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Abstract 
In this paper, we introduce a modification of the Quasi Lindley distribution 
which has various advantageous properties for the lifetime data. Several fun-
damental structural properties of the distribution are explored. Its density 
function can be left-skewed, symmetrical, and right-skewed shapes with var-
ious rages of tail-weights and dispersions. The failure rate function of the new 
distribution has the flexibility to be increasing, decreasing, constant, and bath-
tub shapes. A simulation study is done to examine the performance of maxi-
mum likelihood and moment estimation methods in its unknown parameter 
estimations based on the asymptotic theory. The potentiality of the new dis-
tribution is illustrated by means of applications to the simulated and three 
real-world data sets. 
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1. Introduction 

The modeling of the lifetime data is a crucial one in many applied sciences, es-
pecially engineering, actuarial science, medicine, and others. Several lifetime dis-
tributions, for instance, the exponential, gamma, Weibull, log-normal distribu-
tions, and their modifications, have been used to model the lifetime data [1]. 
These distributions and their modifications have their own characteristics in 
terms of the shapes of the failure rate function, covering the tail-heaviness, ho-
rizontal symmetry, and dispersion. The tail-heaviness for a data set can be 
measured by the excess kurtosis (EK) which is defined as 3τ − , where τ  is the 
kurtosis of the data set. The 0EK >  is called a fatter tail (Leptokurtic) and 

0EK <  is called a thinner tail (Platykurtic) distribution. Further, the symmetry 
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and dispersion for a data set can be measured by skewness (SK), and Fano factor 
(FF) values, respectively, where the Fano factor value is the variance-to-mean ra-
tio. 

The modification of a lifetime distribution may be done by using the finite 
mixture model to handle the complexity by heterogeneity. The Lindley distribu-
tion (LD) is one of the finite mixture models under the Bayesian framework, and 
it was introduced by Lindley (1958) [2] having the density function: 

( ) ( )
2

1 e ; 0, 0,
1

y
Yf y y yθθ θ

θ
−= + > >

+
              (1) 

where θ  is the shape parameter that controls the shape of the distribution, and 
y is the respective random variable. The density function of this distribution is 
based on a two-component mixture of two different continuous distributions  
namely exponential (θ ) and gamma ( 2,θ ) distributions with the mixing pro-

portion, 
1

p θ
θ

=
+

, where the p is defined by using the shape parameter (s) of  

the latent variable distribution. The LD has the increasing failure rate function 
while the exponential distribution has the constant failure rate function. In sta-
tistical literature, Ghitany et al. (2008) [3] showed that the Lindley distribution is 
more flexible and provides a better fit than the exponential distribution for life-
time data, especially its flexible mathematical format and failure rate criteria. 

Some modifications of LD have been proposed by researchers to increase the 
flexibility further, especially for failure rate criteria. Here, they introduce new 
parameter (s) that might be shape or scale or location parameter (s). In general, 
while a scale parameter stretches or shrinks the respective distribution, a loca-
tion parameter changes the starting point of that distribution. Dolati et al. (2009) 
[4] introduced a generalized Lindley distribution (GLD), Shanker et al. (2013) 
[5] obtained a two-parameter Lindley distribution (TwPLD), Abouammoh et al. 
(2015) [6] proposed a new generalized Lindley distribution (NGLD), and Mon-
sef (2016) [7] introduced a Lindley distribution with location parameter (LwLD). 
Ekhosuehi et al. (2018) [8] obtained a new generalized two-parameter Lindley 
distribution (NGTwPLD). Tharshan and Wijekoon (2020) [9] proposed a loca-
tion-based generalized Akash distribution (LGAD). Recently, Ramos et al. (2020) 
[10] introduced a two-parameter distribution with increasing and Bathtub ha-
zard rate (TwPD). Note that GLD, TwPLD, NGLD, LwLD, NGTwPLD, LGAD, 
and TwPD are two-component mixture models with two or three parameters. 
Table 1 summarizes these distributions’ mixing proportions, mixing compo-
nents, failure rate, and parameters. Further, in all distributions given in Table 1, 
the mixing proportions are defined by incorporating the scale parameter of the 
mixing components. This may limit the flexibility to perform the scale parame-
ter of the mixing component and shape parameters of the latent variable distri-
bution, separately for a data set. 

