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Abstract 
Today, Linear Mixed Models (LMMs) are fitted, mostly, by assuming that ran-
dom effects and errors have Gaussian distributions, therefore using Maximum 
Likelihood (ML) or REML estimation. However, for many data sets, that 
double assumption is unlikely to hold, particularly for the random effects, a 
crucial component in which assessment of magnitude is key in such modeling. 
Alternative fitting methods not relying on that assumption (as ANOVA ones 
and Rao’s MINQUE) apply, quite often, only to the very constrained class of 
variance components models. In this paper, a new computationally feasible es-
timation methodology is designed, first for the widely used class of 2-level (or 
longitudinal) LMMs with only assumption (beyond the usual basic ones) that 
residual errors are uncorrelated and homoscedastic, with no distributional as-
sumption imposed on the random effects. A major asset of this new approach is 
that it yields nonnegative variance estimates and covariance matrices estimates 
which are symmetric and, at least, positive semi-definite. Furthermore, it is 
shown that when the LMM is, indeed, Gaussian, this new methodology differs 
from ML just through a slight variation in the denominator of the residual va-
riance estimate. The new methodology actually generalizes to LMMs a well 
known nonparametric fitting procedure for standard Linear Models. Finally, 
the methodology is also extended to ANOVA LMMs, generalizing an old me-
thod by Henderson for ML estimation in such models under normality. 
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1. Introduction 

The Linear Mixed Model (LMM) is an extension of the classical Linear Model 
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(LM) aimed at modeling a continuous scalar response Y in terms of observed 
covariates some of which (say 1, , pX X� ) have fixed effects as in the LM, being 
the same for all individuals in the population under study, and others (say 

1, , rZ Z� ) have random effects, thus possibly varying between some well identi-
fied subgroups in that population. Mixed models have been used to analyze data 
sets with clustered, longitudinal or multilevel structure in a variety of fields, such 
as medicine [1] [2], agriculture [3], animal breeding [4], small area estimation [5] 
[6], genetics [7] [8], growth modeling [9] [10], etc. Detailed presentations of 
LMMs can be found in [11] or Demidenko [12], with a more practical emphasis 
in West et al. [13]. The subclass of variance components (or ANOVA) LMMs is 
thoroughly examined in Searle et al. [14]. 

At the outset of this field, that latter class of LMMs was almost exclusively the 
only one considered to fit real world data sets, with ANOVA methods at the fo-
refront. But things started to turn around by the end of the 1970s, with the ad-
vent of widespread powerful computational tools (both in hardware and soft-
ware) which have now sufficiently matured and are widely accessible. As a con-
sequence, nowadays by far the most popular approach to fitting an LMM to a 
given data set is to use a Gaussian LMM, i.e. assuming that both the random ef-
fects and the model residual errors have Gaussian distributions, then using ei-
ther the Maximum Likelihood (ML) or the Restricted ML (REML) estimation 
procedures. This is not easy task, however, since the corresponding (restricted) 
likelihood equations are quite involved, even to simply be derived, and have no 
closed form solutions. Thus in the last 4 - 5 decades, considerable endeavor, both 
theoretical and computational, has been devoted to deriving and numerically 
solving these equations as efficiently as possible [11] [15] [16] [17] [18] [19]. The 
numerical solution of the nonlinear system of (restricted) likelihood equations is 
done, most often, through using one of two standard iterative methods: the 
Newton-Raphson (NR) or Fisher scoring (FS, a more statistical variant of NR) 
and the Expectation-Maximization (EM) algorithm in various forms [20] [21] 
[22]. 

Despite that unrivaled popularity, there is an obvious major issue with fitting 
Gaussian LMMs: the assumption of normality of both random effects and errors 
is dubious in many practical settings, especially for the former. Lange and Ryan 
[23], for instance, present practical cases of nonnormal random effects. In the 
last decade, faced with bigger and bigger data sets, both in size and dimensional-
ity, a growing interest has been focused on how to analyze LMMs for such data. 
For instance, a quasi-likelihood approach for estimation and inference in linear 
mixed-effects models with high-dimensional fixed effects and possibly large or 
unbalanced cluster sizes has been recently proposed by Li et al. [24]. 

Now, prior to the widespread adoption of ML/REML in LMMs fitting, some 
methods not relying on Gaussian assumptions had been developed and used 
such as ANOVA methods [14] [25] [26] [27] [28], Henderson’s Methods I, II 
and III [29], Rao’s Minimum Norm Quadratic Unbiased Estimation (MINQUE) 
method [30] [31] [32] [33], iterative MINQUE [34]. But these are tailored only 
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to a very specific and limited class of LMMs, namely ANOVA ones (or variance 
components LMMs). Moreover, these methods share the common significant 
drawback of not ensuring nonnegative estimates of variance components. A 
qualified discussion in Searle et al. [14] seldom recommended them for general 
usage. Alternatively, a quasi-likelihood approach is presented by Jiang [35] using 
the REML equations in non-Gaussian ANOVA LMMs, showing consistency and 
asymptotic normality of the variance components estimators under some addi-
tional assumptions. Heyde [36] does the same, but emphasizing the relationship 
between quasi-likelihood and estimating functions. Iterative weighted least 
squares and iterative generalized least squares estimation methods for LMMs are 
presented, respectively, in Jiang et al. [37] and Goldstein [38]. 

Being based on quite restrictive assumptions, the aforementioned methods 
developed for non-Gaussian LMMs have a limited range of LMMs for which 
they are theoretically valid fitting methods. For instance, the overly simplifying 
assumptions on covariance matrices structure (like the ones in ANOVA and 
MINQUE methods) even exclude most Gaussian LMMs from that validity range, 
which helps explain why the ML and REML approaches have superseded them. 
In contrast, our goal in this work is to design an estimation methodology for 
LMMs in which the fixed effects vector of parameters and the random effects 
covariance matrix are estimated based on assumptions as weak as possible. We 
will first restrict attention to the very popular subclass of 2-level (also called lon-
gitudinal) LMMs pioneered by Laird and Ware [22], before extending the ap-
proach to fit ANOVA LMMs as well. 

To achieve that goal, we take the practical standpoint here that, in most situa-
tions, except when some additional information is available about the data (such 
as serial correlation in errors for some longitudinal data), one has no other 
choice than to assume that the residual errors in the LMM to fit are uncorrelated 
and homoscedastic (u.ho.). This is probably the default option for error model-
ing (with the Gaussian assumptions when using ML or REML) in most statistical 
software packages tailored for parameters estimation in an LMM. In our model-
ing of 2-level LMMs here, based on adding only that assumption to the basic 
ones of zero mean and finite covariances for random effects and errors, we de-
vise a new approach for estimating the fixed effects parameters vector β , the 
cluster random effects covariance matrix D  and the residual errors variance 

2
εσ . Thus, we do not impose any assumption on the type of clusters random ef-

fects distribution. The approach can be viewed as an adaptation to 2-level LMMs 
of the well known 2-step procedure for fitting the LM to a given data set, under 
that same assumption, where first β  is estimated by Ordinary Least Squares 
(OLS), then the variance 2

εσ  of the errors by a carefully designed unbiased es-
timator. On closer scrutiny, it also turns out to generalize a little popularized es-
timating procedure for ML computation in Gaussian variance components 
models credited to Henderson by Harville [16] and detailed in Searle et al. ([14], 
pages 278-279). 
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As for the organization of the material presented in this article, Section 2 
briefly reviews LMMs, up to the random effects prediction issue. Section 3 high-
lights some key preliminary results on LMMs which do not involve any Gaus-
sian distributional assumptions, which will serve as backbone for our new esti-
mation methodology to be designed. In Section 4, we construct that new estima-
tion methodology for 2-level LMMs with u.ho. errors. Section 5 shows that our 
estimation methodology can be adapted to both 2-level LMMs with u.ho. errors 
and a diagonal cluster random effects covariance matrix and ANOVA LMMs. In 
Section 6, our new estimation approach is compared with the traditional Gaus-
sian ML through a simulation study, an application to a classical data set with 
cluster structure, and a longitudinal data, with implementations done in the R 
software [39]. Section 7 draws our conclusion about the work presented. The 
Appendix contains the most lengthy proof of a result presented in the running 
text. A supplementary material document is also provided, which gathers some 
known results on LMMs which we have used, but scattered here and there in the 
literature, and some new results of our own, as well as important implementa-
tion details about our presented iterative methods for fitting LMMs. To make a 
distinction with the article, the numbering of sections, results and equations in 
that document is prefixed by the letter “S”. 

Before we proceed, please note that in this paper, all vectors are columns. 
Moreover, TA , ( )tr A , Tu u u=  and T

Mu u Mu=  respectively denote 
transpose of matrix A, trace of square matrix A, Euclidean norm and norm w.r.t. 
the SPD matrix M of vector u, where “SPD” stands for symmetric and positive 
definite while “SPSD” means symmetric and positive semi-definite (matrix). nI  
is the identity matrix of order n. ( ),n p M  and ( )n M  are the spaces of matric-
es with real elements, respectively n p×  and n n× . ( )X  and ( )cov X  
denote the mean and covariance matrix of random vector (or variable) X. 

( ),q ΣmN  is the q-dimensional Gaussian distribution with mean vector m  
and covariance matrix Σ , D

  is for “has probability distribution”, while esti-
mating equation will be abbreviated EE. 

2. Linear Mixed Models: An Overview  
2.1. The General Form of an LMM  

The general form of an LMM is [11]:  

 ,Uβ ε= + +Y X Z                         (1) 

where n∈Y   is the observed response, pβ ∈  is the unknown vector of 
fixed effects parameters, qU ∈  is the vector of unobserved random effects, 

nε ∈  comprises the unknown residual errors, while ( ),n p∈X M  and 
( ),n q∈Z M  are given design matrices. The usual basic assumptions are [11] 

[12] [22]:  
Assumption 1gA . U and ε  are two independent zero mean random vectors 

with respective positive definite covariance matrices ( ) ( )cov qU = ∈G M  
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and ( ) ( )cov nε = ∈R M .  
With these assumptions, the covariance matrix of Y  is  

( ) Tcov= = +V Y ZGZ R . We will also use the following assumption:  
Assumption 2gA . The n p×  design matrix X  in (1) has full column 

rank.  
In (1), the main objective is to estimate β  and the covariance matrices R  

and G . LMMs are classified into two main groups, based on Gaussian distribu-
tional assumptions made or not on the random effects and errors in devising es-
timation procedures. Model (1) is termed Gaussian if, in addition to Assumption 

1gA , it holds that:  
Assumption 3gA . ( ),qU G 0D

  and ( ),nε R 0D
 .  

If the random effects and/or errors are not assumed to be normal, but As-
sumption 1gA  holds, then model (1) is usually said to be (rather abusively) a 
non-Gaussian LMM. The main goal in this work is to devise estimation proce-
dures for LMMs which do not use Assumption 3gA . The only key added as-
sumption will rather be: 

Assumption 4gA . 2
nεσ=R I  ( 2 0εσ > ), i.e. the residual errors in (1) are 

uncorrelated and homoscedastic.  

2.2. The 2-Level (or Longitudinal) LMM  

We will first design our new estimation methodology for one of the types of 
LMM most used in statistical analyzes. Since Laird and Ware [22], this type of 
LMM is usually qualified as longitudinal, but we feel it more encompassing to 
label them as 2-level. In this article, we will use the units-cluster terminology for 
2-level LMMs. At the cluster level, such a model can be written by grouping the 
scalar responses for all units in each cluster j as:  

 , 1, , ,j j j j jU j mβ ε= + + =Y X Z �                 (2) 

where ( )T

1 ,, , j
j

n
j j n jY Y= ∈Y �   is the response vector;  

( )T

1 ,, , j
j

n
j j n jε ε ε= ∈�   is the vector of the errors; ( ),jj n p∈X M  is the 

fixed effects design matrix; ( ),jj n r∈Z M  is the random effects design matrix. 
The unknown parts of the model are ( )T

1 2, , , p
pβ β β β= ∈�  , the vector of 

fixed effects parameters, and r
jU ∈ , the unobserved vector of random effects 

for cluster j. We will also consider the following usual basic assumptions for 
such models:  

Assumption 1A . The jU ’s are independent and identically distributed in 
r .  
Assumption 2A . The jε ’s are independent.  
Assumption 3A . The set of jU ’s and set of jε ’s are independent from 

each other.  
Assumption 4A . ( ) r

jU = ∈ 0 , ( ) jn
jε = ∈ 0 ,  

( ) ( )cov j rU = ∈D M , ( ) ( )cov
jj j nε = ∈R M . Here, D  and jR  are, 

respectively, the covariance matrices of jU  and jε  and are assumed finite 
and positive definite.  
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Model (2) can be written in the form (1), but with the covariance matrices having 
special diagonal block structures: ( )diag , ,=G D D� , ( )1diag , , m=R R R� , 

( )1diag , , m=V V V� , with T
j j j j= +V Z DZ R , 1, ,j m= � . 

2.3. Variance Components Models (or ANOVA LMMs)  

We will subsequently show that our methodology can also be adapted to the 
popular ANOVA LMMs, i.e. LMMs (1) in which the term UZ  can be decom-
posed as:  

 1 1 ,m mU U U= + +Z Z Z�                      (3) 

where 1, , mZ Z�  are given design matrices, with ( ), jj n q∈Z M , 1, ,j m= � , 
and 1, , mU U�  now become the random effects vectors of respective dimensions 

1, , mq q�  ( 1 mq q q+ + =� ). Taking 1m n+ =Z I  and 1mU ε+ =  (so 1mq n+ = ), 
the ANOVA LMM (1) with random effects term (3) is more neatly written:  

 ,Uβ= +Y X Z �                          (4) 

with ( )1 1, , m+=Z Z Z� , ( )TT T
1 1, , mU U U +=� �  and default assumptions:  

M1. 1 1, , mU U +�  are independent;  
M2. 1, , 1j m∀ = +� , ( )jU = 0  and ( ) 2cov

jj j qU σ= I , with 2 0jσ >  
finite.  

Then (4) implies ( )1

2 2
1diag , ,

mq m qσ σ=G I I� , and the only unknown parame-
ters in (4), besides β , are the vector of components variances ( )T2 2

1 1, , mθ σ σ += � . 
That is why (4) is called, under M1 and M2, a variance components model. 

2.4. Prediction of Random Effects: The BLP and the BLUP of U  

Besides being sometimes an important target in LMM modeling, it turns out that 
having an effective and computable (given parameters values) predictor for the 
random effects vector U in the LMM (1) is a crucial component in our newly de-
signed estimation methodology. In that respect, a first candidate is the best li-
near predictor (BLP) of U given Y  (see [14], Chapter 7):  

 ( ) ( )T 1BLP | .U U β−= = −Y GZ V Y X                   (5) 

But a far more popular predictor is the best linear unbiased predictor (BLUP) 
of |U Y  given, under Assumptions 1gA - 2gA , by Searle [40]:  

 ( ) ( )T 1BLUP | ,U U β∗ − ∗= = −Y GZ V Y X ��                 (6) 

where β ∗�  is the Best Linear Unbiased Estimator (BLUE) of β ,  

 ( ) 1T 1 T 1 .β
−∗ − −= X V X X V Y�                       (7) 

But, in our new methodology (as in previous ones), trying to use either the 
BLP or the BLUP requires to first estimate G  and R . Replacing them in (6) 
by estimators Ĝ  and R̂  yields ( ) ( )T 1ˆ ˆˆ ˆEBLUP |U U β∗ − ∗= = −Y GZ V Y X , a 
so called Empirical BLUP (EBLUP) of |U Y , with Tˆˆ ˆ= +V ZGZ R , and an 
Empirical BLUE (EBLUE) ( ) 1T 1 T 1ˆ ˆ ˆβ

−∗ − −= X V X X V Y  of β . However, im-
portantly for designing our new fitting methodology for LMMs, we stress that 
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the ( )BLUP |U Y  can also be viewed as a preliminary estimator of ( )BLP |U Y . 
Consequently, any ( )EBLUP |U Y  can also be taken as a practical estimator of 

( )BLP |U U= Y , thus qualifying also to be an Empirical BLP (EBLP) of |U Y . 
Indeed, that is how we will estimate U , using Henderson’s mixed model equa-
tions briefly reviewed next. 

