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Abstract 
Spatial modeling has largely been applied in epidemiology and disease mod-
eling. Different methods such as Generalized linear models (GLMs) have 
been made available to prediction of the claim frequencies. However, due to 
heterogeneity nature of policies, the methods do not generate precise and ac-
curate claim frequencies predictions; these parametric statistical methods ex-
tensively depend on limiting assumptions (linearity, normality, independence 
among predictor variables, and a pre-existing functional form relating the 
criterion variable and predictive variables). This study investigates how to de-
rive a spatial nonparametric model estimator based on smoothing Spline for 
predicting claim frequencies. The simulation results showed that the pro-
posed estimator is efficient for prediction of claim frequencies than the kernel 
based counterpart. The estimator derived was applied to a sample of 6500 
observations obtained from Cooperative Insurance Company, Kenya for the 
period of 2018-2020 and the results showed that the proposed method per-
forms better than the kernel based counterpart. It is worth noting that inclu-
sion of the spatial effects significantly improves the estimator prediction of 
claim frequency. 
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1. Introduction 

Recent studies on spatial modeling have been rapidly applied in many fields: ep-
idemiology, public health, and the insurance sector. Models such as Poisson, 
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Generalized linear models, Credibility models and Bayesian Models are the 
commonly used models for prediction of claim frequencies. However, from the 
available literature, these models appear to be relatively inflexible. Although the 
Generalized linear models provide accurate and fast analysis of insurance data, 
they fall short because they are defined based on the assumptions, and an incor-
rect model assumption can cause model misspecification leading to erroneous 
results. Nonparametric models are deemed to minimize the shortcoming of 
these standard parametric models since fewer assumptions are made for the 
model, therefore, suitable for modeling insurance data which are nonlinear as 
described by [1] where they concluded that the nonparametric models perform 
better than generalized linear models (GLMs); the only observable problem with 
modeling using Nonparametric models is the interpretation of some of the 
curves [2]. When modeling claims and risks, we need to determine their beha-
vior and spatial dependence, and spatial heterogeneity of the data so that the in-
surer can determine which areas are associated with a higher riskier when de-
termining premiums amount to be paid. 

[3] proposed a Bayesian nonparametric approach for prediction of claims; 
here they found out that the model performs better compared to nonparametric 
GLMs in that it can capture the nonlinear random effects present in the data. [4] 
also proposed a flexible nonparametric loss model for prediction of the claims; 
they found out that having flexible multivariate model may allow actuaries to es-
timate the dependence between different risk classes and different lines of busi-
ness and this topic needs to be explored further. [5] introduced the idea of using 
nonparametric data mining approach to modeling the claims and prediction of 
risk; here the approach classified the risk and predicted claim size based on the 
data. This study’s research idea was to be built based on the idea proposed by [6] 
[7] where they introduce a nonparametric spatial regression model for predic-
tion. This study’s primary objective was to derive a spatial nonparametric esti-
mator for the prediction of insurance claims. Therefore, this study’s main con-
tribution was to investigate the estimator’s performance in the situation of addi-
tional covariates in the model and incorporate the aspect of spatial dependence 
in deriving a nonparametric estimator for the prediction of insurance claim fre-
quencies.  

The main difference between this research and [7] [8] [9] are as follows: 1) es-
timate a nonparametric spatial model where estimation of the unknown trend 
( )g ⋅  is based on smoothing spline; 2) spatial heterogeneity and correlation 

were considered simultaneously rather than assuming that correlation satisfies 
specific form (such as in SAR). 

The paper is organized as follows: Section 2 describes the development 
process of the model estimator based on smoothing spline; Section 3 presents 
the data description and main results; simulation study and analysis of CIC in-
surance claims data; Section 4 presents conclusion and suggestions for further 
research. 
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2. Methods  
Model Estimation  

The study proposed a nonparametric regression model to predict the number of 
claims , 1, ,iY i n= �  observed in region J in order to relax restrictive assump-
tion on the distribution of number of claims and iX  covariates vector for the 
ith claim. Since claims in each region, J has nonlinear relation with the covariates 

iX s′ . 
The nonparametric form of the model is given by the general form [10] [11].  

( ) T
i i i iy g x Z b ε= + +  

( )g ⋅  is unknown nonparametric function used to model fixed effects, T
iZ b  

and iε  cater for random effects. 
Since the form of T

i iZ b R=  for iR  is unknown. The main work of this 
study is to estimate the form of iR  then establish the functional form of T

iZ b  
that captures the spatial effects. 

