ( ) 0,K u u≥ ∀   
2) ( )d 1K u u

∞

−∞
=∫   

3) ( ) ( ) ,K u K u u− = ∀   
The first two properties are those of probability density function and the third 

property implies that the Kernel density is symmetrical. The particular form of 
the function has only a relatively small effect on estimation accuracy. Hence, 
Gaussian kernel  

( )
( )

21
2

0.5

1 e ,
2

u
K u

−

π
=                     (45) 

which is differentiable with low computational complexity is most commonly 
used. 

5. Conclusions and Suggestions 

Modelling complex periodic time series is quite tedious particularly when peri-
odicity is mixed with randomness. The ANN Time varying GARCH model in-
corporates the modelling power of artificial neural networks and time varying 
GARCH models in order to model processes with fixed and random periodicity. 
The proposed model whose theoretical background in parameter estimation is 
developed in this paper through non parametric methods forms one of the can-
didates models in modelling complex financial time series. More research on the 
model properties and application with real data is still needed in order to entire-
ly develop a comprehensive theoretical framework of the proposed model.  
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