2.5. Henderson’s Mixed Model Equations  

For given G  and R  in a Gaussian LMM (1), to simultaneously get an esti-
mator for β  and a predictor for U, Henderson [41] [42] maximized, w.r.t. β  
and U (the latter also viewed as a parameter), the joint density of the random 
couple ( ),UY . That maximization yields the so called Henderson’s mixed 
model equations (HMMEs) given in matrix form as:  

 
T 1 T 1 T 1

T 1 T 1 1 T 1 .
U
β− − −

− − − −

    
=    

+    

X R X X R Z X R Y
Z R X Z R Z G Z R Y

�
�              (8) 

From the outset, there has been debate over whether this was a valid way of 
trying to estimate β  and predict U. Henderson himself acknowledged (see [43], 
page 16) that (even given an observed n= ∈Y y  ) the maximized function is 
not a true likelihood for the couple ( ),Uβ  because U is not a fixed unknown 
parameter but rather an unobserved random variable. So, strictly speaking, this 
does not qualify as an ML method. Nonetheless, from our standpoint, that de-
bate is mostly peripheral. The only two relevant practical questions are: 1) What 
are the solutions β�  and U�  of the linear system (8)? 2) What properties do 
they have if taken as respective estimator of β  and predictor of U? The answer 
to both questions is provided by the following result, credited by Harville [16] to 
Henderson in an unpublished 1963 report:  

Theorem 1 ([16] [44]). If X  is full column rank while G  and R  are SPD 
matrices, then the solutions of the linear system (8) are β β ∗=� �  and U U ∗=� �  
given by (6)-(7), with T= +V ZGZ R .  

So, in the general LMM (1), given G , R  and the observed response vector 
Y , the BLUE β ∗�  of β  and the BLUP U ∗�  of |U Y  are the unique solu-
tions of the HMMEs. 

3. More about Henderson’s Mixed Model Equations and  
LMMs without Gaussian Assumptions  

As announced in the introduction, we intend to devise a new estimation me-
thodology, first for 2-level LMMs, which, contrary to usage outside of the Gaus-
sian case, simultaneously estimates unknown parameters and predicts random 
effects values under Assumptions 1A - 4A  and 4gA . In that perspective, 
we give, in this section, and, especially, in Section 3.2, a series of new results 
about LMMs which do not use any Gaussian assumption, be it on the random 
effects or the residual errors. Those results will serve as basis for the design of 
our new fitting methodology for LMMs in Section 4. 
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3.1. An Important Preliminary: The BLUE, the BLUP and the  
HMMEs Do Not Need Gaussian Assumptions  

Though Henderson, as reported above, famously discovered his eponymous 
mixed model Equations (8) coming from the Gaussian route, Theorem 1, which 
solves them, uses no Gaussian distributional assumptions for that. It actually 
uses no probabilistic, nor statistical framework or reasoning, whatsoever. It is 
rather a pure Matrix Algebra result asserting that the linear system (8) has as 
unique solutions the BLUE β ∗�  (7) of β  and the BLUP U ∗�  (6) of |U Y . 
Now, one can derive both β ∗�  and U ∗�  by optimizing, for each, a specific 
minimum variance criterion, but without relying on any Gaussian assumption 
or any parametric one for that matter [40]. That double observation makes it 
that the HMMEs are not attached to Gaussian distributional assumptions, con-
trary to what people always feel compelled to set before they use them.  

Remark 1. For the latter reason, we will use the HMMEs as our first two esti-
mating equations when devising the first approach (coded 3S-A1-V1) of our new 
estimation methodology for LMMs in Section 4.1.  

3.2. More about the HMMEs Solutions  

Here, we present a series of new Matrix Algebra results and their consequences 
for LMMs with u.ho. errors, without imposing any Gaussian assumption, much 
in line with Theorem 1. The discovery of those results triggered the design of our 
new fitting methodology for that class of LMMs. They derive from the very pe-
culiar structure of the first HMME which we start by stressing. 

3.2.1. The First HMME as a Weighted Least Squares Problem  
In (8), the first equation can be rewritten: ( )T 1 T 1 U− −= −X R X X R Y Z � . One 
then recognises the normal equations of the Weighted Least Squares (WLS) 
problem:  

 ( ) 1
min .

p
U

β
β

−
∈

− −
R

Y Z X�


                      (9) 

Combining that observation with Theorem 1 yields the remarkable result:  
Theorem 2. In the LMM (1) with Assumptions 1gA - 2gA , and given the 

BLUP U ∗�  of |U Y , the BLUE β ∗�  of β  is the WLS estimate of β  in the 
LM: U β ε∗− = +Y Z X� � , with response U ∗−Y Z � , design matrix X , error ε�  
and weighting matrix 1−R .  

But Theorem 2 will be more useful to us in designing our new methodology 
for LMM fitting in Section 4 when one adds the assumption that the LMM has 
uncorrelated and homoscedastic errors. We detail hereafter why. 

3.2.2. More about the BLUE of β and the BLUP of U in an LMM with u.ho.  
Errors  

Here, we focus attention on LMMs with u.ho. residual errors, i.e. Assumption 
4gA  holds, in addition to 1gA - 2gA . But again, no Gaussian assumption 

will be relied upon: only the u.ho. errors and their impact on the geometry of the 
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HMMEs solutions play a role here. Furthermore, we emphasize that our results 
to be presented hereafter are valid for any LMM (1) with u.ho. errors, and not 
only for 2-level LMMs with such errors. In that respect, first note that in the 
u.ho. residual errors scenario, the HMMEs (8) simplify significantly. Indeed, if 

2
nεσ=R I  with 2 0εσ > , then (8) reduces to:  

 
T T T

T T 2 1 T .
Uε

β
σ −

    
=    

+    

X X X Z X Y
Z X Z Z G Z Y

�
�                (10) 

The results to be derived hereafter highlight some peculiar properties about the 
solutions of the linear system (10), thus yielding some remarkable intertwined 
relationships, under Assumption 4gA , between its unique solutions (Theorem 
1), the BLUE β β ∗=� �  of β  and U U ∗=� � , the BLUP of |U Y . 

We start with an identity which is a trivial consequence of the structure of V  
in an LMM (1) under u.ho. errors. Indeed, then T 2

nεσ= +V ZGZ I , so:  

 T 1 2 1.n εσ
− −− =I ZGZ V V                       (11) 

This is instrumental first for: 
Lemma 3. Consider the LMM (1) with Assumptions 1gA  and 4gA . Let 

( ), p qUβ ∈ ×� �    such that ( )T 1U −= −GZ V Y X� . Then one has:  

 ( )2 1 .U εβ σ β−− − = −Y X Z V Y X� ��                  (12a) 

Moreover, if Assumption 2gA  also holds, then the following equivalence is 
true:  

( ) ( ) ( )1 1T 1 T 1 T T .Uβ β
− −− −= ⇔ = −X V X X V Y X X X Y Z� � �       (12b) 

Proof. Let Assumptions 1gA  and 4gA  hold, 2
nεσ=R I  and  

T 1U −= GZ V Y� � , with = −Y Y X� , for an arbitrary pβ ∈�  . Then  

( )T 1 T 1 2 1
nU εβ σ− − −− − = − = − =Y X Z Y ZGZ V Y I ZGZ V Y V Y� � � � � � , the last equality 

thanks to (11), which proves (12a). 
Now, if Assumption 2gA  is also true, then the square matrix TX X  is 

nonsingular; so, given that 2 1U εβ σ −− = +Y Z X V Y�� �  from (12a), then  

( ) ( ) ( ) ( )1 1T T 2 T T 1U εβ σ β
− − −− = + −X X X Y Z X X X V Y X� �� . Hence, since  

2 0εσ > , ( ) ( ) ( )1T T T 1Uβ β
− −= − ⇔ − =X X X Y Z X V Y X� �� 0 . Then (12b) follows 

because Assumption 2gA  implies that T 1−X V X  is an SPD matrix, thus 
nonsingular.                                                      □ 

Theorem 1 and Lemma 3 imply the following for the solutions of (10):  
Theorem 4. In the LMM (1), if ( ) 11 1 T 1 T 1P

−− − − −= −V V X X V X X V  and As-
sumptions 1gA - 2gA , 4gA  hold, then:  

 ( )2 1 2 ,U Pε εβ σ β σ∗ ∗ − ∗− − = − =Y X Z V Y X Y� ��             (13a) 

 ( ) ( ) ( )1 1T 1 T 1 T T .Uβ
− −∗ − − ∗= = −X V X X V Y X X X Y Z� �           (13b) 

Proof. Thanks to Lemma 3, the respective definitions (7) and (6) of the BLUE 
β ∗�  and the BLUP U ∗� , and the standard identity ( )1 Pβ− ∗− =V Y X Y� .    □  

Remark 2. The usefulness of the second expression of β ∗�  in (13b) stems 
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from the fact that one recognizes the OLS, under Assumption 2gA , of β  in 
the LM β ε= +Y X� � , where U ∗= −Y Y Z� � . This clearly suggests how, in an iter-
ative algorithm for LMM fitting, one may update the estimate of β  given the 
current estimate of the BLUP of U. That observation is precisely what motivated 
the construction of the second approach (coded 3S-A1-V2) in our new estima-
tion methodology for LMMs in Section 4.1.  

We then have the following corollary:  
Corollary 1. If ( )TA Uβ ∗ ∗= − −Y Y X Z� �  and 

2
B Uβ ∗ ∗= − −Y X Z� �  in the 

LMM (1) with Assumptions 1gA - 2gA  and 4gA , then  

 ( ) 1

2 22 T 1 2 .A B Uε εσ β σ −
− ∗ ∗− = ⋅ − = ⋅

GG
Z V Y X � �           (14) 

Therefore, the real random variable ( )T Uβ ∗ ∗− −Y Y X Z� �  is always nonnega-
tive.  

Proof. Let Assumptions 1gA - 2gA  and 4gA  be true and β ∗= −Y Y X �� . 
First,  

 ( ) ( ) ( )T T T ,A B U U U Uβ ∗ ∗ ∗ ∗ ∗− = + − = −X Z Y Z Z Y Z� � � � � � �       (15) 

where we have used the fact that Theorem 4 and Remark 2 imply:  
Uβ ∗ ∗⊥ −X Y Z� � � . Now, thanks to (13a) in Theorem 4, 2 1U εσ

∗ −− =Y Z V Y� � � . The 
latter, inserted in (15) alongside the expression (6) of U ∗� , implies:  

( ) ( ) 22 T 1 T 1 2 T 1 T T 1 2 T 1 .A B ε ε εσ σ σ− − − − −− = = =
G

Y V ZGZ V Y Z V Y G Z V Y Z V Y� � � � �  

Or, ( ) ( ) 1

T 22 T 1 1 T 1 2 T 1 2A B U U Uε ε εσ σ σ −
− − − ∗ − ∗ ∗− = = =

G
GZ V Y G GZ V Y G� � � � � .   □ 

We end this series of results about the geometry of the HMMEs solutions with 
one about two remarkable expectations related to the u.ho. residual errors va-
riance 2

εσ  in the LMM (1): 
Theorem 5. In the LMM (1) with Assumptions 1gA - 2gA  and 4gA , 

one has, with P as in Theorem 4:  

 ( ) ( )T 2 ,U n pεβ σ∗ ∗ − − = ⋅ − Y Y X Z� �               (16a) 

 ( )
2 4 tr .U Pεβ σ∗ ∗− − = ⋅Y X Z� �                  (16b) 

Proof. First, (13a) in Theorem 4 implies that ( )T 2 TU Pεβ σ∗ ∗− − =Y Y X Z Y Y� � . 
Hence, with ( )m β= =Y Y X  and ( )cov=V Y ,  

 ( ) ( ) ( )T 2 T 2 T tr .U P m Pm Pε εβ σ σ∗ ∗   − − = = +   Y YY Y X Z Y Y V� �    (17a) 

But 1 1Pm P β β β− −= = − =Y X V X V X 0 , so T 0m Pm =Y Y . Furthermore, since 

( ) 11 T 1 T
nP

−− −= −V I V X X V X X , then  
( ) ( ) 1T 1 T 1tr trP n n p

−− − = − = −  
V X V X X V X . Substituting these results in 

(17a) yields (16a). 
Similarly, from (13a), we get 

2 4 T 2U Pεβ σ∗ ∗− − =Y X Z Y Y� � , since P is sym-
metric. Hence  

( ) ( )2 4 T 2 4 T 2 2tr .U P m P m Pε εβ σ σ∗ ∗  − − = = ⋅ + Y YY X Z Y Y V� �   
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Now, T 2 0m P m =Y Y  as Pm =Y 0 . Also, since P P P=V ,  

( ) ( ) ( )2tr tr trP P P P= =V V , hence (16b).                              □ 
Remark 3. Identity (16a) is remarkable and seems familiar. Indeed, it is the 

analogue, for LMMs with u.ho. errors, of the identity which yields the unbiased 
estimator of the residual variance in an LM with that same type of errors. And 
we will use it in much the same way when deriving our new estimation metho-
dology for LMMs with u.ho. errors. Indeed, in conjunction with the last sentence 
of Corollary 1, (16a) easily suggests how to compute, in an LMM fitting algo-
rithm, a nonnegative update to estimate 2

εσ  given the current estimates of β  
and the BLUP of U.  

3.3. More about the BLP of U Y|  in an LMM  

The BLP ( )BLP |U U= Y , given by (5), will play a key role in our new estima-
tion methodology for LMMs with u.ho. errors. That is because, first of all, its de-
rivation does not require any Gaussian distributional assumption. Secondly, its 
computation and that of its covariance matrix are cheaper than those of the 
BLUP, especially under this scenario of u.ho. errors. See the needed formulas in 
the Supplementary material. In the latter, we also derive new expectations for-
mulas specifically based on the BLP (whereas the ones in the previous section, 
such as (16a), were based on the BLUP) which can be used to obtain EEs for the 
residual variance in an LMM. 

In our new methodology to be presented from Section 4 onwards, the results 
in Section 3.2 above and the Supplementary material will provide the tools to 
derive EEs for the β , 2

εσ  and the ( )BLP |U Y . On the other hand, to seek an 
EE for D , we will start from the fact that given ( )BLP |j j jU U= Y  and  

( )* covj jU= −V D   ( 1, ,j m= � ), then, under Assumptions 1gA - 4gA  
and 2gA , we get, as an unbiased estimator of D , the r r×  matrix  

 ( )* T
1

1

1 .
m

j j j
j

U U
m =

= +∑D V�                   (18) 

4. Estimation in 2-Level LMMs with u.ho. Errors: A New  
Approach 

We first present our approach for estimating the 3 main parameters of interest in 
a 2-level LMM (2) under Assumptions 1A - 4A , 2gA  and 4gA : pβ ∈ , 

2 0εσ >  and ( )r∈D M , alongside obtaining a prediction for  

( )TT T
1 , , q

mU U U= ∈�  . For that latter aspect, let, for 1, ,j m= � ,  

( ) ( )2 * TBLP |j j j j j j j jU εσ β−= = = −u Y y V Z y X , the BLP of jU  given response 
jn

j j= ∈Y y   in cluster j. We will predict U through estimating  

 ( ) ( ) ( )
TT T 2 * T

1BLP | , , ,mU εσ β−= = = = −u Y y u u V Z y X�         (19) 

the BLP of U given response n= ∈Y y   for the whole sample. 
Our approach is based on iteratively solving appropriate EEs for β , 2

εσ , D , 
u  derived using only sound nonparametric estimation principles. Devising 

https://doi.org/10.4236/ojs.2021.114035


E.-P. Ndong Nguéma et al. 
 