Let ( )T
1, , Nn n n= �  be two N dimensional vectors. We can make assumption 

about the spatial model as  

 ( ) ( ) { } { }1, , 1, , 1, ,i i i n NY g X R var R i n n= + = ∈Λ = × ×� � �Σ      (1) 

where ( )1, , Ni i i= �  in nΛ  will be referred to as site, iR  cater for the spatial 
effects (Random effects) and the cardinality of nΛ  is n nΛ =  [12]. 

Spatial data is modelled as finite realization of vector stochastic process in-
dexed by ni∈Λ , ( )T

1, , nR R R= �  is assumed to follow a joint Gaussian dis-
tribution where ( ) 0iE R = , is known ni∀ ∈Λ , ( ),i jR Rρ =  Σ  is the un-
known correlation coefficient matrix (need to be estimated). The vector  

( )1, , d
i i idX X X= ∈ℜ� , iY ∈ℜ  and ( )g ⋅  is the unknown trend function. 
The aim is to estimate ( )g x  for some given ( )1, , d

dx x x= ∈ℜ� , the re-
sponse variable iY  is claim frequency and iX  is six dimensional vector con-
sisting of the following explanatory variables: gender, claim amount, age of the 
policyholder, gender, vehicle age, model of the vehicle and age category of the 
policyholder. 

Estimating ( )g x  at some point dx∈ℜ , for iX  in the neighbourhood of x, 
g can be approximated using smoothing spline [13] [14]. 

To estimate the smoothing spline estimator ( )ĝ ⋅  of ( )g ⋅ , the study consid-
ers minimizing the equation  

 ( )( ) ( )( )2 2

1
d

n

i i
i

Y g x g x xλ
=

′′− +∑ ∫                  (2) 

over the function g This criterion trades-off least squares error of g over 
( ), , 1, ,i ix y i n= � , with a regularization term that grows large when the second 
derivative of g is wiggly. The coefficients are chosen to minimize Equation (3) 
which is a simplified form of Equation (2)  

( ){ }2 T

1

1 ;
n

i i
i

Y g X
n

β λβ β
=

− + Ω∑                  (3) 

https://doi.org/10.4236/ojs.2021.114031


G. Kipngetich et al. 
 

 

DOI: 10.4236/ojs.2021.114031 496 Open Journal of Statistics 
 

which can be represented as  
2 T

iY Gβ λβ β− + Ω  

where n nG ×∈  is basis matrix defined as  

( ) , , 1, ,ij j iG x i j nψ= = �  

where 1, , nψ ψ�  are the truncated power basis functions with knots at 1, , nx x�  
which is evaluated at the data values  

 ( )
( )

( ) ( )1

0 , 1, ,

1

j
i

pj
i j p

x n p i j n
x

x N p j N
ψ

+ − +

 ≤ ≤ == 
− + ≤ ≤

�
             (4) 

( ) ( )1 max 0, ,
p p

j p i jx N x N j φ+ − +
− = − ∈  where φ  is compact interval. p is the 

degree of the spline and i N pj j −< <�  are fixed points or knots in φ . 
n n×Ω∈  is the penalty matrix defined as  

 ( ) ( )d , , 1, ,ij i jg x x x i j nψ′′ ′′Ω = =∫ �  

Given the optimal coefficients β̂  minimizing (3) through penalized least 
squares, the smoothing spline estimator at x is therefore defined as  

 ( ) ( )
1

ˆˆ
n

i j j
j

g x xβ ψ
=

= ∑                       (5) 

The term affects shrinking the components of estimation β̂  towards zero. The 
parameter 0λ ≥  is the smoothing parameter. 

Each computed coefficient ˆ
jβ  corresponds to a particular basis function 

jψ . The term Tβ βΩ  in (3) imparts more shrinkage on the coefficients ˆ
jβ  

that correspond to wigglier functions ( )j xψ . Hence, as we increase λ , we are 
shrinking away from the wiggler basis functions. 

Similar to least squares regression, the coefficients β̂  minimizing (3) is  

 ( ) ( )1 1T T T Tˆ G G G Y X X n D X Yβ λ λ
− −

= + Ω = +  

where X is a design matrix with entries ix  for 1, ,i n= � , Y is a vector of the 
response variables, D is a diagonal matrix with 1p +  zeros on the diagonal fol-
lowed by N ones and n Dλ  is a penalty term. 