Without incorporating the scale parameter to the mixing proportion, Shanker 
et al. (2013) [11] proposed the Quasi Lindley distribution (QLD) with the densi-
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ty function: 

( ) ( )
e ; 0, 0, 1,

1
y

Y

y
f y yθθ α θ

θ α
α

−+
= > > > −

+
             (2) 

where α  is the shape parameter introduced from the latent variable distribu-
tion and θ  is the scale parameter introduced from the mixing components. Eq-
uation (2) presents two-component mixture of an exponential (θ ), and gamma  

( 2,θ ) with the mixing proportion, 
1

p α
α

=
+

. It has the increasing failure rate 

and its skewness ( 1Qγ ), kurtosis ( 2Qγ ), and Fano factor ( 3Qγ ) functions are: 

( )
( )

3 2

3 22

2 6 6 2

4 2

α α α

α α

+ + +

+ +
, 

( )
( )

4 3 2

22

3 3 24 44 32 8

4 2

α α α α

α α

+ + + +

+ +
, and 

( )( )
2 4 2

2 1
α α

θ α α
+ +
+ +

,  

respectively. Then, it is clear that it has more flexibility to cover the tail-heaviness 
and dispersion than mentioned distributions in Table 1. 

Tharshan and Wijekoon (2020) [12] have done a comparison study by intro-
ducing a new five-parameter generalized Lindley distribution (FPGLD). They 
have shown that QLD can perform well than some other existing Lindley family 
distributions for higher SK, EK, and FF values by using the simulated and 
real-world data sets. This new distribution (FPGLD) was introduced to ease the 

 
Table 1. Mixing proportions, mixing components, failure rate, and parameters of some notable existing 
Lindley family distributions. 

Distribution 
Mixing  

proportion 
Mixing components Failure rate 

Parameters 

shape location 

GLD ( , ,θ γ α ) 
+
θ

θ γ  
gamma ( ,α θ ), gamma ( 1,α θ+ ) increasing , ,θ γ α  - 

   
bathtub 

decreasing 
  

TwPLD ( ,θ α ) 
+
θ

θ α  
exponential (θ ), gamma ( 2,θ ) increasing ,θ α  - 

NGLD ( ,θ α ) 
1+

θ
θ  

gamma ( ,α θ ), gamma ( 1,α θ− ) increasing ,θ α  - 

LwLD ( , ,θ α β ) 
+
θ

θ α  
exponential ( ,θ β ), gamma ( 2, ,θ β ) increasing ,θ α  β  

NGTwPLD ( ,θ α ) 
1+

θ
θ  

exponential (θ ), gamma ( ,α θ ) increasing ,θ α  - 

   bathtub   

   decreasing   

LGAD 
2

2 +
θ

θ η  
exponential ( ,θ β ) and gamma ( 3, ,θ β ) increasing ,θ η  β  

   bathtub   

TwPD ( ,θ α ) 2−
−

θ α
θ α  

gamma ( ,α θ ), gamma ( 1,α θ+ ) increasing ,θ α  - 

   bathtub   
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comparison. The density function of FPGLD ( , , , ,θ β α δ η ) is given by: 

( ) ( )( ) ( )

( )

e ;

0, 0, ,

y
Yf y y

y y

θ βθ δα ηθ β
δα η

β θ δα η δα ηθ β

− −= + −
+

> ≥ > > − > − −
             (3) 

where ,α δ , and η  are the shape parameters introduced from the latent varia-
ble distribution, and θ  and β  are scale and location parameters, respectively, 
introduced from the mixing components. Equation (3) presents two-component 
mixture of an exponential ( ,θ β ), and gamma ( 2, ,θ β ) with the mixing proportion  

p δα
δα η

=
+

. Although the QLD performs well than the other distributions when  

all three measures; skewness, excess kurtosis, and Fano factor are high, the flex-
ibility of QLD is limited for all ranges of the above three measures since the 
shape parameter of the mixing component gamma ( 2,θ ) is fixed in QLD. That 
is, 12 2Qγ< < , and 26 9Qγ< < . 