 

DOI: 10.4236/ojs.2021.114035 569 Open Journal of Statistics 
 

nonparametric EEs from given data to solve a statistical problem is an old idea in 
Statistics. The method of moments, whenever applicable, is in that category. In 
the field of LMMs, one may even say that that’s where all started with the 
ANOVA methods for fitting variance components models. But it has turned es-
pecially hard to derive EEs applicable to fit a broad class of LMMs, as uncon-
strained as possible, but not relying on Gaussian assumptions. Attempts in that 
direction include the iterative weighted least squares and iterative generalized 
least squares estimation methods for LMMs presented, respectively, in Jiang et al. 
[37] and Goldstein [38]. But they are still not yet sufficiently general. What we 
propose hereafter is a 3-step construction to get closer to such a goal. 

4.1. Two 3-Step Sequences for Estimation in 2-Level LMMs with  
u.ho. Errors  

The key point in our approach is the fact that the BLP is computationally cheap-
er to handle than the BLUP (including at the covariance matrix level) while at 
the same time, as observed at the end of Section 2.4, an empirical BLUP can also 
be viewed as an empirical BLP. So, to devise an estimation procedure for β , 

2
εσ , D  and prediction for U from =Y y , and given the preliminary results in 

Section 0, our starting ideas are described in what follows (we provide 2 different 
versions). In them, when D̂  is an estimate of D , it is understood that 

( )ˆ ˆ ˆdiag , ,=G D D�  (m times) is the corresponding estimate of G . 

4.1.1. Starting Ideas: Version 1 
• Step 1: Estimating β  and u , given estimates of 2

εσ  and D  
Given preliminary estimates 2ˆεσ  and D̂  of 2

εσ  and D , one can obtain 
estimates β̂  of β , and û  of u  by solving the system of HMMEs (10) using 

2 2ˆε εσ σ=  and ˆ=G G . 
• Step 2: Improved estimate of 2

εσ , given β̂ , û  from Step 1 
With β̂  and û  obtained as above in Step 1, (16a) in Theorem 5 suggests to 

take  

 
( )T

2
ˆ ˆ

ˆ
n pε

β
σ

− −
=

−

y y X Zu
                     (20) 

as a hopefully improved estimate of 2
εσ . Using Corollary 1, the way β̂  and û  

were obtained in Step 1 implies that 2ˆεσ  is a nonnegative real number. 
• Step 3: Improved estimate of D  given preliminary estimates 2ˆεσ , D� , 

û  of 2
εσ , D , u  

Here, we propose an approach to get an improved estimate D̂  of D  from 
respective preliminary estimates 2ˆεσ , D� , û  of 2

εσ , D , and u  in (19). We 
start with the unbiased estimator 1D�  of D  given by (18), but is not computa-
ble from the available data since it still depends on the unknown parameters, in-
cluding D  itself. Nevertheless, with the preliminary estimates D�  of D , and 

2ˆεσ  of 2
εσ , Equation (S:1.7c) in the Supplementary material suggests estimating 

*
jV  by ( ) 1* 2 T 2 1ˆ ˆ ˆj j jε εσ σ

−−= +V Z Z D� . Then, for 1, ,j m= � , given the available 
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estimate ˆ ju  of ju , (18) suggests as a hopefully improved computable estimate 
of D :  

 ( )* T

1

1ˆ ˆ ˆ ˆ .
m

j j j
jm =

= +∑D V u u                       (21) 

4.1.2. Starting Ideas: Version 2 
Here, Step 3 is the same as in Version 1 above, but Steps 1 and 2 rather go as 
follows:  
• Step 1: Estimation of u  and β , given estimates of β , D , 2

εσ  
Assume that we have respective preliminary estimates β� , D̂ , 2ˆεσ  of β , 

D , 2
εσ . Given =Y y  and (19), we estimate u  by  

 ( )2 * Tˆˆ ˆ ,εσ β−= −u V Z y X �                      (22) 

with ( ) 1* 2 T 2 1ˆˆ ˆ ˆε εσ σ
−

−= +V Z Z G . From Theorem 4, we hope to get an improved 
estimate of β  through:  

 ( ) ( )
1T Tˆ ˆ .β
−

= −X X X y Zu                    (23) 

Remark 4. This is not the same as Step 1 of Version 1 because β�  appears on 
the l.h.s. of (22) instead of β̂ . So here, û  and β̂  are not solutions to the 
HMMEs given ˆ=G G  and 2ˆ nεσ=R I .  

Remark 5. In (22), we have ( )TT T
1ˆ ˆ ˆ, , m=u u u� , where for 1, ,j m= � , ˆ r

j ∈u   
is given by:  

 ( ) ( ) 12 * T * 2 T 2 1ˆ ˆ ˆˆ ˆ ˆ ˆ, .j j j j j j j jε ε εσ β σ σ
−− −= − = +u V Z y X V Z Z D�        (24) 

Remark 6. The vector β̂  given by (23) is the OLS, under Assumption 
2gA , of β  in the LM: ˆ ε− = +y Zu X � , with ˆ−y Zu  as response and ε�  as 

vector of residual errors.  
• Step 2: Improved estimate of 2

εσ , given β̂ , û  from Step 1, and pre-
liminary estimates of 2

εσ , D  
With Remark 4 above, there is no guarantee that the numerator of (20) is a 

nonnegative number given û  and β̂  from Step 1 in this Version 2. To ensure 
a nonnegative estimate of 2

εσ , we combine Corollary 1 and Theorem 5 to obtain, 
from the available estimates 2

εσ�  and D̂  of 2
εσ  and D , the hopefully im-

proved estimate of 2
εσ :  

 
1

2 22
ˆ2

ˆ ˆ ˆ
ˆ .

n p
ε

ε

β σ
σ

−− − +
=

−
Gy X Zu u�

                   (25) 

Remark 7. From Corollary 1, Theorem 5 and Propositions S1.4-S1.5, S1.8-S1.9, 
two alternative somewhat more sophisticated computable nonnegative estimates 
of 2

εσ  in this context are:  

 
( ) ( )

2 22 2
2

1 * 1 *
1

ˆ ˆˆ ˆ
ˆ ,

ˆ ˆ ˆ ˆtr tr m
jj

q q

n p n p

ε ε
ε

β σ β σ
σ

− −
=

− − + − − +
= =

− + − + ∑

y X Zu y X Zu

G V D V

� �
       (26a) 
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( ) ( ) 1

1

* T
22 * T

2 ?
1 1ˆ

ˆtr
ˆ ˆˆ tr .

ˆ

m m

j j j j
j j

εσ −

− = =

= = ∑ ∑ D
G

V Z Z
V Z Z u

u
         (26b) 

4.2. Targeted Estimates for β, 2
εσ , D and Prediction of U  

4.2.1. The Estimating Equations  
The reasoning in Steps 1-2-3 of Version 1 above leads us to seek, given the data 
vector =Y y , respective estimates β̂ , 2ˆεσ , D̂ , of parameters β , 2

εσ , D , 
and prediction û  of U satisfying the system of equations:  

 
T T T

TT T 2 1

ˆ
,ˆ ˆˆε

β
σ −

    
=      +    

X X X Z X y
Z yuZ X Z Z G

              (27a) 

 
( )T

2
ˆ ˆ

ˆ ,
n pε

β
σ

− −
=

−

y y X Zu
                     (27b) 

 ( )* T

1

1ˆ ˆ ˆ ˆ .
m

j j j
jm =

= +∑D V u u                       (27c) 

Steps 1-2-3 of Version 2 suggest the following system, with D̂  as in (27c):  

 ( )2 * T ˆˆˆ ˆ ,εσ β−= −u V Z y X                       (28a) 

 ( ) ( )
1T Tˆ ˆ ,β
−

= −X X X y Zu                     (28b) 

 
1

2 22
ˆ2

ˆ ˆ ˆˆ
ˆ .

n p
ε

ε

β σ
σ

−− − +
=

−
Gy X Zu u

                  (28c) 

We so obtain two distinct sets of fixed points EEs for β , 2
εσ , D  and u . 

Our estimation approach for the 2-level LMM (2) under Assumptions 1A -
4A  and 2gA , 4gA  consists in solving either of them through successive 

approximations iterative procedure. However, we stress that, from Theorem 4 
and Corollary 1, if D̂  is SPD, 2ˆ 0εσ >  and Assumption 2gA  holds, then 
one has the following logical equivalence:  

(27a) − (27b) ⇔  (28a) − (28b) − (28c). 

So the above two systems of equations are actually equivalent, and, thus, have 
the same solutions if any. However, they do suggest two different successive ap-
proximations algorithms to try to calculate these 4 unknowns. 

4.2.2. 3S: A Code Name for the LMMs New Estimation Methodology  
Our proposed two estimating algorithms are presented in the next section. Since 
each of them is based on a 3-step sequence construction, we shall use the code 
name 3S for this new methodology for fitting LMMs. In the future, we will 
present other variants of this approach. So the current one is coded 3S-A1, and 
the two algorithms we present hereafter are coded 3S-A1-V1 and 3S-A1-V2.  

4.2.3. Two Iterative Estimating Procedures for 2-Level LMMs with u.ho.  
Errors  

Given the response vector ( )TT T
1 , , n

m= ∈y y y�  , and the EEs (27a)-(27c), our 
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first estimating algorithm for a 2-level LMM with u.ho. errors is: 
Algorithm 3S-A1-V1. Estimating β , 2

εσ , D  and predicting 1, , mU U�  
in a 2-level LMM with u.ho. errors: Version 1   

1) Initialization: At iteration 0, we estimate β , 2
εσ , D  and predict 

1, , mU U� , as follows:  
a) ( ) ( ) 10 T Tβ̂

−
= X X X y , the OLS estimate of β  in the linear model 

β ε= +y X ;  
b) ( ) ( ) ( )

22 0 0ˆˆ n pεσ β= − −y X , the corresponding unbiased estimate of the 
residual variance;  

c) 1, ,j m∀ = � , ( ) ( ) ( )0 0T Tˆ j j j j j

+ ∗=u Z Z Z y , the OLS estimate of jU  in the li-
near model ( )0

j j j jU ε∗ = +y Z , with jU  considered as fixed parameter, jZ  the 
design matrix, ( ) ( )0 0ˆ

j j jβ
∗ = −y y X  as the response, and ( )T

j j

+
Z Z  being the 

Moore-Penrose pseudo-inverse of T
j jZ Z ;  

d) ( ) ( ) ( )0 0 0 T
1

1ˆ ˆ ˆm
j jjm =

= ∑D u u ;  

2) The iterative process: Given ( )ˆ tβ , ( )2ˆ t
εσ , ( ) ( ) ( )( )TT T

1ˆ ˆ ˆ, ,t t t
m=u u u� , and 

( )ˆ tD  from iteration t, compute estimates and predictions at iteration 1t +  as 
follows:   

a) ( ) ( ) ( ) 11 2Tˆ ˆˆt t t
j j jA εσ

−+  = +  Z Z D , 1, ,j m= � ;  
b) Solve for ( )1ˆ tβ +  and ( )1ˆ t+u  in the linear system, with  
( ) ( ) ( )( )1 1 1

1
ˆ ˆ ˆdiag , ,t t t

mA A A+ + += � :  

 
( )

( )

( )

1T T T

T1 1T T

ˆ
;

ˆ ˆ

t

t tA

β +

+ +

    
=      +    

X X X Z X y
Z yZ X Z Z u

         (29) 

c) ( ) ( ) ( )( ) ( )2 1 1 1T ˆˆ t t t n pεσ
+ + += − − −y y X Zu ;  

d) ( ) ( ) ( ) 11 2 1 1ˆˆ ˆt t t
j jAεσ

−∗ + + + =  V , 1, ,j m= � ;  

e) ( ) ( ) ( ) ( )1 1 1 1 T
1

1ˆ ˆ ˆ ˆmt t t t
j j jjm

+ ∗ + + +
=
 = + ∑D V u u ;  

3) Stopping criterion: Assume convergence when  
( ) ( ) ( ) ( ) ( )1 1

1
ˆ ˆ ˆM Mt t tδ+ +− ≤D D D , ( ) ( ) ( )1 1

2
ˆ ˆ ˆt t tβ β δ β+ +− ≤ ,  

( ) ( ) ( )2 1 2 2 1
3ˆ ˆ ˆt t t

ε ε εσ σ δ σ+ +− ≤  are all satisfied, where 1 2 3, ,δ δ δ  are relative tolerance 
levels set in ( )0,1 , and ( )M⋅  is a chosen matrix norm. Otherwise, 1t t← +  
and repeat Step 2. 

4) Extracting estimates: At convergence, take ( )1ˆ ˆ tβ β += , ( )2 12ˆ ˆ t
ε εσ σ += , 

( )1ˆ ˆ t+=D D  as estimates of β , 2
εσ , D . Also, take ( ) ( )1 1

1ˆ ˆ, ,t t
m

+ +u u�  as predic-
tions of 1, , mU U� .  

Remark 8. In that algorithm, whereas stabilization of the D  and 2
εσ  ite-

rates is enough to ensure that the values of all the other estimates have stabilized 
as well, the stopping criterion of the algorithm is based on also monitoring the 
β  iterates for more security.  

Given the alternative system of EEs (28a)-(28c), our second algorithm for 
2-level LMMs with u.ho. errors goes as follows: 

Algorithm 3S-A1-V2. Estimating β , 2
εσ , D  and predicting 1, , mU U�  

in a 2-level LMM with u.ho. errors: Version 2   
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1) Initialization: The same as in Algorithm 3S-A1-V1;  
2) The iterative process: Given ( )ˆ tβ , ( )2ˆ t

εσ , ( ) ( )
1ˆ ˆ, ,t t

mu u� , hence  
( ) ( ) ( )( )TT T

1ˆ ˆ ˆ, ,t t t
m=u u u� , and ( )ˆ tD  from iteration t, compute estimates and pre-

dictions at iteration 1t +  as follows:   

a) ( ) ( ) ( )
111 2Tˆ ˆˆt t t

j j jB εσ
−−+   = +   

Z Z D , 1, ,j m= � ;  

b) ( ) ( ) ( )( )11 T Tˆ ˆt tβ
−+ = −X X X y Zu ;  

c) ( ) ( ) ( )( )1 1 1T ˆˆˆ t t t
j j j j jB β+ + += −u Z y X , 1, ,j m= � ;  

d) ( ) ( ) ( ) ( ) ( )
( ) 1

2 22 1 1 1 2 1
ˆ

1 ˆˆ ˆˆ ˆ
t

t t t t t

n pε εσ β σ
−

+ + + + = − − + 
−  G

y Zu X u ,  

( ) ( ) ( )( )ˆ ˆ ˆdiag , ,t t t=G D D� ; 

e) ( ) ( ) ( )1 2 1 1ˆ ˆˆt t t
j jBεσ
∗ + + +=V , 1, ,j m= � ;  

f) ( ) ( ) ( ) ( )1 1 1 1 T
1

1ˆ ˆ ˆ ˆmt t t t
j j jjm

+ ∗ + + +
=
 = + ∑D V u u ;  

3) Stopping criterion and extracting estimates: As in Algorithm 3S-A1-V1.  
Remark 9. Important elements about the practical implementation of the 

above two designed algorithms are detailed further in Section S2 of the accom-
panying Supplementary material document. In particular, it is explained there 
how we monitor a possible rank deficiency of D  and even whether or not 
random effects are really there for a given data set, in the first place. For the lat-
ter aspect, we introduce and motivate  

 
( )T 2 ,
M

ερ σ= ZGZ                        (30) 

a quantity called random effects ratio, through formula (S:2.6b) to try to assess 
the likelihood of having significant random effects or not in the data.  