Smoothing splines can be seen as a linear smoother, where  
( ) ( ) ( )( )1 1 , , n nk x x xψ ψ= � . Therefore, Equation (5) can be represented as  

 ( ) ( ) ( ) ( ) 1T T T Tˆĝ x k x k x X X n D X Yβ λ
−

= = +             (6) 

which is linear combination of the points , 1, ,iy i n= � , λ  is estimated using 
Generalized Cross Validation (GCV) method given by  

 ( ) ( ) ( )
( )( )

2

1

ˆ1GCV
1

in
i i

i

Y z Y z
n p tr S n

λ

λ

λ
−

=

 −
 =
 − + 

∑                 (7) 

where ( )iY z  is the observation in point iz , ( )i
iY zλ

−  is the predicted value 
from a fitted smoothing spline model from the data less the ith data and Sλ  is 
the degree of the smoother. 
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As proposed by [6] [7], R2 is used to assess the performance of predictor func-
tion, given by  

 
( ) ( )
( )

2

12
2

1

ˆ
1

n
i ii

n
ii

g x g x
R

g x g
=

=

 − = −
 − 

∑
∑

                 (8) 

where g  is the sample mean of ( ) , 1, ,ig x i n= � . 
After estimating the function ( )g ⋅ , then from (1) iR  is estimated as  

( )ˆ ˆi i iR Y g X= − . Since Σ  in model Equation (1) is unknown, we assume that 
, 1, 2, ,iR i n= �  is 2nd-order stationary and isotopic process (does not depend on 

direction). 
Before prediction can be performed on spatial data sets, the variogram is 

usually estimated at various lags and a nonparametric model is fitted to those es-
timates. 

Then let ( )C h  and ( )2 hγ  be covariogram and variogram of the process 
where h represents the distance between 2 points at which the process is ob-
tained [12] [15]. The two quantities are related by 

( ) ( ) ( )0C h C hγ= −                         (9) 

where ( ) ( )( )20C var Yσ= = z , ( )Y z  is the value of the process at spatial lo-
cation z within region C.  

 ( )lim 0
h

C h
→∞

=  

implies  

 ( ) ( )( ) ( )lim 0
h

h Var Y Cγ
→∞

= =z  

for validity of variogram the condition that  

 
( )
2

2
lim 0
h

h
h
γ

→∞
=  

must be met [16]. 
( ) ( ) 2,i j i jR R C z zρ σ  Σ = = −    , while iz  and jz  are the spatial loca-

tions associated with the error values iR  and jR  thus to estimate Σ  it is suf-
ficient to estimate ( )hγ  [16] [17].  

 ( )
( )

( )2ˆ2 i j
S h

h z z N hγ  = − ∑                  (10) 

( ) ( ){ }, :i j i jS h z z z z h= − = , dh∈ℜ , ( )N h  is a number of distinct pairs in 
( )S h  since ( )ir z  the error at location iz  is unobserved, the quantity is to be 

estimated as well. 
Since we have to estimate the variogram ( )ˆ hγ  in Equation (10) in nonpa-

rametric approach [18] [19], then ( )hγ  can be estimated as  

 ( ) ( )( ) ( )
0

1 ddh ht M tγ ω
∞

= −∫                 (11) 

( )M t  is nonnegative bounded nondecreasing function for nodes(or location of 
the jumps) 0t ≥  and dω  is a basis for functions in d  (d is the dimension 
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of the spatial domain D) given by  

 ( ) ( )( ) ( ) ( ) ( )2 2
2 22 2d

d dht ht d J htω −
−= Γ  

( )2dΓ  is the gamma function, and ( )J ⋅  is the Bessel function of the first kind. 
Some familiar examples of dω  are ( ) ( )1 cosht htω = , ( ) ( )2 0ht J htω = , and  

here ( ) ( )
3

sin ht
ht

ht
ω =  is chosen which yields a non-parametric estimate which is 

conditionally negative definite for spatial data from 1 - 3 dimensions. 
The characteristics of the estimator (11) are estimated using Integrated square 

error [20], given by  

 ( ) ( ) ( ){ }
1

2ˆISE dkh

h
h h hγ γ γ= −∫                  (12) 

where 1h  and kh  are the smallest and largest distances for which variogram 
estimates are available [17]. 

Model (1) can therefore be represented as  

 ( ) ( )( ) ( ) , 1, ,i i iY g i n= + =iz X z R z �              (13) 

where ( ) : 1, ,iY z i n= �  is the observations (claims) in region iz  associated 
with independent variables ( )i iX z  in region iz , ( )iR z  is the unobserved er-
ror in region iz  and ( )g ⋅  is the estimated function in (6). 