In this context, we modify the QLD by adding a shape parameter that is not 
fixed to the mixing components. The modified QLD will be called modified Quasi 
Lindley distribution (MQLD). The new distribution is a two-component mixture 
of an exponential, and a gamma distributions. Since FPGLD ( , 0, , ,θ β α δ η= ) has 
the same mixing components of MQLD and accommodates several existing and 
new sub-models of Lindley family distributions by setting its parameters of 
mixing proportion, we define the the mixing proportion p for MQLD via a 
comparison study among the FPGLD ( , 0, , ,θ β α δ η= ) and its sub-models. 
Here, FPGLD ( , 0, , ,θ β α δ η= ) means FPGLD by setting its location parameter 

0β = . This comparison study will be helpful to define the mixing proportion of 
MQLD that provides a better fit without having additional shape parameter(s) in 
the new distribution. 

The paper is outlined as follows: in Section 2, we introduce the MQLD with its 
density and distribution functions. We present the statistical properties of 
MQLD including moments and moment generating functions, and quantile 
function in Section 3. In Section 4, we derive the reliability properties of MQLD. 
The size-biased form of the MQLD is discussed in Section 5. Section 6 covers the 
unknown parameter estimation of MQLD. Finally, a simulation study is per-
formed to verify the asymptotic property of unknown parameter estimation 
methods, and simulated and real-world data sets are used to illustrate its appli-
cability over some other existing Lindley family distributions. 

2. Formulation of the New Distribution 

In this section, we introduce a finite mixture of two non-identical distributions 
called modified Quasi Lindley distribution with its probability density function 
(pdf) and cumulative distribution function (cdf). 

2.1. Defining the Mixing Proportion p 

For the comparison study, it is simulated 50 random samples of size, 150n =  
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from FPGLD ( , 0, , ,θ β α δ η= ) with various skewness (SK), Excees kurtosis 
(EK), and Fano factor (FF) values by setting the parameter values. Then, FPGLD 
( , 0, , ,θ β α δ η= ) and its sub-models for given η  and δ  values in Table 2 are 
fitted to the simulated random samples. Table 2 shows sub-models and FPGLD 
( , 0, , ,θ β α δ η= ), denoted Dη η

δ δ
=
=  and highlighted some of the sub-models that 

gives minimum negative log-likelihood ( 2log L− ) values consistently with 
Dη η
δ δ
=
=  for all simulated random samples. Based on minimum number of para-

meters among the highlighted models, the sub-model, denoted 2
1Dη

δ α
=
=

 is a sim-
ple distribution and can perform well than others. Then, we utilize the mixing  

proportion of 2
1Dη

δ α
=
=

, 
3

3 1
p α

α
=

+
 to define the mixing proportion of MQLD. 

The detailed study results could be provided upon request of reviewers. 

2.2. Defining the pdf and cdf 

Suppose Y be a non-negative random variable that is derived as a finite mixture 
of two non-identical distributions, exponential (θ ), and gamma ( ,δ θ ) with the 

mixing proportion, 
3

3 1
p α

α
=

+
 under the Bayesian framework, as follows: 

( ) ( ) ( ) ( )1 2; , , ; 1 ; , ,Yf y pf y p f y= + −θ α δ θ δ θ  
where α  and δ  are shape parameters, and θ  is a scale parameter and 

( )1 ; e yf y θθ θ −=  and ( ) ( )
1

2
e; , ; 0, 0, 0

yyf y y
δ δ θθδ θ θ δ

δ

− −

= > > >
Γ

. 

Then, the pdf of the MQLD with parameters ,θ α , and δ  is defined as: 

( ) ( ) ( )
( ) ( )( )13 3

3

e; , , ; 0, 0, 1, 0.
1

y

Yf y y y
θ

δθθ α δ δ α θ θ α δ
α δ

−
−= Γ + > > > − >

+ Γ
 (4) 

The first derivative of ( )log f y  for y is given by: 

( )( ) ( ) ( )
( ) ( )

1 2

13

d log 1
.

d
f y y

lf y
y y

δ δ

δ

θ δ
θ

δ α θ

− −

−

−
′= = − +

Γ +
 

 
Table 2. Comparison study results of FPGLD ( , 0, , ,θ β α δ η= ) and its sub-models. 