4.3. First Properties of the Estimates β̂ , ˆ 2
εσ , D̂  and û   

The convergence of the above two algorithms has not been investigated yet. 
However, the fact that their convergence can only occur to estimates β̂ , 2ˆεσ , 
û , D̂  (of β , 2

εσ , D , u ) satisfying the two equivalent systems of EEs of 
Section 0.0.5 allows to identify some first properties of those estimates. Indeed, 
assume that any of the above two algorithms has converged to β̂ , 2ˆεσ , D̂ , û , 
with D̂  SPD, 2ˆ 0εσ >  and Assumption 2gA  true. We highlight two im-
portant properties of these estimates.  

4.3.1. Relationship with the HMMEs  
Firstly, Theorems 1 & 4 and Corollary 1 imply the following about β̂ , 2ˆεσ , D̂ , 
û : 

Theorem 6. If one takes ˆ=G G  and 2 2ˆε εσ σ=  in the HMMEs (10), then 
ˆβ β=�  and ˆU = u�  are the solutions to (10). Therefore, the estimates β̂ , 2ˆεσ , 

D̂  and prediction û  satisfy:  

 ( ) ( ) 12 T 1 T 1ˆ ˆ ˆ ˆˆEBLUE | , , ,εβ β σ
−− −= =y G X V X X V y          (31) 
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 ( ) ( )2 T 1ˆ ˆ ˆˆˆ ˆEBLUP | , , ,U εσ β−= = −u y G GZ V y X           (32) 

where T 2ˆˆ ˆ nεσ= +V ZGZ I . That is β̂  and û  are, respectively, an empirical 
BLUE of β  and an empirical BLUP of U when G  is estimated by Ĝ  and 

2
εσ  by 2ˆεσ .  
Remark 10. The main difference between Algorithms 3S-A1-V1 and 3S-A1-V 

2 is that the former enforces satisfaction of the HMMEs for the computed esti-
mates at each iteration 1t ≥ , while the latter only guarantees that for the final 
estimates if convergence is achieved.  

4.3.2. Relationship with the 2-Level Gaussian LMM Likelihood Equations  
under i.i.d. Errors 

The EEs (27b) and (28b) indicate that our 2 estimation procedures above are ex-
tensions to 2-level LMMs with u.ho. errors of the well known 2-step method to 
fit an LM with such errors whereby β  is first estimated by OLS and, then, that 
estimator is used to get an unbiased estimator for 2

εσ , and this without using 
any parametric distributional assumption. Now, it is trivial that for the LM with 
i.i.d. Gaussian errors, that 2-step estimation method is asymptotically equivalent 
to the ML estimation of β  and 2

εσ . We are going to show that the same prop-
erty holds for our 2 estimation procedures when the 2-level LMM is, indeed, a 
Gaussian one with i.i.d. errors, at least in terms of the solutions β̂ , 2ˆεσ , D̂  
satisfying the likelihood equations. So, we assume a 2-level LMM satisfying As-
sumptions 1A - 4A  and, for 1, ,j m= � :  

Assumption 5A . ( ),j rU D0D
N  and ( )2,

j jj n nεε σ I0D
N .  

Estimating the parameters β , 2
εσ , D  of that 2-level Gaussian LMM 

through ML usually starts by trying to solve the likelihood equations:  

 ( )2, , | ,εβ σ
β
∂

=
∂

D y� 0                      (33a) 

 ( )2, , | ,εβ σ∂
=

∂
D y

D
� 0                      (33b) 

 ( )2
2 , , | 0,ε
ε

β σ
σ
∂

=
∂

D y�                      (33c) 

where ( )2, , |εβ σ D y�  is the log-likelihood of the model with observed response 
=Y y . 
First, it is well known that, given our assumptions:  

 (33a) ( ) 1T 1 T 1 .β
−− −⇔ = X V X X V y                   (34) 

Thus, thanks to (31), the triplet ( ) ( )2 2ˆ ˆˆ, , , ,ε εβ σ β σ=D D  satisfies the first like-
lihood Equation (33a). For the other two likelihood equations, generalizing 
computations in Searle et al. ([14], pages 278-279) for the ANOVA model (4), 
one has (Proof in the Appendix):  

Theorem 7. Let β�  and U�  satisfy the HMMEs (10) given 2
εσ , D  for the 

2-level LMM (2), with Assumptions 1A - 4A , 2gA  and 5A .  
1) If (33a) holds, then:  
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(33b) ( )* T

1

1 .
m

j j j
j

U U
m =

⇔ = +∑D V � �  

2) If (33a) and (33b) both hold, then:   

 (33c) ( )2 T .U nεσ β⇔ = − −y y X Z� �  

Given the EE (27c), the first equivalence in that theorem shows that the 
second likelihood Equation (33b) is satisfied by the quadruplet  

( ) ( )2 2ˆ ˆ ˆˆ, , , , , ,Uε εβ σ β σ=D D u . But, given our EE (27b), we see that the triplet 

( ) ( )2 2ˆ ˆˆ, , , ,Uε εβ σ β σ= u  falls short to satisfying (33c) only through having a de-
nominator n p−  instead of n, exactly like in the LM case. So, when the 2-level 
LMM is a Gaussian one with i.i.d. errors, our 2 estimation procedures above are 
asymptotically equivalent to the ML method. However, as for the LM case, we 
stick here with our denominator n p− , inspired by the unbiasedness property 
(16a) in Theorem 5. 

Remark 11. An important by-product of Theorem 7 is that it implies that by 
replacing n p−  by n in the denominator of the formula updating the residual 
variance estimate during the iterations in Algorithms 3S-A1-V1 and 3S-A1-V2, 
we get two new algorithms for computing the Gaussian ML estimates in a 2-level 
LMM. They may be coded 3S-ML-A1-V1 and 3S-ML-A1-V2 and can be viewed 
as alternatives to existing algorithms based on Newton-Raphson, Fisher scoring 
or EM (Expectation-Maximization).  

4.4. 3S LMM Fitting: What about the Accuracy of the Estimates?  

Obviously, once a 3S algorithm has converged to the targeted estimates of para-
meters for fitting an LMM to a given data set, the next question is, as usual in 
statistical inference: what about the accuracy of those estimates? In a strictly pa-
rametric modeling with Gaussian ML or REML estimation, the answer is custo-
marily built through estimating the inverse of Fisher’s Information Matrix for 
the estimated parameters. But we cannot go that route here because we precisely 
aimed here at a nonparametric modeling with the LMM for the provided data 
set. Instead, to assess the accuracy of the estimates computed by a 3S algorithm, 
we use the bootstrap. But bootstrapping mixed models necessitates significantly 
more care than is usually the case when using routine i.i.d. data. Methods and 
up-to-date discussions about this can be found for instance in Carpenter et al. 
[45], Van der Leeden et al. [46], Chambers and Chandra [47], Thai et al. [48], 
Modugno and Giannerini [49]. 

5. 3S Fitting of LMMs: Beyond 2-Level LMMs  

As stated from the outset, the first goal in this work was to design a methodology 
for parameters estimation in a 2-level LMM where the only assumption added to 
the basic ones ( 1A  to 4A ) would be to have u.ho. errors (Assumption 

4gA ). Nonetheless, analyzing the 3-step sequence upon which each of our de-
vised 3S iterative algorithms was constructed in Section 4, one is struck by the 
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fact that the 2-level element only intervenes in Step 3, i.e. when deriving an EE 
for D . In the construction of both algorithms, what is done in Steps 1-2 is 
based on results derived in Section 3.2.2 and classical formulas of the BLP in an 
LMM and its covariance matrix, thus only uses Assumptions 1gA , 2gA  
and 4gA  of an arbitrary LMM (1). It comes that for any LMM satisfying the 
latter 3 assumptions, if one can reliably devise an EE for G , then one would 
immediately get respective adaptations of Algorithms 3S-A1-V1 and 3S-A1-V2 
for fitting it. In that order, one can start from the fact that (analogous to (18) for 
the 2-level case)  

 * T
1 UU= +G V�                         (35) 

is an unbiased estimator of G , where ( )* cov U= −V G  . 
The most obvious case is when G  is a diagonal matrix, but with some di-

agonal elements being equal by design. We examine two classical such situations 
hereafter: the 2-level LMM with D  diagonal and the ANOVA LMM (4). 

5.1. 3S Fitting of 2-Level LMMs with u.ho. Errors and D  Diagonal  

In a 2-level LMM (2), when the dimension r of the vectors 1, , mU U�  is big 
while the dimension n of the response vector is small to moderate, the number 

( )1 2p mr r r+ + +  of scalar parameters to estimate in β , D  and the ran-
dom effects predictors might become too big for any LMM fitting method. In 
that case, imposing a diagonal structure for D  may be a convenient way to achieve 
a reasonable estimation process for β , D  and 2

εσ  from the observed response 
vector n= ∈Y y  . This motivates assuming then that ( )2 2

1diag , , rσ σ=D � , with 
2 0kσ > , 1, ,k r∀ = � . 
With that, the unbiased estimator 1D�  of D  given by (18) implies that for 

each 1, ,k r= � , an unbiased preliminary estimator of the variance component 
2
kσ  is  

 ( ) ( )22 *

1

1 ,
m

k j j kkkj
U

m
σ

=

 = +  ∑ V�                    (36) 

where ( )*
j kk

V  and ( )j k
U  are the kth diagonal element of matrix *

jV  and kth 

component of vector jU . Thus the EE (21) for D  is simplified here to:  

 ( ) ( ) ( )22 2 2 *
1

1

1ˆ ˆ ˆˆ ˆ ˆdiag , , , .
m

r k j j kkkjm
σ σ σ

=

 = = +  ∑D V u�          (37) 

Then one can easily adapt Algorithms 3S-A1-V1 and 3S-A1-V2 for the 2-level 
LMM with u.ho. errors and diagonal D , to get, say, Algorithms 3S-A1-V1-diag 
and 3S-A1-V2-diag. The latter are presented in Section S4.1 of the Supplemen-
tary material document. 

5.2. 3S Fitting of an ANOVA LMM  

In the ANOVA LMM (4), we can partition ( )BLP |U U= Y  as in (S:1.6a), but 
where each jU  is rather a jq -vector ( 1, ,j m= � ). Now, let: 0 0s = , and 
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1, ,j m∀ = � , 1 1j j j js q q s q−= + + = +� . Then each vector jU  is made up of 
the ( )th

1 1js − +  to ( )th
js  components of U . 

With the structure of G  in this case, the estimator 1G�  in (35) implies that 
an unbiased preliminary estimator of each variance component 2

jσ  is  

 ( )
1

22 *

1

1 j

j

s

j jkkk sj

U
q

σ
−= +

 
= + 

  
∑ V�                    (38) 

for 1, ,j m= � . Hence, we get an EE for G  here as:  

 ( ) ( )
1

22 2 2 *
1

1

1ˆ ˆ ˆˆ ˆ ˆdiag , , , .
j

j

s

m j jkkk sjq
σ σ σ

−= +

 
= = + 

  
∑G V u�          (39) 

From that, Algorithms 3S-A1-V1 and 3S-A1-V2 can be adapted to fit an ANOVA 
LMM to get, say, Algorithms 3S-A1-V1-ANOVA and 3S-A1-V2-ANOVA. They 
are presented in Section S4.2 of the Supplementary material. The first one is 
nearly the same as one of those derived by Henderson for Gaussian ANOVA 
LMMs [14] [16]. The only difference is again the n p−  in the denominator in 
the r.h.s. of the EE for 2

εσ  in (27b). 

6. Numerical Examples  

In this section, we carry out some numerical experiments on simulated data sets 
(Section 6.1) and two real world data sets (Section 6.2). For both situations, we 
compared Algorithm 3S-A1-V1 vs. Gaussian ML. For the latter, and in light of 
Theorem 7, we could have used Algorithm 3S-ML-A1-V1 in Remark 11. But that 
would have looked like a self comparison. So we instead chose to use the imple-
mentation of Gaussian ML by the lmer function in the reference lme4 package 
[50] of the R software. Hereafter, we will denote the latter by lmer-ML. The rea-
son why Algorithm 3S-A1-V2 is not included in the study is that, as expected, it 
tends to give the same results as Algorithm 3S-A1-V1. 

6.1. A Simulation Study  

Here, to investigate the performance of Algorithm 3S-A1-V1 vs. lmer-ML, we 
fitted both to 500 simulated data sets, each of size 200n = , under various dis-
tributional scenarios. First, we assumed we have a population Ω  comprising 

10m =  clusters in equal proportions of 1/10 and that in each cluster j, both the 
vector X of fixed effects covariates and Z, that of random effects covariates, fol-
low Gaussian distributions with given parameters, respectively in 4  and 3 . 
To get a unit in a simulated data set, we first sample its cluster among the 10 in 
Ω , then its covariates by sampling from the Gaussian distributions of X and Z 
in that cluster. The distributions parameters used for that and the simulated dis-
tributions described below are given in Section S5 of the Supplementary material 
document, alongside what we used as vector of fixed effects parameters 4β ∈ . 

To get one data set, after simulating the 200 units in it with their fixed and 
random effects covariates as just described,  
• we first simulate a vector of random effects 3

jU ∈  for each cluster 
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{ }1,2, ,10j∈ �  according to a chosen distribution;  
• then, for each unit i sampled in cluster j and included in the data set, with 

simulated fixed effects covariates 4
ijX ∈  and random effects covariates 

3
ijZ ∈ , and a residual error ijε ∈  according to a chosen distribution. 

Then its simulated exact response is calculated as T T
ij ij ij j ijY X Z Uβ ε= + + .  

For the distribution of the residual errors, we examined three options: a Gaus-
sian, a mixture of 4 Gaussians with given mixing proportions, and a discrete dis-
tribution with 4 mass points. On the other hand, the covariance matrix D  of 
each jU  is 3 3× . For the distribution of the jU ’s in 3 , we examined five 
options: Gaussian with D  SPD, Gaussian with ( )rank 1=D , Gaussian with 

( )rank 2=D , mixture of 3 Gaussians with given mixing proportions, and a dis-
crete distribution with 3 mass points. Thus, we have 3 5 15× =  possible scena-
rios. Hence, for each of the algorithms 1 and lmer-ML, in each of the 15 scena-
rios, we simulated 500 200-sized data sets and fitted the 2-level LMM (expressed 
in the R software notations):  

 Y fe( 1 X1 X2 X3 X4) re( 1 Z1 Z2 Z3) Gr(cluster)− + + + + + − + + + +    (40) 

where “−1” signifies no intercept included, be it on the fixed or the random ef-
fects. 

The fit of the LMM (40) to each simulated data set yields an estimate  

{ }2ˆ ˆ ˆ ˆ, ,θ β σ∈ D  of each parameter { }2, ,θ β σ∈ D , and a prediction  

( )TT

1, ,10
ˆ ˆ

j j
U U

=
=

�
 of the random effects vector ( )TT 30

1, ,10j j
U U

=
= ∈

�
� .  

Furthermore, to estimate the Mean Squared Prediction Error (MSPE) of the unit 
response Y by its prediction Ŷ  from a fitted model, for each simulated data, we 
independently simulated an additional data set of size 100 with simulated re-
sponse vector 100∈Y   and computed Ŷ , the response vector predicted by the 
fitted LMM. For each { }2, ,θ β σ∈ D , we then used its simulated replicates 

1 500
ˆ ˆ, ,θ θ�  to estimate  

 ( ) ( ) ( ) 2 2ˆ ˆ ˆ ˆand RMSE ,Rb θ θ θ θ θ θ θ θ= − = −       (41) 

respectively the Euclidean norm of the Relative Bias and the Relative Mean 
Squared Error of θ̂ . Each expectation was estimated by the corresponding Monte 
Carlo estimate. In that calculation, for the symmetric 3 3×  matrices θ = D  
and ˆ ˆθ = D , we identified, each, to the vector of elements in its upper triangular 
part (comprising the diagonal). Likewise, for each predictor { }ˆ ˆ ˆ,P U Y∈  of 

{ },P U Y∈ , we used its simulated replicates to estimate the norm of its bias and 
its MSPE.  