To evaluate performance of the proposed method we used 2R  to assess pre-
diction accuracy of the method  

 
( ) ( )
( )

2

2 1
2

1

ˆ
1 i

i

n
i i

n
i

Y z Y z
R

Y z Y
=

=

 − = −
 − 

∑
∑

                (14) 

3. Main Results  
3.1. Data Description  

The study used motor third party liability data for 2018-2020 from the insurance 
company Cooperative Insurance Company (CIC). The data include 6500 policies, 
out of which many policies have total claim sizes other than zero, and an appro-
priate number of policies without any claims were taken. The following policy 
data were used: the region where the policy was taken, age, gender, type of ve-
hicle, number of claims per policy, years of policy ownership, claim amount, in-
sured cases number for a user, and average claim size. In the process of prepara-
tion, data was cleaned, and imputation of data will be done; age is categorized 
into old (over the age of 50), Young (up to the age of 25), and Middle (aged 25 - 
50) age. Policies with extremely low and extremely high average claim sizes are 
removed; categorical variables with multiple categories were replaced with 
dummy (indicator) variables.  

Table 1 shows that there is a very large number of observations with no 
claims in claims dataset where the maximum number of claims made in a region 
was 4 in an observation.  
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Table 1. Summary of claim frequencies in the data. 

No. of Claims Freq of Observations % of Observations 

0 4015 61.8 

1 1967 30.3 

2 431 6.6 

3 71 1.1 

4 16 0.2 

3.2. Simulation Study  

This section describes the simulation and their analysis results of the proposed 
method, we simulate spatial data with a length of n = 100 observations. This is to 
ensure that the simulated data mimic the real claims dataset so that the results 
can be inferred to evaluate the performance of our method in data analysis. 65 
spatial sampling locations were selected randomly and denoted by 1, , nz z� . 
The responses ( )iY z  for 1, ,i n= �  are the observations and were simulated 
from the spatial nonparametric model (13) with 2p =   

 ( ) ( )( ) ( )iY g x R= +z z z  

( )R z  is the term for spatial effects iz  and jz  in 2-dimensional space [16] with 
mean 0 and covariance given by (11). The covariates, ( )i ix z  for 1, ,i n= � , 
were generated as iid ( )0,1N  and are independent of each other, before the 
simulations i.e., the variables were treated as fixed terms when ( )iY z  were 
generated repeatedly. Within each simulation, the spatial random effects ( )iR z  
were generated from a Gaussian process with mean zero and the covariance 
function (11), for 1, ,i n= � . 

The ( )ISE γ  defined as ( ) ( ) ( ){ }
1

2ˆISE dkh

h
h h hγ γ γ= −∫  was approximated 

numerically from simulated data for the proposed estimator (11) and NW kernel. 
Table 2 present the mean values of ISE. From the results in Table, the proposed 
estimator (11) offers a better performance compared to NW kernel estimator.  

Assessing how well the proposed method performs, we compare the proposed 
method under which ( )( ) ( )

0
1 ddR ht M tω

∞
= −∫  with the method under which 

the spatial component (R) is based on kernel estimation, we calculated the MSE 
and the R2 of the estimators from 100 simulations and present the results in Ta-
ble 3. From the table it was found that MSE for the proposed method is smaller 
ranging from 0.0221 to 0.0102 in all the sample sizes taken while the MSE of the 
kernel based estimator ranges between 0.308 to 0.0176, in addition, the R2 for the 
proposed method were larger ranging between 0.7003 to 0.99963 in all the sam-
ple sizes compared those of kernel based estimator which ranges from 0.6751 to 
0.9694. Thus the results demonstrate the superior performance of the proposed 
method compared to the kernel based estimator.  

The results in Table 3 were visualized in Figure 1 and Figure 2.  
Based on performance of the proposed method, the method was applied to the 

simulated data to check its performance in prediction of future values. Table 4 
describes the distribution of the predicted values out of 100 simulation. 
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Table 2. Mean values of the standardized ISE from the estimators (Sample size of n = 
1000). 

 h = 1 h = 2 h = 3 h = 4 

NW kernel 0.53883 0.53407 0.5177 0.40779 

Proposed estimator 0.30731 0.28762 0.26737 0.23037 

 
Table 3. MSE and R2 for the model over 100 simulation under different sample sizes. 

 n = 10 n = 100 n = 400 n = 1000 

 MSE R2 MSE R2 MSE R2 MSE R2 

N (kernel) 0.0308 0.6751 0.0285 0.7585 0.0210 0.9691 0.0176 0.9694 

Proposed Method 0.0221 0.7003 0.0118 0.8217 0.0105 0.9962 0.0102 0.99963 

 

 
Figure 1. R-squared plot. 