Parameter 1=η  2=η  3=η  4=η  =η η  

1=δ  
1
1D =
=

η
δ  

2
1D =
=

η
δ  

3
1D =
=

η
δ  

4
1D =
=

η
δ  D 1

η η
δ
=
=

 

2=δ  
1
2D =

=
η
δ  

2
2D =

=
η
δ  

3
2D =

=
η
δ  

4
2D =

=
η
δ  D 2

η η
δ
=
=

 

3=δ  
1
3D =

=
η
δ  

2
3D =

=
η
δ  

3
3D =

=
η
δ  

4
3D =

=
η
δ  D 3

η η
δ
=
=

 

4=δ  
1
4D =

=
η
δ  

2
4D =

=
η
δ  

3
4D =

=
η
δ  

4
4D =

=
η
δ  D 4

η η
δ
=
=

 

=δ δ  D 1η
δ δ
=
=  D 2η

δ δ
=
=  D 3η

δ δ
=
=  D 4η

δ δ
=
=  Dη η

δ δ
=
=  

=δ α  
1D =

=
η
δ α  

2D =
=

η
δ α  

3D =
=

η
δ α  

4D =
=

η
δ α  Dη η

δ α
=
=  

2=δ α  D 2
1η

δ α

=

=
 D 2

2η

δ α

=

=
 D 2

3η

δ α

=

=
 D 2

4η

δ α

=

=
 D 2

η η

δ α

=

=
 

1−= δδ α  D 1
1
δ

η

δ α −

=

=
 D 1

2
δ

η

δ α −

=

=
 D 1

3
δ

η

δ α −

=

=
 D 1

4
δ

η

δ α −

=

=
 D 1δ

η η

δ α −

=

=
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Then, the non-linear equation respect to y, ( ) 0lf y′ =  gives the modes of the 

( )f y , i.e. roots of the ( ) 0lf y′ = . It is clear that there exists more than one 

roots for ( ) 0lf y′ = . Suppose 0y y=  is a mode value of ( ) 0lf y′ = , then  

( )0 0lf y′′ <  (local maximum), where ( )
( )( )2

0 2

d log
d

f y
lf y

y
′′ =  at 0y y= . 

Figure 1 illustrates some of the possible shapes of the pdf of the MQLD. 
The corresponding cdf of MQLD is given by: 

( ) ( ) ( )
( ) ( )

3
3

3

e ,
; , , 1 ; 0, 0, 1, 0,

1

y

Y

y
F y y

θδ α δ θ
θ α δ θ α δ

α δ

−Γ + Γ
= − > > > − >

+ Γ
   (5) 

where ( ),a yΓ  is an incomplete gamma function defined as  

( ) 1, e da x
y

a y x x
∞ − −Γ = ∫ . 

3. Statistical Properties 

In this section, we provide some important statistical properties of MQLD such 
as rth moments about the origin and about the mean, moment related measures, 
moment generating and characteristic functions, and quantile function. 

3.1. Moments and Related Measures 

We may utilize the moments to study the characteristics of a distribution such as 
horizontal symmetry, dispersion, and tail-heaviness. The following proposition 
gives the rth moment about the origin: 

Proposition 1. The rth moment about the origin of the MQLD is given by: 

( ) ( )
( ) ( ) ( )( )3

3

1 1
1r r

r rµ α δ δ
α δ θ

′ = Γ Γ + + Γ +
+ Γ

          (6) 

 

 
Figure 1. The probability density of MQLD at different parameter values. (a) and (b): δ  and α  are fixed, and θ  values are 
changed; (c) and (d): θ  and δ  are fixed, and α  values are changed; (e) and (f): θ  and α  are fixed, and δ  values are 
changed. 
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Proof. 

( ) ( )
( ) ( )( )

( ) ( )
( )( )

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )( )

13
30

3 1 1
3 0 0

3

1 13

3
3

e d
1

e d e d
1

1
1

1 1
1

y
r

r

r y r y

r r

r

y y y

y y y y

r r

r r

θ
δ

θ δ δ θ

θµ δ α θ
α δ

θ α δ θ
α δ

δ α δθ
θ θα δ

α δ δ
α δ θ

−
∞ −

∞ ∞− − + − −

+ +

′ = Γ +
+ Γ

= Γ +
+ Γ

 Γ Γ + Γ +
= +  + Γ  

= Γ Γ + + Γ +
+ Γ

∫

∫ ∫
 

Substituting 1,2,3r =  and 4 in Equation (6), the first four moments about 
the origin are derived as: 