 ( ) ( ) ( ) 2ˆ ˆ ˆ ˆand MSPE .b P P P P P P= − = −              (42) 

For both algorithms, the results about the estimation of β , D , 2
εσ  and the 

prediction of random effects and responses are reported in Table 1. Before we 
specifically comment on them, note, however, that when running an iterative 
algorithm on simulated data sets, the algorithm might fail to converge on some  
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Table 1. Estimates of the bias and MSE of estimates of parameters, predicted random effects and responses in the 
LMM (40) applied to simulated data sets with different distributions for the random effects and residual errors. 

 
D is the cluster random effects (RE) 3 × 3 covariance matrix; R(D) = rank(D) is the rank of D. In each cell of two numbers in the table, 
the one on top is the result from the Algorithm 3S-A1-V1, while the one below it, in parentheses, is the result from Gaussian ML. 

 
of them. In our case, the strategy was to discard such data sets, but, in each sce-
nario, run the simulation until 500 data sets have been successfully fitted by the 
considered algorithm. Nonetheless, while Algorithm 3S-A1-V1 never failed 
during this set of simulations, the situation appeared particularly tricky when 
running Algorithm lmer-ML. Indeed, with its default settings, its inner workings 
make that it signaled a failure of convergence on a massive number of simulated 
data sets, so that we decided actually not to reject them all, rejecting only the 
cases where the algorithm signaled a difficulty to converge due to a suspected 
singular fit, i.e. true model parameters likely on or close to the boundary of their 
space of values. Even with that, the only scenarios where we did not witness any 
failure of lmer-ML was under the Gaussian mixture distribution for the cluster 
random effects in 3 , whereas one would have only expected failure when the 
covariance matrix D  is rank deficient. 

As might be expected, the results of both algorithms are comparable. Never-
theless, while there is no aspect in both tables in which the lmer-ML algorithm 
uniformly or almost uniformly dominates 3S-A1-V1, a dominance of the latter 
over the former can be observed, in almost all scenarios, on a lower bias of the 
estimate of 2

εσ , and not far from so on a lower MSE of that same estimate. Such 
an almost uniform dominance of the 3S-A1-V1 algorithm can also be seen in the 
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prediction of the response in terms of bias. As for comparing the two algorithms 
in various individual scenarios, the main striking observation is that 1 almost 
uniformly dominates lmer-ML when the cluster random effects covariance ma-
trix D  is rank deficient, more decisively so the smaller that rank. 

6.2. Two Real World Data Sets  

In this section, we apply Algorithm 3S-A1-V1 on two classical data sets, cake [51] 
and Blackmore (from the car R package) data, and compare it to the results from 
Gaussian ML. The results of estimating β , 2

εσ , D  and predicting 1, , mU U�  
by Algorithm 3S-A1-V1 will be presented. Each of these estimates is given with 
variability indicators such as estimates of Bias, Mean Squared Error (MSE) and 
t-statistics, p-values for significance and 95% two-sided confidence intervals (CI), 
all computed using the nonparametric residuals bootstrap approach outlined in 
Carpenter et al. [45]. In each LMM fit to a data set, we will also provide an esti-
mate of the random effects ratio ρ  in the data, given by (30). 

6.3. Application to the Cake Data  

The cake data set consists of observations of the breakage angle of chocolate 
cakes made with 3 different recipes and baked at 6 different temperatures, with 
15 replicates for each combination of a recipe and a temperature. Hence, there 
are 3 6 15 270× × =  sample units (the baked cakes) for each of which there is a 
recorded value of the variables: angle (numeric), recipe (factor with levels A, B, 
C), temperature (ordered factor with levels 175 < 185 < 195 < 205 < 215 < 225), 
replicate (factor with levels 1 to 15), temp (with the same values as temperature, 
but viewed as numeric). In the R software notations [39], we fitted to these data 
the two LMMs:  

 angle fe( 1 temp) re(1) Gr(recipe : replicate)− + + +           (43a) 

 angle fe( 1 temperature) re(1) Gr(recipe : replicate)− + + +       (43b) 

In the LMM (43a), the response is angle, the fixed effects variable is temp, we 
have a random intercept as only random effects variable while the clustering va-
riable is obtained by crossing the categories of the two factors recipe and repli-
cate, thus yielding 3 15 45× =  clusters. The difference between the LMMs (43a) 
and (43b) is that the latter uses instead, as lone fixed effects variable, tempera-
ture viewed as a 6-level factor. The reason the intercept has been excluded in the 
fixed effects part of both models is that a preliminary fitting of the LMM (43a) 
with an intercept among the fixed effects revealed it to be insignificant through 
the bootstrap procedure. The interest in fitting the two models is that it allows to 
assess whether the true values of the temperature really matter in the quality of 
the fit. 

The results for models (43a) and (43b) are respectively presented in Table 2 
and Table 3. For a given parameter estimate, the t-statistic is the estimate value 
divided by the square root of its MSE and the p-value is calculated assuming that 
t-statistic has, approximately, a standard Gaussian distribution when the true  
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Table 2. Results of algorithm 3S-A1-V1 fitting the LMM (43a) to the cake data. 

 

βtemp: coeff. of fixed effects temp; 2
interceptσ : random intercept variance; 2

εσ : residual variance; ρ: random effects ratio; est.: esti-

mate; [2.5% - 97.5%], bias, std.dev, MSE , t-stat, p-value: respectively estimated two-sided 95% percentile confidence interval, 
bias, standard deviation, square root of the MSE, t-statistic and p-value of the t-test for a zero value, all computed by a bootstrap 
simulation of 1000 replicates of the model fit using the nonparametric residuals bootstrap approach described in Carpenter et al. 
[45]. These variability estimates are computed from the 1000 bootstrap replicates using the standard formulas introduced by 
Efron (see [52]). 

 
Table 3. Results of Algorithm 3S-A1-V1 fitting the LMM (43b) to the cake data. 

 
Meaning of parameters as in Table 2. 

 
value of the parameter is 0. The latter is rarely a bad approximation in this con-
text. Overall, the two model fits are quite similar in terms of random effects va-
riance, residual variance and MSPE estimate. Moreover, the relative difference in 
terms of fitted response values between the two fits ranges between −0.047 and 
0.030. Finally, the p-value of the random effects ratio ρ  is roughly 3 × 10−4, 
strongly suggesting the presence of random effects on the intercept w.r.t. the 
recipe:replicate clustering considered for the baked cakes. 

For comparison, we also fitted each of the two LMMs (43a) and (43b) by the 
Gaussian ML method. The results are given in Table 4 and, as expected, the pa-
rameters estimates are almost identical to those in the two previous tables. 

6.4. Application to the Blackmore Longitudinal Data  

To illustrate our methods on longitudinal LMMs, we consider the Blackmore 
data described in detail in Davis et al. [53]. It is a longitudinal, retrospective, 
self-reported data from a case-control study on the physical exercise histories of 
231 teenage girls, with 138 who are eating disorder (anorexia nervosa) patients 
recruited from a 4 years inpatient Eating Disorder Program at the Toronto hos-
pital for sick children. The other 93 comparable “control” subjects with no his-
tory of a psychiatric disorder (determined by asking relevant clinical questions) 
were recruited from informational letters through school boards to parents, in-
viting the teenage daughter (the letter bearer) to take part in the study. Retros-
pective recall of leisure-time sport and exercise activities at target ages 8, 10, 12, 
14 years (if applicable in relation to the girl’s current age), and the 12 months  
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Table 4. LMM Gaussian maximum likelihood fitting to the cake data. 

 
 
prior to the study, were obtained during a structured interview. Since the girls 
were recruited at different ages, the number of observations and the age at the 
last observation vary, respectively from 2 to 5 observations and from 11.58 to 
17.92 years. The Blackmore data are given in the long format for a longitudinal 
data set, with the following variables: subject (an identification code for each 
girl); age (the girl’s age in years at the time of observation); exercise (the variable 
of interest, the amount of physical activity in which the girl engaged, expressed 
as estimated hours per week) and group (a factor indicating whether the girl is a 
“patient” or a “control”). For modeling exercise in terms of age and group across 
the sample of girls, Davis et al. [53] first log2-transformed exercise to make its 
distribution for both groups more symmetric and linearised its relationship with 
age. Because there are some 0 values of exercise, 5 minutes (5/60 of an hour) 
were added to each value of exercise prior to taking logs. 

For these data, we fit an LMM using as fixed effects: an intercept, age minus 8 
(denoted age8), group and the interaction of the two latter. As for random ef-
fects in this study, they are attached to variations from girl to girl, so the cluster-
ing variable is subject. Now, a follow-up plot of log2 exercise by age for 20 ran-
domly selected patients and 20 randomly selected control girls showed that the 
log2 exercise at the start of follow-up varies considerably, suggesting a random 
intercept in the LMM. Also, the evolution of log2 exercise with age differs from 
girl to girl, informing on the inclusion of a random slope for age8. The model to 
fit is therefore:  

 2log exercise fe(1 age8 group age8 group)
re(1 age8) Gr(subject)
+ + + ∗

+ + +


             (44) 

when fitting that model, and as traditional in this type of study, in the numerical 
coding of the binary variable group, our reference category is “control”. Moreo-
ver, the covariance matrix D  is 2 2× , with diagonal elements 2

interceptσ  and 
2
age8σ , and both off-diagonal ones equal to intercept,age8cov . 
The results for the model using Algorithm 3S-A1-V1 versus ML are presented 

in Table 5 and Table 6, respectively. The interaction of age with group is highly 
significant in both methods, reflecting a steeper average trend in number of ex-
ercises with age in the patient group. The fixed intercept and group effects are 
not significant at a 5% level. Parameters estimates from Algorithm 3S-A1-V1 are  
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Table 5. Results of algorithm 3S-A1-V1 fitting the LMM (44) to the Blackmore data. 

 

corrintercept;age8: correlation coefficient between random effects variables intercept and age8. 

 
Table 6. Results of Gaussian ML fitting of the LMM (44) to the Blackmore data. 

 
 
very close to those from ML. The p-value for the random effects ratio estimate is 
less than 0.001, confirming the presence, w.r.t. the girls, of random effects on the 
intercept and/or age8, and probably both since the estimates of their variances 

2
interceptσ  and 2

age8σ  are significantly greater than zero. It also appears that there 
is a significant negative correlation between those two random effects. 

In the Supplementary material, we fitted another LMM to this data set by 
adding a random slope for age8*group in (44). The results using Algorithm 
3S-A1-V1 show that, in addition to the parameters already significant in (44), 
the same is true of the variance of the interaction age8*group, implying a proba-
ble random effect on it also. We remark that Gaussian ML fitting of this model 
failed to converge with the default settings in the R function lmer. 

7. Concluding Remarks  

Till today, it has been difficult to routinely fit LMMs without assuming both 
random effects and residual errors to have Gaussian distributions (the default in 
almost all statistical software packages designed for that purpose). Yet, for many 
data sets, that assumption may be debatable, especially for the random effects. 
This is disturbing since modeling of random effects behavior is one of the main 
goals of LMM fitting in the first place. Therefore, there has been an implicit need, 
for long now, to develop fitting methods for LMMs not requiring Gaussian as-
sumptions, while being applicable to as wide a range of LMMs as possible. Being 
restricted to variance components models, the venerable ANOVA methods and 
Rao’s MINQUE largely fall short in that respect. In the work presented here, we 
were able to devise a new iterative fitting methodology for 2-level (or longitu-
dinal) LMMs with only added assumption (to the basic ones) that the residual 
errors were uncorrelated and homoscedastic. Each variant of that estimation 
methodology iterates through a small set of estimating equations and, when 
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convergent, yields nonnegative estimates of variances and SPSD estimates of co-
variance matrices. Though no Gaussian assumption is involved in the derivation 
of these EEs, we, however, showed that if the 2-level LMM is, indeed, Gaussian 
with i.i.d. errors, then these EEs are equivalent to the likelihood ones, safe for a 
denominator n-p in lieu of n in the EE for the residual variance. Furthermore, 
the newly developed estimation methodology for LMMs, nicknamed 3S, is not 
exclusive to 2-level ones. The same ideas can be used to fit some other classes of 
LMMs as well, as we showed for variance components (or ANOVA) LMMs, ge-
neralizing an old method of Henderson for ML estimation in such models of 
Gaussian type. An interesting by-product we got is also, actually, an extension of 
that Henderson method to Gaussian ML fitting of 2-level LMMs with u.ho. er-
rors. 

Proof of Theorem 7 

In addition to Lemmas S3.1 and S3.2, we shall need the following one:  
Lemma 8. In the 2-level LMM (2), if the clusters random effects matrix D  

satisfies:  

 ( )* T

1

1 ,
m

j j j
j

U U
m =

= +∑D V � �                      (45) 

with 1, , m
mU U ∈� ��  , then, letting ( )TT T

1 , , q
mU U U= ∈� � ��  ,  

 ( ) 1

2T 1tr .U −
− =

G
ZGZ V �                      (46) 

Proof. From the proof of Proposition S1.4, we already deduce that  

 ( ) ( )T 1 * 1tr tr .− − = − ZGZ V G V G                 (47a) 

Now, in the 2-level LMM (2), we know that ( )diag , ,=G D D� , and  

( )* * *
1diag , , m=V V V� , which are two conformal q q×  block-diagonal matrices. 