 

 
Figure 2. Mean squared plot of both K (kernel) and proposed estimator. 
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Figure 3. Histogram for the predicted values. 

 
Table 4. Summary of predicted claim frequencies from simulation. 

No. of Claims Freq of Observations % of Observations 

1 998 99.8 

2 2 0.2 

 
The predicted values generated by the proposed method as presented in Table 

4 were graphically presented and the prediction intervals superimposed on the 
distributional histogram of the predicted values as shown in Figure 3, the pre-
diction interval (in red dotted lines) showed that a larger number of predicted 
values lies between 1 - 2 this means that there are higher chances of getting fu-
ture values as 1 and 2.  

3.3. Analysis for Claims Data  

The study considered claims data from CIC insurance observed in different parts 
of 7 counties of Kenya to exhibit the performance of the proposed method. The 
main interest of this study was predicting claims frequencies, the study considers 
a set of 6500 observations. Let iY  denote the claim frequency, and  

( )1 6, ,i X X Τ=X �  be a vector which consists of the following explanatory va-
riables: gender, claim amount, age of the policyholder, gender, vehicle age, mod-
el of the vehicle and age category of the policyholder. Using the estimated model 
(13) we predict claim frequencies. The observations were from random process 
over a countable sample of spatial locations. The claim data at a particular loca-
tion typically represent the entire region (Figure 4). 

Using the proposed method future claim frequencies were predicted and the 
results were presented in Table 5. 

Figure 5 shows graphical representation of the predicted claims as described 
in Table 5 with the prediction interval (red dotted vertical lines), the future val-
ues will lie between 1 and 4. 

From the prediction results, R2 values using Equation (14) were evaluated to 
access the performance of two methods, the results presented in Table 6.  

From the results in Table 6 the R2 for N (kernel) was 0.543, and that from the 
proposed method is 0.566, this showed that the proposed method for prediction 
has a higher prediction accuracy than the kernel based estimator. Therefore the  
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Table 5. Summary of predicted claim frequencies. 

No. of Claims Freq of Observations % of Observations 

1 3145 89.52 

2 302 8.60 

3 50 1.42 

4 16 0.50 

 
Table 6. R2 for the estimators. 

Method N (kernel) Proposed Method 

R2 0.543 0.566 

 

 
Figure 4. Hotspots locations in Nakuru, Nairobi, Kajiado, Muranga, Kiambu, Machakos, 
Makueni counties. 
 

 
Figure 5. Predicted number of claims. 
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study concluded that the proposed method is more efficient than N (kernel) 
model, this implies that the predicted value was more likely to be more identi-
cally equal to the observed claims. 

4. Conclusions and Suggestions  

The idea of deriving an appropriate estimator in predicting frequency claims in 
the insurance industry has gained more interest in finance and statistical re-
search. Many researchers heavily rely on parametric estimators; however, the 
insurance datasets have some aspect of non-linearity. Hence, researchers in sta-
tistics and econometrics are currently developing nonparametric models incor-
porating spatial effects to improve on the prediction based on the existing para-
metric models such as aggregate claim models and GLMs which are rather more 
restrictive on their transformed mean of the response; the nonparametric me-
thods provide a more flexible method for prediction. The study proposed a spa-
tial nonparametric (based on splines) estimator for predicting claim frequencies 
in motor insurance. 

The simulation study showed that the proposed method performs better than 
the kernel based estimator; here the Mean Squared Error values of the proposed 
method were smaller than those of the kernel estimator which also implies a 
higher value of R-squared, particularly in presence of spatial dependence. Case 
study findings also showed that the proposed method performs better than the 
kernel based estimator on predicting the future claim frequencies. Therefore, the 
proposed method compared to kernel based estimator provides a more efficient 
prediction method for motor insurance claim data and ultimately leads to more 
accurate predictions.  

Suggestions  

Some additional exogenous variables such as environmental among other insti-
tutional factors may have effect on claim frequencies therefore, more robust spa-
tial estimator need to be constructed using the proposed idea to investigate how 
these factors may affect claim frequencies. Further research can also be done on 
the theoretical properties of this proposed model estimator. In addition, this 
study made the assumption that the errors were correlated, for this reason future 
studies could consider a case of uncorrelated error structure.  
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