( )
( )

( )
( )( )

( )
3 33

1 2 33 3 2 3 3

2 1 6 1 2
, , ,

1 1 1
α δ δ α δ δ δα δµ µ µ µ

α θ α θ α θ

+ + + + ++′ ′ ′= = = =
+ + +

 and  

( )( )( )
( )

3

4 3 4

24 1 2 3
1

α δ δ δ δ
µ

α θ

+ + + +
′ =

+
, 

respectively. Then, the rth-order moments about the mean can be obtained by 
using the relationship between moments about the mean and moments about 
the origin, i.e. 

( ) ( )0 1r r ir r i
r ii

r
E Y

i
µ µ µ µ− −

=

   ′= − = −    
∑ . 

Therefore, some rth-order moments about the mean are: 

( ) ( )( )
( )

3 3 3
2

2 2 23 2

2 1 1
,

1

α α δ α δ
µ µ µ

α θ

+ + + −
′= − + =

+
 

( ) ( )( )( )
( )

3
3 2 3

3 3 6 6 3 3 3 6

33 3

2 3

2 3 3 2 5 6
,

1

µ µ µ µ µ

α α α δ α α δ α δ α α

α θ

′ ′= − +

+ + + − − + + − +
=

+

 and 

( )
( )

3 3 6 9
4 2

4 2 3 4 43 4

3 8 16 12 3
3 6 4 ,

1

Aα α α α
µ µ µ µ µ µ µ

α θ

+ + + +
′ ′ ′= − + − + =

+
 

where, 
((

( )( )))
3 6 9 3 6 9

3 6 9 3 6 9

6 14 16 8 3 29 13 5

4 10 2 ,

A δ α α α δ α α α

δ α α α δ α α α

= − − + + + + +

+ − + + + − +
 

respectively. Further, measures of skewness ( 1γ ), measures of kurtosis ( 2γ ), and 
the Index of dispersion/Fano factor ( 3γ ) of the MQLD are derived as: 

( )
( ) ( )( )( )

( ) ( )( )( )

3 3 6 6 3 3 3 6

3
1 3 2 3 23 3 3

2

2 3 3 2 5 6
,

2 1 1

α α α δ α α δ α δ α αµ
γ

µ α α δ α δ

+ + + − − + + − +
= =

+ + + −
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( )
( )
( ) ( )( )( )

3 3 6 9
4

2 2 23 3 3
2

3 8 16 12 3
,

2 1 1

Aα α α αµ
γ

µ α α δ α δ

+ + + +
= =

+ + + −
 and 

( ) ( )( )
( )( )

3 3 3
2

3 3 3
1

2 1 1
,

1

α α δ α δµ
γ

µ α δ α θ

+ + + −
= =

′ + +
 

respectively. Figure 2 and Figure 3 show various patterns of the skewness, kur-
tosis, and Fano factor functions of MQLD at different parameter values. The 
patterns suggest that the MQLD is more flexible than the QLD in terms of cov-
ering various ranges of skewness, kurtosis, and Fano factor values. 

3.2. Moment Generating and Characteristic Function 

Own characteristics of a probability distribution are directly associated with the 
moment generating function (mgf) and the characteristic function (cf). The 

 

 
Figure 2. The skewness and kurtosis functions of MQLD at different parameter values of δ  and α . 
 

 
Figure 3. The Fano factor function of MQLD at different parameter values of ,δ α  and θ . 
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following proposition provides mgf of the MQLD: 
Proposition 2. The mgf say ( )YM t  of the MQLD is given as follows: 

( )
( )( )

( )( )13 1
3

.
1

YM t t
t

δ δ
δ

θ α θ θ
α θ

− −= − +
+ −

            (7) 

Proof. 

( ) ( )

( ) ( )
( ) ( )( )

( ) ( )
( ) ( ) ( )( )

( )( )
( )( )

13
30

3 1 1
3 0 0

13 1
3

e

ee d
1

e d e d
1

.
1

ty
Y

y
ty

y t y t

M t E

y y

y y y

t
t

θ
δ

θ θδ δ

δ δ
δ

θ δ α θ
α δ

θ δ α θ
α δ

θ α θ θ
α θ

−
∞ −

∞ ∞− − − −− −

− −

=

= Γ +
+ Γ

= Γ +
+ Γ

= − +
+ −

∫

∫ ∫
 

Similar way, the characteristic function say, ( )Y tψ  of the MQLD can be de-
rived as follows: 

( ) ( ) ( )( )
( )( )13 1

3
e .