Hence, one also has:  

( ) ( )* * * 1 1 1
1diag , , and diag , , ,m

− − −− = − − =G V D V D V G D D� �  

which implies that ( ) ( ) ( )( )* 1 * 1 * 1
1diag , , m

− − −− = − −G V G D V D D V D� . There-
fore,  

 ( ) ( ) ( )* 1 * 1 * 1

1 1
tr tr tr .

m m

j j
j j

− − −

= =

    − = − = − ⋅      
∑ ∑G V G D V D D V D    (47b) 

Notice then that (45) is equivalent to ( )*
1 1

m m T
j j jj j U U

= =
− =∑ ∑D V � � , which, in-

serted in (47b), yields:  

 ( ) ( )* 1 T 1 T 1

1 1
tr tr tr .

m m

j j j j
j j

U U U U− − −

= =

  − = ⋅ =    
∑ ∑G V G D D� � � �       (47c) 

Now, for 1, ,j m= � , ( ) ( )T 1 T 1 T 1tr trj j j j j jU U U U U U− − −= = ∈D D D� � � � � �  . Hence, 
(47c) implies: ( ) 1

2* 1 T 1 T 1
1tr m

j jj U U U U U −
− − −

=
 − = = =  ∑ G

G V G D G� � � � � , which, with 
(47a), yields (46).                                                  □ 
• We now proceed properly to prove Theorem 7:  
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Proof. Let β�  and U�  satisfy the HMMEs (10) given 2
εσ , D  and =Y y  

in the 2-level LMM (2). Then, thanks to Theorem 1,  

 ( ) ( )1T 1 T 1 T 1and ,Uβ β
−− − −= = −X V X X V y GZ V y X� ��        (48a) 

the latter being equivalent here to:  

 ( )T 1 , for 1, , .j j j j jU j mβ−= − =DZ V y X �� �            (48b) 

Now, let Assumptions 1A - 5A  be true. Then, for 1, ,j m= � ,  
( ),

jj n j jβY X VD
N , with density:  

( ) ( ) 1

1 2 222 1| , , 2 exp ,
2

j

j j

n
j j j jf εβ σ β −

−−  = π − −  
Y V

y D V y X  

The log-likelihood over the data from all the m clusters is thus:  

 ( ) ( ) ( )T2 1

1

1, , | log .
2

m

j j j j j j
j

cεβ σ β β−

=

 = − + − −  ∑D y V y X V y X�   (48c) 

1) Now, assume also that (33a) holds, hence β β= � , thanks to (34). On the 
other hand, using (S:3.1a) and (S:3.1b) in Lemma S3.2 to differentiate (48c) w.r.t. 
D  gives:  

( ) ( )
( )

T 1

1

log
2 diag 2 ,

m j j j j j j

j
S S

β β−

=

 ∂ ∂ − −∂  − = + = −
 ∂ ∂ ∂
 

∑
V y X V y X

D D D
�  

where 1
m

jjS S
=

= ∑ , with j j jS W B= − , T 1
j j j jB −= Z V Z ,  

( )( )TT 1 1
j j j j j j j j jW − −= − −Z V y X y X V Z . With Lemma S3.1, the nonsingularity 

of D , the fact that β β= �  and using (48b), then (S:1.6c),  

( ) ( )
1 1 1 1

T * * T

1 1 1

0 0

1 .

m m m m

j j j j
j j j j

m m m

j j j j j j
j j j

S W B W B

U U U U
m

= = = =

= = =

∂
= ⇔ = ⇔ = ⇔ ⋅ ⋅ = ⋅ ⋅

∂

⇔ = − ⇔ = + =

∑ ∑ ∑ ∑

∑ ∑ ∑

D D D D
D

D V D V D

�

� � � � �
    (49a) 

2) Now, let also (33a) and (33b) both hold. Hence β β=�  and (49a) are both 
true. Furthermore, (49a) implies that ( )diag , ,= =G G D D� � �� . Using (S:3.1c) 
and (S:3.1d) in Lemma S3.2 to differentiate (48c) w.r.t. 2

εσ ,  

 ( ) ( )
21 1

22 tr .
ε

β
σ

− −∂
− = − −

∂
V V y X�                 (49b) 

Now, given that β β= �  and (48a), we get, from (12a) in Lemma 3:  

 ( )2 1 .Uεσ β β− − = − −V y X y X Z� � �                 (49c) 

Also, using (11), then Lemma 8 (given that (49a) is true, by assumption),  

 ( ) ( ) ( ) 1

22 1 T 1tr tr tr .n n Uεσ −
− −= − = −

G
V I ZGZ V �

�           (49d) 

Inserting (49c) and (49d) in (49b), we get:  

1

2
2

2 2 4

12 .
n U

U
ε ε ε

β
σ σ σ

−−∂
− = − − −

∂
G y X Z�
�� � �  
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Consequently, from Corollary 1,  

( )1

2 22 2 T
2 0 .n U U Uε ε
ε

σ β σ β
σ −

∂
= ⇔ = − − + = − −

∂ G
y X Z y y X Z�

� � �� � �    □ 
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Supplementary Material 

Supplementary Information for the article: Nonparametric Estimation in 
Linear Mixed Models with Uncorrelated Homoscedastic Errors 

Introduction  

In this document, we present supplementary materials useful for the under-
standing of the article. For that, the first section gathers some known results on 
LMMs scattered here and there in the literature, and some new results of our 
own. Section S2 presents some important implementation details about our pre-
sented iterative methods for fitting LMMs, while Section S3 presents two lem-
mas useful for proving Theorem 7 in the article. In Section S4, 3S fitting algo-
rithms for 2-level LMMs with u.ho. errors and diagonal covariance matrix for 
the cluster random effects, and ANOVA LMMs are presented. More analysis of 
the Blackmore data is presented in the last section. 

S1. LMMs without Gaussian Assumptions: Some Useful  
Results  

S1.1. An Equivalent Formulation of Assumptions 1 - 3   

It is useful to note the following equivalent formulation of Assumptions 1 -
3 :  
Proposition S1.1. Assumptions 1 - 3  are equivalent to the following set 

of 3 assumptions:  
a1) The jU ’s are identically distributed in r .  
a2) j∀ , the two random vectors jU  and jε  are independent.  
a3) The random couples ( ) ( )1 1, , , ,m mU Uε ε�  are mutually independent.  

S1.2. More about the BLP of U Y|  in an LMM  

The best linear predictor ( )BLP |U U= Y , given by (5), plays a key role in our 
new estimation methodology for LMMs with u.ho. errors. That is why we ex-
pand on it here. And, again, no Gaussian distributional assumption is involved. 

S1.2.1. Covariance Matrix and Another Expression of the BLP of U Y|   
in an LMM  

The relationship between the covariance matrix of ( )BLP |U U= Y  and that of 
the true random effects vector U will be instrumental in estimating the latter in 
our methodology, starting with:  

( ) ( )T 1 1 T 1 1 T 1cov cov ,U − − − − −= = =GZ V Y V ZG GZ V VV ZG GZ V ZG  (S:1.1a) 

thanks to (5). Hence,  

 ( ) ( )T *cov ,U UU= = −G V                  (S:1.1b) 

where *V  is the symmetric matrix:  

 * T 1 .−= −V G GZ V ZG                     (S:1.1c) 
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Introducing the apparently complicated matrix *V  is motivated by the fact 
that it is only q q×  (and not n n×  like V ) and turns out instrumental in de-
vising an alternative useful way of rewriting the BLP (5) in the LMM (1), more 
so with u.ho. residual errors:  

Lemma S1.2. In the LMM (1) with Assumption 1g , the following identities 
hold:  

 ( ) 1* T 1 1 ,
−− −= +V Z R Z G                   (S:1.2a) 

 T 1 * T 1.− −=GZ V V Z R                     (S:1.2b) 

Moreover, if Assumption 4g  also holds, then these identities simplify to:  

 ( ) ( )1 1* 2 T 1 2 T 2 1
e ,ε εσ σ σ

− −− − −= + = ⋅ +V Z Z G Z Z G         (S:1.2c) 

 T 1 2 * T .εσ
− −=GZ V V Z                    (S:1.2d) 

The advantage of (S:1.2c)-(S:1.2d) is that they give respective expressions of *V  
and T 1−GZ V  using only q q×  and n q×  matrices, and no n n×  one. These 
imply a much computationally cheaper formula for the BLP of |U Y  in an 
LMM with u.ho. errors, when compared with (5):  

Proposition S1.3. In the LMM (1) with Assumption 1g , one has:  

 ( ) ( )* T 1BLP | .U U β−= = −Y V Z R Y X             (S:1.3a) 

Moreover, if Assumption 4g  also holds, then this simplifies to:  

 ( ) ( )2 * TBLP | .U U εσ β−= = −Y V Z Y X            (S:1.3b) 

It is also worth noting:  
Proposition S1.4. In the LMM (1) with Assumption 1g , one has:  

 ( ) ( )1

2 1 *tr .U q−
−= −

G
G V                  (S:1.4a) 

Moreover, if Assumption 4g  also holds, then we also have:  

 ( ) ( ) ( )1

2 2 1 2 * Ttr tr .U n ε εσ σ−
− −= − =

G
V V Z Z           (S:1.4b) 

Proof. Given that 1

2 T 1U U U−
−=

G
G , ( )U = 0  and (S:1.1b),  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1

2 T 1 1 1

1 * 1 * 1 *

tr cov tr cov

tr tr tr .q

U U U U U

q

−
− − −

− − −

   = + =   

 = − = − = − 

G
G G G

G G V I G V G V

    
 

Secondly, from (S:1.1a), ( ) ( ) ( )1 T 1 1 Ttr cov tr trU− − −  = = G Z V ZG V ZGZ . 
Now, if Assumption 4g  also holds, then  

( ) ( ) ( ) ( )1 T 1 2 2 1tr tr tr tr ,n nε εσ σ− − − = − = − V ZGZ V V I I V  

which entails the first equality in (S:1.4b). For the second one, using (S:1.2d),  

( ) ( ) ( ) ( )1 T T 1 2 * 2 * Ttr tr tr tr .ε εσ σ− − − Τ −= = =V ZGZ ZGZ V ZV Z V Z Z  

The last proposition implies some additional striking matrix identities in an 
LMM with u.ho. errors:  
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Proposition S1.5. In the LMM (1) with Assumptions 1g  and 4g ,  
 ( ) ( )2 1 2 * Ttr tr ,nε εσ σ− −+ =V V Z Z                 (S:1.5a) 

 ( ) ( )1 * 2 * Ttr tr .qεσ
− −+ =G V V Z Z                 (S:1.5b) 

S1.2.2. Cluster Partitioning of the ( )U YBLP |  in a 2-Level LMM  

In the 2-level LMM (2), we can partition ( )BLP |U U= Y  cluster-wise:  

 ( )
1

, with each a random -vector 1, , .j

m

U
U U r j m

U

 
 

= = 
 
 

� �    (S:1.6a) 

Combining that with (5), the assumptions and the partitioned structures of the 
various design and covariance matrices G , R  and V , we get:  

 ( ) ( ) ( )T 1BLP | 1, , .j j j j j j jU U j mβ−= = − =Y DZ V Y X �    (S:1.6b) 

Similarly, from (S:1.1c), one sees that ( )* * *
1diag , , m=V V V� , where  

 ( ) ( )* T 1 1, , .j j j j r j m−= − ∈ =V D DZ V Z D �        (S:1.6c) 

Furthermore, from (S:1.6b), calculations similar to (S:1.1a) give:  

 ( ) ( ) ( )T T 1 *cov 1, , .j j j j j j jU U U j m−= = = − =DZ V Z D D V �   (S:1.6d) 

So, here, ( ) ( ) ( )( )1cov diag cov , , cov mU U U= �   , thus yielding  

 ( ) ( )* * *
1cov diag , , .mU = − − = −D V D V G V�         (S:1.6e) 

Finally, the cluster-wise versions of Lemma S1.2 and Propositions S1.3-S1.5 
for the 2-level LMM (2) are: 

Lemma S1.6. In the 2-level LMM (2), the following identities hold, for 
1, ,j m= � :  

 ( ) 1* T 1 1 ,j j j j

−− −= +V Z R Z D                   (S:1.7a) 

 T 1 * T 1.j j j j j
− −=DZ V V Z R                    (S:1.7b) 

Moreover, if Assumption 4g  also holds, then these identities simplify to:  

 ( ) ( )1 1* 2 T 1 2 T 2 1 ,j j j j jε ε εσ σ σ
− −− − −= + = +V Z Z D Z Z D          (S:1.7c) 

 T 1 2 * T .j j j jεσ
− −=DZ V V Z                     (S:1.7d) 

Proposition S1.7. In the 2-level LMM (2), one has, for 1, ,j m= � :  

 ( ) ( )* T 1BLP | .j j j j j j j jU U β−= = −Y V Z R Y X            (S:1.8a) 

Moreover, if Assumption 4g  also holds, then this simplifies to:  

 ( ) ( )2 * TBLP | .j j j j j j jU U εσ β−= = −Y V Z Y X            (S:1.8b) 

Proposition S1.8. In the 2-level LMM (2), one has, for 1, ,j m= � :  

 ( ) ( )1

2 1 *tr .j jU r−
−= −

D
D V                    (S:1.9) 

Moreover, if Assumption 4g  also holds, then we also have:  
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( ) ( ) ( )1

2 2 1 2 * Ttr tr .j j j j j jU n ε εσ σ−
− −= − =

D
V V Z Z          (S:1.10) 

Proposition S1.9. In the 2-level LMM (2) with Assumptions 1g  and 
4g , for 1, ,j m= � :  

 ( ) ( )2 1 2 * Ttr tr ,j j j j jnε εσ σ− −+ =V V Z Z               (S:1.11a) 

 ( ) ( )1 * 2 * Ttr .j j j jtr rεσ
− −+ =D V V Z Z               (S:1.11b) 

S2. 3S Iterative Algorithms: Some Important  
Implementation Details 

We give here some useful precisions to effectively program Algorithms 3S-A1-V1 
and 3S-A1-V2. 

S2.1. Solving the HMMEs in Algorithm 3S-A1-V1 

Our way of solving a system of the form (29) is based on the following result 
which we admit: 

Theorem S2.1. (Solving a 2 × 2 block nonsingular system) Let  

( )11 12

21 22
n

A A
A

A A
 

= ∈ 
 

  be nonsingular, with 1 2n n n= +  and *
1 2,n n ∈ . If 

( )
111 nA ∈   and is nonsingular, then:  

1) ( )
2

1
22 22 21 11 12 nB A A A A−= − ∈ �  and is nonsingular.  

2) The unique solution of the linear system AX Y=  in n  is given by:  

( )
( )

2

1

1 1
2 22 2 21 11 1

1
1 11 1 12 2 ,

n

n

X B Y A A Y

X A Y A X

− −

−

 = − ∈


= − ∈




 

with 1
1 1, nX Y ∈ , 2

2 2, nX Y ∈  such that 1

2

X
X

X
 

=  
 

 and 1

2

Y
Y

Y
 

=  
 

.  

Obviously, Theorem S2.1 has a twin version whereby it is rather the lower di-
agonal block ( )

222 nA ∈   which is assumed nonsingular. To solve the linear 
system (29) at the beginning of each new iteration 1t +  in Algorithm 3S-A1-V1, 
we use Theorem S2.1 with:  

( ) ( )T T
11 12 ,, ,p p qA A= ∈ = ∈X X X Z    

( ) ( ) ( ) ( )2 1T T T
21 12 , 22

ˆˆ, ,t t
q p qA A A εσ

−= = ∈ = + ∈Z X Z Z G    
T T

1 2, .p qY Y= ∈ = ∈X y Z y   

Remark S2.1. The product matrices 11A , 12A , 21A , TZ Z  and vectors 1Y , 

2Y  are all independent from the iteration index t. Hence, they can be computed 
before the iterations start, which is a major computational advantage for the 
running time of Algorithm 3S-A1-V1.  

S2.2. Choice of the Matrix Norm ( )M⋅  in Instruction 3 of the 3S  
Algorithms 

In the two iterative estimating algorithms for 2-level LMMs presented in Section 
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4.2.3, all the matrix iterates ( )ˆ tD  are at least SPSD. Based on that, we choose an 
appropriate matrix norm ( )M⋅  to use in Instruction 3 of these algorithms to 
cheaply compute ( ) ( )1ˆ Mt+D  at any new iteration 1t + . Indeed, if  

( ) ( )ij rA a= ∈   is SPSD, then it is known that:  

,
max max .kl kkk l k

a a=  

Consequently, if we take as matrix norm:  

 ( )
,

max ,M
klk l

A a=                     (S:2.1) 

then ( ) ( )max diagMA A=    , where ( )diag A  is the vector of diagonal ele-
ments in matrix A. So using the matrix norm given by (S:2.1), ( ) ( )1ˆ Mt+D  is 
very cheap to compute and the first control test inequality of the stopping crite-
rion in Instruction 3 then simplifies to:  

( ) ( )( ) ( )( )1 1
1,

ˆ ˆ ˆmax max diag .t t t

k l kl
δ+ + − ≤ ⋅  D D D  

S2.3. Terminating a 3S Iterative Algorithm: The Various Scenarios  

An iterative algorithm aimed at equations solving (or optimization), however 
theoretically well crafted, almost always runs the risk of premature termination 
in some cases, i.e. the algorithm stalls before its expected convergence has been 
achieved. Algorithms 3S-A1-V1 and 3S-A1-V2 are not immune to that threat: 
each of them may fail on a given data set because the latter is far from satisfying 
one of the LMM assumptions upon which the algorithm is built. Therefore, it is 
necessary to include, in the inner workings of our 3S algorithms, capabilities to 
detect, as early as possible, the most plausible scenarios of abnormal termination 
or behavior. 

So, as is traditional in equations solving and optimization iterative algorithms, 
we use a categorical flag variable code.Stop in each of our algorithms to record 
the cause of the algorithm termination during a particular run, with success 
code:  

code.Stop = OK:1 convergence, with satisfaction of  
the intended stopping criterion. 

Then we handle the following cases of possible premature stoppage, in which we 
also include a code. Warning flag variable giving rather a specific warning about 
the iterations (even if they ended apparently well). 

S2.3.1. code.Stop = KO:X: Fixed Effects Design Matrix X Not of Full  
Column Rank 

As developed till today, a key assumption used in our 3S methodology for esti-
mation in LMMs is 2g , i.e. the fixed effects design matrix X  is of full col-
umn rank. If not, then some of our derivations no longer hold. Although the 
methodology might be extended in the future to bypass the need of that assump-
tion, at present we stop any of our algorithms if 2g  is not satisfied at the 
outset. 
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1) Checking if the fixed effects design matrix X is full column rank in 
Algorithm 3S-A1-V1 

For Algorithm 3S-A1-V1, the checking is based on the fact that computing 
and storing the p p×  product matrix TX X  is a necessary requirement in 
that algorithm, to form the coefficient matrix of the linear system of HMMEs 
(29). Now, X  and TX X  always have the same rank, so X  has full column 
rank if, and only if, TX X  is nonsingular. But the latter holds if, and only if, the 
symmetric matrix TX X  (which is at least SPSD) is SPD, which is equivalent to 
having a Cholesky factorization, i.e. T TU U=X X , where U is a square upper 
triangular matrix with positive diagonal elements. 

Hence, at the beginning of Algorithm 3S-A1-V1, to check for Assumption 
2g , once TX X  has been obtained, we compute its pivoted Cholesky facto-

rization, using an available software program. Modern numerical software such 
as the LAPACK routines (Anderson et al., 1999), called by the R statistical soft-
ware (our programming tool) functions handling Numerical Linear Algebra 
(NLA) calculations, can compute that factorization and check whether an input 
symmetric matrix is even SPSD in the first place, and if yes, then check if it is 
likely, or not, SPD, at least up to the numerical instabilities due to the computer 
rounding errors. They can also output an estimate of the rank k of an SPSD ma-
trix and indicate its k columns most likely linearly uncorrelated. Applying that 
to TX X , we can decide whether it is clearly SPD, or likely close to a singular 
SPSD matrix. 

In the latter case, we set code.Stop = KO:X, and do not launch Algorithm 
3S-A1-V1 at all, informing the user why. But we also output the estimated rank k 
of TX X  and the indices of its k columns most likely uncorrelated. Since these 
two pieces of information are the same for X , the user can then, if he/she 
wishes, re-launch the 3S iterative algorithm, but with that fixed effects design 
matrix changed by suppressing its other p k−  columns. 

2) Checking if the fixed effects design matrix X is full column rank in 
Algorithm 3S-A1-V2 

Algorithm 3S-A1-V2, instead of the HMMEs, needs to solve, at each iteration, 
an OLS problem which design matrix is X . To achieve that, rather than first 
computing the product matrix TX X , numerical analysts recommend to com-
pute the QR factorization (Demmel, 1997) of X . Interestingly, modern nu-
merical software such as the LINPACK routines (Dongarra et al., 1978) called by 
the R NLA functions can do so while also giving an estimate of the rank of X . 
So for Algorithm 3S-A1-V2, our checking of Assumption 2g  will be based 
on the results of the QR factorization with pivoting of X , with the conclusion 
drawn as for Algorithm 3S-A1-V1 above. 

S2.3.2. A Vital Issue for LMM Fitting: Random Effects or Not?  
People trying to fit an LMM rather than an LM to their data most often do not 
worry whether the incurred excess in mathematical modeling and computational 
time is worth the price in the first place. They do not ask themselves the obvious 
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question:  

Are there really random effects in the data with the provided clustering? 

But that’s a mistake, noticeably because it turns out that the answer to that ques-
tion directly impacts the way an LMM fitting iterative procedure really behaves 
on a given data set. In the programming of a 3S algorithm, we anticipate three 
possible scenarios related to that issue. 

3) code.Stop = KO:1: RE covariance matrix likely (or close to) singular 
Even when the cluster random effects are there, they may have been poorly 

parameterized, so that their scalar components are correlated, resulting in a rank 
deficient (or singular) covariance matrix D . If so, this will affect adversely any 
of our 3S algorithms since they all assume D  to be SPD. 

To deal with that potential difficulty in a 3S algorithm, since D  is not 
known (we are trying to estimate it among other parameters...), our strategy is 
that after computing each new iterate ( )ˆ tD  ( 1t ≥ ), we test whether it is of full 
rank or not. Since in our computations, ( )ˆ tD  is always at least SPSD, we nu-
merically check for its rank by attempting a pivoted Cholesky factorization on it 
along the same lines as described above for the matrix TX X  in the code.Stop = 
KO:X scenario. If the Cholesky software routine declares the newly computed 

( )ˆ tD  at an iteration t of not being full rank, the iterative algorithm is stopped, 
informing the user why: the true cluster random effects covariance matrix D  is 
either singular or close to such a matrix. 

After that premature termination (and as for the case of singular TX X  pre-
viously), the algorithm also returns the estimated rank �  of ( )ˆ tD  and the in-
dices of its �  most uncorrelated columns. Using these pieces of information as 
estimates of the corresponding features of the true (but unknown) D , the user 
can re-launch the 3S iterative algorithm, but with cluster random effects vectors 

1, , mU U�  of dimension reduced from r to � , only keeping the �  scalar 
components associated to the �  columns most uncorrelated in D . In the data, 
this amounts to keeping just the corresponding �  columns in each of the clus-
ter random effects design matrices 1, , mZ Z� . 

Note, however, that this does not work when 1r = , i.e. each cluster random 
effect is actually a scalar rather than a vector because, then, the cluster random 
effects covariance matrix D  also reduces to a (nonnegative) scalar and is, 
therefore, rank deficient if, and only if, that scalar is zero. This will also be true 
of its ( )ˆ tD  iterates. But the latter matrices will unlikely be numerically close to 
zero up to computer rounding errors, so there is little chance that any of them 
would be detected as rank deficient based on the Choleski Factorization. So we 
need to handle other abnormal possible termination scenarios including that 
subcase. 

4) code.Stop = KO:2: Slow convergence, likely because of no cluster RE 
Recall that a 3S algorithm has converged when the 3 inequalities  

 ( ) ( ) ( ) ( ) ( )1 1
1

ˆ ˆ ˆ ,
M Mt t tδ+ +− ≤ ⋅D D D              (S:2.2a) 
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 ( ) ( ) ( )1 1
2

ˆ ˆ ˆ ,t t tβ β δ β+ +− ≤ ⋅                 (S:2.2b) 

 ( ) ( ) ( )2 1 2 2 1
3ˆ ˆ ˆ ,t t t

ε ε εσ σ δ σ+ +− ≤ ⋅                 (S:2.2c) 

are simultaneously satisfied, where 1 2 3, ,δ δ δ  are relative tolerance levels set in 
( )0,1 , and ( )M⋅  is a chosen matrix norm. Now, when a 3S algorithm appears 
to be converging slowly, an inspection of the evolution of the iterations interme-
diate results reveals that this is, more often than not, entirely due to the slow con-
vergence of the sequence of ( )ˆ tD  iterates. This manifests itself through the diffi-
culty of having the relative error control inequality (S:2.2a) satisfied, whereas there 
is really a decrease in the sequence of absolute errors estimates ( ) ( ) ( )1ˆ ˆ Mt t+ −D D . 
From Numerical Analysis, we know that such a situation typically happens when 
the sought limit value of the ( )ˆ tD  iterates (i.e. our targeted estimate of D ) is 
either zero or close to zero (probably because the true D  is so). A traditional 
way to anticipate such a situation usually consists in replacing (S:2.2a) with a 
mix of both relative and absolute error controls:  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1
1 11

ˆ ˆ ˆ ˆ ˆor ,
M M Mt t t t tδ δ+ + +− ≤ ⋅ − ≤D D D D D      (S:2.3) 

where 11δ  is an absolute error tolerance upper bound. 
But because it is generally difficult to set an appropriate value for 11δ  in a 

given context, here we instead use the following context dependent alternative to 
the second inequality in (S:2.3):  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 1 1 2 1Tˆˆ ˆ ˆ ˆ0.5 and 0.01 ,
M M Mt t t t t

εσ
+ + + +− ≤ ⋅ ≤ ⋅D D D ZG Z (S:2.4) 

the latter inequality aiming at detecting a high probability of zero cluster ran-
dom effects in the given data set. Hence, the final stopping criterion used in our 
3S algorithms is rather:  

 ((S:2.2a) or (S:2.4)) and (S:2.2b) and (S:2.2c).           (S:2.5) 

The rightmost inequality in (S:2.4) tries to test whether the contribution to the 
response covariance matrix V  of the random effects covariance matrix G  is 
(at least) two orders of magnitude smaller than that of the residual errors va-
riance 2

εσ . This occurring gives an indication that these random effects either 
are not really there or are insignificant, which is slowing down the convergence 
of the ( )ˆ tD  iterates, and thus the algorithm. So when (S:2.4), (S:2.2b) and 
(S:2.2c) are satisfied, but not (S:2.2a), we stop with code.Stop = OK:2, inviting 
the user to view this as a partial success scenario. 

5) code.Warning = 3: RE might not be there, anyway... 
A 3S algorithm being outright successful (i.e. termination with code.Stop = 

OK:1) does not imply that there are, indeed, random effects in the provided data. 
So it is useful to try to detect their presence or absence anyway, convergence of 
the algorithm or not. Our way of doing so is to always test the rightmost inequa-
lity in (S:2.4) after exiting a 3S algorithm. If satisfied, a warning is issued to the 
user: despite the observed convergence (if any), with the given clustering varia-
ble(s), random effects might actually not be there, or seem insignificant. An ad-
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vantage in that way of trying to detect the zero random effects scenario is that it 
works whatever the dimension r of these ones in each cluster. 

In any event, we always include, in the output from the algorithm, the value of 
the last ratio:  

 
( ) ( )

( )

T

2

ˆ
ˆ ,

ˆ

Mt

t
ε

ρ
σ

=
ZG Z

                     (S:2.6a) 

estimating  

 
( )T

2 .
M

ε

ρ
σ

=
ZGZ

                      (S:2.6b) 

The latter can be called the random effects ratio in the considered LMM for the 
given data set, and can be roughly interpreted as the coefficient of random ef-
fects really present in the data:  

1) the higher above the number 1 the ratio ρ  is, the more effective such a 
presence is;  

2) the smaller below 1 the ratio ρ  is, the more doubt can be cast about that 
presence.  

But, for a 2-level LMM (2), note that the block diagonal structure of Z  im-
plies:  

 
( ) ( ) ( ) ( ) ( ) ( )T T T T

1 1
ˆmax , max .

M MM M t t
j j j jj m j m≤ ≤ ≤ ≤

= =ZGZ Z DZ ZG Z Z D Z  (S:2.7) 

Remark S2.2. One may wonder: why not simply use a statistical test to decide 
whether there are cluster random effects or not in the given data? The answer is 
twofold. First, theoretically valid statistical tests are hard to develop for LMMs, 
more so in our context where we aim at fitting these models without imposing 
any parametric distributional assumptions on the data. Secondly, as seen above, 
the situation of no cluster random effects actually first impacts negatively on the 
convergence of a 3S algorithm (as well as other iterative algorithms for LMM fit-
ting), often severely slowing it down or even flat out stalling it. Hence in that 
scenario, it is difficult to even compute reliable estimates on which to perform 
statistical tests. Here, we wanted to develop practical numerical tests aimed at 
detecting it during the run of the algorithm. And such a detection is of the ut-
most practical importance since, if well done, it may allow to decide whether 
LMM modeling even makes sense or not for a given data set. Nevertheless, upon 
exiting a 3S algorithm, we can perform a bootstrap test to decide whether the ra-
tio ρ  is, or not, significantly greater than zero for the given data set.  

S2.3.3. code.Warning = 4: Almost Constant Sequence of ( )ˆ tβ  Iterates 

For many data sets, we observed that the sequence of ( )ˆ tβ  iterates produced by 
any of our 3S algorithms is nearly constant. This has to do with our way of in-
itializing that sequence by the OLS in an LM fit of the data, i.e. an LMM with no 
RE. With that initialization, if the sequence ( ( )ˆ tβ ) exhibits a constant trend from 
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the outset, one may suspect that the LM is probably better suited for the data set 
at hand than a pure LMM, i.e. an LMM with nonzero RE. And this is likely so 
because either there are no cluster random effects or these are nonsignificant or 
would require a bigger sample size to be detected. Hence, whatever the stoppage 
condition (convergence or not) of the iterative algorithm, if for all iterations car-
ried, the ( )ˆ tβ  iterates were all only negligibly different from their OLS starting 
point ( )0β̂ , we conclude that we might be in that zero RE scenario, meaning that 
what was supposed to be cluster random effects actually behave, more or less, 
the same from one cluster to the other. 

More specifically, we always perform the following test after termination of 
any of our 3S algorithms (successfully or not):  

 ( ) ( ) ( ) ( )0 0
2

ˆ ˆ ˆfor 1 1 , ,tt T β β δ β= − ≤                (S:2.8) 

where t T=  is the iteration at which the algorithm was stopped, and 2δ  is the 
same as in (S:2.2b). If (S:2.8) is satisfied, then the user is informed that: may be 
the LM is better suited for her/his data set. The recommendation then is either 
to use the LM, or redesign the clustering variable because it might have been 
poorly chosen in the first place. 

S2.3.4. code.Stop = KO:5: Authorized Maximum Number of Iterations  
Reached without Convergence 

As is customary for iterative algorithms expected to stop at satisfaction of a con-
vergence criterion, we must also anticipate the possibility that, for the provided 
data set, a 3S algorithm either does not actually converge or does so slowly. For 
that, we set, as is usual, a maximum number max.Its (default = 200) of autho-
rized iterations in the algorithm. If that number is reached without the conver-
gence stopping criterion satisfied, the algorithm is terminated with code.Stop = 5, 
and we inform the user why. 

S2.3.5. Complement: Authorized Minimum Number of Iterations 
Somewhat untraditionally, but to limit the risk of an optimistic premature suc-
cessful termination, we impose that a 3S algorithm always performs a minimum 
number min.Its (default = 10) before starting to check for a success in conver-
gence. 

S3. Two Lemmas Useful for Proving Theorem 7  

We admit the following two lemmas (the second one can be proved using mul-
tivariable differential tools presented in Graham (1981)):  

Lemma S3.1. Let ( )nS ∈  . Then, one has: ( )2 diag 0 0S S S− = ⇔ = .  
Lemma S3.2. Let n∈x   and ( )nN ∈  , SPD, such that  

( ) ( )T
,, with ,symmetric, and .n r n rN ZQZ Q Zα α= + ∈ ∈ ∈I � �   

If the upper triangular part of Q has functionally independent elements and 
which are independent from α , whereas x  and Z are independent from Q 
and α , then:  
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( )

( )
T 1

diag 2 ,
N

W W
Q

−∂
= −

∂

x x
               (S:3.1a) 

 ( )
log

2 diag ,
N

B B
Q

∂
= −

∂
                (S:3.1b) 

 
( )T 1

21 ,
N

N
α

−
−

∂
= −

∂

x x
x                 (S:3.1c) 

 ( )1log
tr ,

N
N

α
−∂

=
∂

                  (S:3.1d) 

where T 1 T 1W Z N N Z− −= xx , T 1B Z N Z−= , and if A is a square matrix, then 
( )diag A  is the diagonal matrix with same main diagonal as A.  

S4. 3S Fitting Algorithms for 2-Level LMMs with u.ho. Errors  
and Diagonal Covariance Matrix for the Cluster Random  
Effects, and ANOVA LMMs  

S4.1. 3S Algorithms for 2-Level LMMs with u.ho. Errors Assuming  
a Diagonal Covariance Matrix for the Cluster Random Effects  

We present, here, the equivalence of Algorithms 3S-A1-V1 and 3S-A1-V2 re-
spectively for 2-level LMMs with u.ho. errors, assuming a diagonal covariance 
matrix for the cluster random effects vector, that is:  

( )2 2
1diag , , .rσ σ=D �  

They carry respectively the code names 3S-A1-V1-d and 3S-A1-V2-d. 
Algorithm 3S-A1-V1-d. Estimation of β , 2

εσ , ( )2 2
1diag , , rσ σ=D �  and 

prediction of 1, , mU U�  in a 2-level LMM with u.ho. errors: Version 1   
1) Initialization: At iteration 0, we estimate β , 2

εσ , D  and predict 

1, , mU U� , as follows:  
a) As in Algorithm 3S-A1-V1;  

b) ( ) ( )( )22 0 0
,1

1ˆ ˆm
k j kj u

m
σ

=
= ∑ , 1, ,k r= � , with ( )0

,ˆ j ku  the kth element of the vector 

( )0ˆ ju ;  

c) ( ) ( ) ( )( )0 2 0 2 0
1

ˆ ˆ ˆdiag , , rσ σ=D � ;  
2) The iterative process: Given ( )ˆ tβ , ( )2ˆ t

εσ , ( ) ( )
1ˆ ˆ, ,t t

mu u� , hence  
( ) ( ) ( )( )TT T

1ˆ ˆ ˆ, ,t t t
m=u u u� , and ( ) ( ) ( )( )2 2

1
ˆ diag , ,t t t

rσ σ=D �  from iteration t, we ob-
tain estimates and predictions at iteration 1t +  as follows:  

a) As in Algorithm 3S-A1-V1;  

b) ( ) ( )( ) ( )( )22 1 1 1
,1

1 ˆˆ ˆmt t t
k j j kj kk

u
m

σ + ∗ + +
=
 = +  ∑ V , 1, ,k r= � ;  

c) ( ) ( ) ( )( )1 2 1 2 1
1

ˆ ˆ ˆdiag , ,t t t
rσ σ+ + +=D � ;  

3) Stopping criterion: We assume convergence when all the 3 inequalities  

 ( ) ( ) ( )1 1
1

ˆ ˆ ˆ ,t t tϑ ϑ δ ϑ+ +− ≤ ⋅                   (S:4.1a) 

 ( ) ( ) ( )1 1
2

ˆ ˆ ˆ ,t t tβ β δ β+ +− ≤ ⋅                  (S:4.1b) 
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 ( ) ( ) ( )2 1 2 2 1
3ˆ ˆ ˆ ,t t t

ε ε εσ σ δ σ+ +− ≤ ⋅                  (S:4.1c) 

are satisfied, where 1 2 3, ,δ δ δ  are relative tolerance levels set in ( )0,1 , and 
( )T2 2

1
ˆ ˆ ˆ, , rϑ σ σ= � . Otherwise, repeat Step 2 with 1t t← + . 

4) Extracting estimates: At convergence, take ( )1ˆ ˆ tβ β += , ( )2 12ˆ ˆ t
ε εσ σ += , 

( )1ˆ ˆ t+=D D  as estimates of β , 2
εσ , D . Also, take ( ) ( )1 1

1ˆ ˆ, ,t t
m

+ +u u�  as predic-
tions of 1, , mU U� .  

Algorithm 3S-A1-V2-d. Estimation of β , 2
εσ , ( )2 2

1diag , , rσ σ=D �  and 
prediction of 1, , mU U�  in a 2-level LMM with u.ho. errors: Version 2   

1) Initialization: The same as in Algorithm 3S-A1-V1-d;  
2) The iterative process: Given ( )ˆ tβ , ( )2ˆ t

εσ , ( ) ( )
1ˆ ˆ, ,t t

mu u� , hence  
( ) ( ) ( )( )TT T

1ˆ ˆ ˆ, ,t t t
m=u u u� , and ( ) ( ) ( )( )2 2

1
ˆ diag , ,t t t

rσ σ=D �  from iteration t, we ob-
tain estimates and predictions at iteration 1t +  as follows:  

a) As in Algorithm 3S-A1-V2;  
b) As in Algorithm 3S-A1-V1-d;  
3) Stopping criterion: As in Algorithm 3S-A1-V1-d. Otherwise, repeat Step 2 

with 1t t← + . 
4) Extracting estimates: As in Algorithm 3S-A1-V1-d.  

S4.2. 3S Algorithms for ANOVA LMMs  

We present the adaptation of Algorithms 3S-A1-V1 and 3S-A1-V2 respectively 
for ANOVA LMMs. That is, the case where  

( )1

2 2
1diag , , ,

gm g mσ σ= =D G I I�  

where, for 1, ,k g= � , each variance 2
kσ  corresponds to the kth categorical 

variable with km  categories, with g the total number of categorical variables 
with random effects. They carry respectively the code names 3S-ANOVA-A1-V1 
and 3S-ANOVA-A1-V2.  

Algorithm 3S-ANOVA-A1-V1. Estimation of β , 2
εσ , =D G  and pre-

diction of U in a 2-level ANOVA LMM: Version 1   
1) Initialization: At iteration 0, we estimate β , 2

εσ , G  and predict U, as 
follows:  

a) As in Algorithm 3S-A1-V1;  
b) ( ) ( ) ( )( )10 0T T ˆˆ β

−
= −u Z Z Z y X , the OLS estimate of U in the linear model 

( )0 U ε∗ = +Y Z , with U considered as fixed parameter in the model, Z  the de-
sign matrix, and ( ) ( )0 0β̂∗ = −Y Y X  as the response vector;  

c) ( ) ( ) ( ) ( )
22 0 0 0ˆ ˆˆ n pεσ β= − − −y X Zu ;  

d) ( ) ( ) ( )( )222 0 0 0
,1

1 1ˆˆ ˆkm
k k k ll

k k

u
m m

σ
=

= = ∑u , for 1, ,k g= � , with  

( ) ( ) ( )( )T0 0 T 0 T
1ˆ ˆ ˆ, , g=u u u�  split according to the g categorical variables that form 

the boolean matrix Z , such that ( ) ( ) ( )( )T00 0
,1 ,ˆ ˆ ˆ, ,

kk k k mu u=u �  is the km -vector of 

random effects of the kth categorical variable.  
e) ( ) ( ) ( )( )1

0 2 0 2 0
1

ˆ ˆ ˆdiag , ,
gm g mσ σ=G I I� ;  
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2) The iterative process: Given ( )ˆ tβ , ( )2ˆ t
εσ , ( )ˆ tu , and  

( ) ( ) ( )( )1

2 2
1

ˆ ˆ ˆdiag , ,
g

t t t
m g mσ σ=G I I�  from iteration t, we obtain estimates and pre-

dictions at iteration 1t +  as follows:  
a) As in Algorithm 3S-A1-V1;  
b) ( ) ( ) ( )( ) 11 2 1 1T ˆˆ ˆt t t

εσ
−∗ + − + −= +V Z Z G ;  

c) ( ) ( )( ) ( )( )22 1 1 1
,1

1 ˆˆ ˆkmt t t
k kk k ll ll

k

u
m

σ + ∗ + +
=
 = +  ∑ V , 1, ,k g= � , where ( )1ˆ t

kk
∗ +V  is the 

kth diagonal block of ( )1ˆ t∗ +V  corresponding to the km  categories of the kth ca-
tegorical random effects variable;  

d) ( ) ( ) ( )( )1

1 2 1 2 1
1

ˆ ˆ ˆdiag , ,
g

t t t
m g mσ σ+ + +=G I I� ;  

3) Stopping criterion: We assume convergence when all the 3 inequalities  

 ( ) ( ) ( )1 1
1

ˆ ˆ ˆ ,t t tϑ ϑ δ ϑ+ +− ≤ ⋅                  (S:4.2a) 

 ( ) ( ) ( )1 1
2

ˆ ˆ ˆ ,t t tβ β δ β+ +− ≤ ⋅                 (S:4.2b) 

 ( ) ( ) ( )2 1 2 2 1
3ˆ ˆ ˆ ,t t t

ε ε εσ σ δ σ+ +− ≤ ⋅                 (S:4.2c) 

are satisfied, where 1 2 3, ,δ δ δ  are relative tolerance levels set in ( )0,1 , and
( )T2 2

1
ˆ ˆ ˆ, , gϑ σ σ= � . Otherwise, repeat Step 2 with 1t t← + . 

4) Extracting estimates: At convergence, take ( )1ˆ ˆ tβ β += , ( )2 12ˆ ˆ t
ε εσ σ += , 

( )1ˆ ˆ t+=G G  as estimates of β , 2
εσ , G . Also, take ( )1ˆ t+u  as predictions of U.  

Algorithm 3S-ANOVA-A1-V2. Estimation of β , 2
εσ , =D G  and pre-

diction of U in a 2-level ANOVA LMM: Version 2   
1) Initialization: The same as in Algorithm 3S-ANOVA-A1-V1;  
2) The iterative process: Given ( )ˆ tβ , ( )2ˆ t

εσ , ( )ˆ tu , and  
( ) ( ) ( )( )1

2 2
1

ˆ ˆ ˆdiag , ,
g

t t t
m g mσ σ=G I I�  from iteration t, we obtain estimates and pre-

dictions at iteration 1t +  as follows:  
a) As in Algorithm 3S-A1-V2, but removing the precision about ( )ˆ tG ; 
b) ( ) ( ) ( )( ) 11 2 1 1T ˆˆt t tA εσ

−+ + −= +Z Z G ;  
c) ( ) ( ) ( )( )1 1 1T ˆˆ t t tA β+ + += −u Z y X ;  
d) ( ) ( ) ( )1 2 1 1ˆ ˆt t tAεσ

∗ + + +=V ;  
e) As in Algorithm 3S-ANOVA-A1-V1;  
3) Stopping criterion: As in Algorithm 3S-ANOVA-A1-V1. Otherwise, re-

peat Step 2 with 1t t← + . 
4) Extracting estimates: As in 3S-ANOVA-A1-V1.  

S5. Parameters of the Distributions Used for the Simulations  

In this section, we detail the distributions and parameters used for the simula-
tions that yield the results in Section 6.1. As a general rule, the values of most of 
these parameters were themselves generated randomly before launching the si-
mulations. 

S5.1. Simulation of Sample Items, Clusters, Fixed and Random  
Effects Covariates 

We assume that we have a population comprising 10m =  clusters in the same 
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proportions of 1/10. To get a sample item, we first sampled its cluster, then its 
fixed and random effects covariates, respectively in 4  and 3 , assuming that 
in each cluster j, the vector X of fixed effects covariates followed ( )4 4,X

jm I . 
Likewise, in each cluster j, the vector Z of random effects covariates followed 

( )3 3,0.7Z
jm I . We used:  

● ( )T
1 2,1, 2,2X = − −m , ( )T

2 4, 4, 4,1X = − − −m , ( )T
3 4, 1,3,2X = −m ,  

( )T
4 1,3,0, 2X = − −m , ( )T

5 3,3,2, 2X = − −m , ( )T
6 2, 1,3, 3X = − −m ,  

( )T
7 3, 3,4,4X = − −m , ( )T

8 4,1,4, 3X = − −m , ( )T
9 1,2,0, 3X = − −m ,  

( )T
10 1,0,0,4X = −m ;  

● ( )T
1 2,0, 3Z = − −m , ( )T

2 3,1,1Z =m , ( )T
3 0, 1, 1Z = − −m , ( )T

4 2,0, 2Z = −m , 
( )T

5 3,2,3Z = −m , ( )T
6 3, 3,0Z = −m , ( )T

7 2,3,2Z = −m , ( )T
8 2,3, 3Z = −m ,  

( )T
9 0,3,1Z =m , ( )T

10 2,2,0Z = −m .  
In addition, no intercept was included, be it in the fixed part or the random 

part of the simulated LMM, while we took ( )T 41.5,0.7,0,2.3β = − ∈  as vec-
tor of fixed effects parameters. 

S5.2. Parameters of the Distributions for Simulating Random  
Effects and Residual Errors  

To simulate the cluster random effects in 3 , we examined 5 distributions, 
while for the residual errors, we examined 3, hence, testing in total, 5 3 15× =  
scenarios. 

S5.2.1. Distributions Tested for the Random Effects  
Case 1: Non-degenerate Gaussian distribution in 3  with mean vector and 

covariance matrix:  

32.784612 28.546477 9.726209
, 28.546477 44.499170 3.915344 .

9.726209 3.915344 27.435629

− 
 = = − 
 − − 

m 0 Σ  

Case 2: A degenerate Gaussian distribution in 3  with mean vector and a 
rank one covariance matrix:  

2.5820307 11.232197 0.46004207
, 11.2321974 48.861640 2.00124781 .

0.4600421 2.001248 0.08196599

− − 
 = = − 
 − 

m 0 Σ  

Case 3: As in Case 2, but with mean vector and a rank two covariance matrix:  
10.19483 6.661080 17.54595

, 6.66108 5.462537 10.91097 .
17.54595 10.910967 30.47329

− 
 = = − 
 − − 

m 0 Σ  

Case 4: Mixture of 3 Gaussian distributions in 3  with vector of mixing 
proportions ( )T1 6,1 3,1 2π = , common covariance matrix 32= IΣ  and re-
spective vector means:  

( )T
1 0.2815777,1.8254139, 0.5799608 ,= −m  

( )T
2 0.16064371,0.01403464, 1.63159078 ,= − −m  
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( )T
3 0.01323658, 0.61782773,1.28104746= −m . 

Case 5: A discrete distribution in 3  with vector of respective probabilities 
( )T1 6,1 3,1 2π =  on the 3 mass points: 

1 2 3

0.7043073 0.6410311 3.3851412
0.7533598 , 0.8449623 , 0.3501683 .
0.7370090 0.7769852 0.8949348

−     
     = = =     
     − −     

u u u  

S5.2.2. Distributions Tested for the Residual Errors  
Case 1: Univariate Gaussian distribution ( )0,2.25 .  
Case 2: Mixture of 4 Gaussian distributions in   of variance 2 0.9613748σ =  

and respective means:  

1 2 3 41.293309, 1.912166, 0.4601711, 0.690338,= = − = =m m m m  

and vector of mixing proportions ( )T1 8,1 4,1 2,1 8π = .  
Case 3: A discrete distribution in   with the 4 mass points:  

1 2 3 41.532882, 1.332857, 1.494380, 1.778924u u u u= = = − =  

of respective probabilities ( )T1 8,1 4,1 2,1 8π = .  

S6. More Analysis of the Blackmore Data  

One can also consider fitting an LMM to the Blackmore data where, in addition 
to having a random slope for age as in (44), we also have a random slope for the 
interaction age8*group, thus the following LMM:  

 2log exercise fe(1 age8 group age8 group)
re(1 age8 age8 group) Gr(subject)
+ + + ∗

+ + + ∗ +


     (S:6.1) 

The results for this model using Algorithm 3S-A1-V1 are presented in Table S1. 
In addition to the parameters which are already significant in the LMM (44), the 
estimate of the variance 2

age8.groupσ  of the random effect age8*group in the LMM 
(S:6.1) is also significantly greater than zero, confirming that a random effect on 
age8*group is also probable. This suggests that there is a likely variation of the 
interaction between age and group across the girls population in this study. 
 

Table S1. Results of algorithm 3S-A1-V1 fitting the LMM (S:6.1) to the Blackmore data. 

 
int, gr, pat: respective shortcuts for intercept, group, patient. 
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In contrast, we signal that Gaussian ML fitting of the LMM (S:6.1) to the 
Blackmore data failed to converge with the default settings in the lmer function 
in the lme4 R package. 
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