1
ity

Y t E it
it

δ δ
δ

θψ α θ θ
α θ

− −= = − +
+ −

        (8) 

where 1i = −  is the complex unit. 

3.3. Quantile Function 

We may use the quantile function to estimate the quantiles and simulate the random 
samples for a probability distribution. The quantile function can be derived by solv-
ing ( ) ,0 1uF y u u= < < . The quantile function of MQLD is obtained as: 

( ) ( ) ( )
( ) ( )( ) ( )( )3

3

1 1 1 e , ,
1

uy
u uF y y uθδ α δ θ

α δ
−= Γ + − −Γ =

+ Γ
 

( ) ( )( ) ( ) ( ) ( )3 31 1 e , 1 0uy
uy uθδ α δ θ α δ−⇒ Γ + − −Γ − + Γ =       (9) 

Since Equation (9) is not a closed-form, we cannot estimate the quantiles and 
simulate the random variables from MQLD directly. However, these can be done 
by using numerical methods. Further, By substituting 0.25,0.5u =  and 0.75 in 
Equation (9), the first three quartiles can be derived by solving the following eq-
uations, respectively. 

( ) ( )( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )

0.25

0.50

3 3
0.25

3 3
0.50

1 1 e , 0.25 1 0,

1 1 e , 0.50 1 0,

y

y

y

y

θ

θ

δ α δ θ α δ

δ α δ θ α δ

−

−

Γ + − −Γ − + Γ =

Γ + − −Γ − + Γ =
 

and 

( ) ( )( ) ( ) ( ) ( )0.753 3
0.751 1 e , 0.75 1 0.y yθδ α δ θ α δ−Γ + − −Γ − + Γ =

 

3.4. Distribution of Order Statistics 

The linear combinations of order statistics are used to estimate the unknown 
parameters for a distribution. Let 1 2, , , nY Y Y  be n independent random va-
riables from MQLD and 1: 2: :n n n nY Y Y≤ ≤ ≤  be the corresponding order statis-
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tics. Then, the pdf and cdf of :k nY  are given as: 

( ) ( ) ( ) ( )( ) ( )( ):

11 1 ,
, 1k n

k n k
Y Y Y Yf y f y F y F y

B k n k
− −

= −
− +

      (10) 

and 

( ) ( )( ) ( )( ):
1 ; 1, 2, , ,

k n

n j n j
Y Y Y

j k

n
F y F y F y k n

j
−

=

 
= − = 

 
∑        (11) 

respectively. By substituting ( )Yf y  and ( )YF y  of MQLD in Equations (10) 
and (11), the pdf and cdf of :k nY  for MQLD are obtained as: 

( ) ( ) ( ) ( )
( ) ( )( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )( )

( ) ( ) ( )
( ) ( )

:

13
3

1
3 3

3 3

13
3

31

3 30

1 e
, 1 1

e , e ,
1

1 1

1 e
, 1 1

e , 111
1

k n

y

Y

k n k
y y

y

i
yk

i

i

f y y
B k n k

y y

y
B k n k

yk
i

θ
δ

θ θ

θ
δ

θ

θ δ α θ
α δ

δ α δ θ δ α δ θ

α δ α δ

θ δ α θ
α δ

δ α δ θ

α δ α

−
−

− −
− −

−
−

−−

=


= Γ +
− + + Γ

   Γ + Γ Γ + Γ    × −    + Γ + Γ     

= Γ +
− + + Γ
 Γ + Γ−  × −     + Γ + 

∑
( ) ( )( )

( )( ) ( )( )3

0

1

e ,

n k

n k j n k jy

j

n k y
j

θ

δ

δ α δ θ

−

− − −−

=

Γ

−  × Γ Γ  
  

∑

 

( ) ( )( )
( ) ( ) ( )( )

( )
( )( ) ( )( )

( ) ( )( )

13
1

13 0 0 0

3

3

e 1

, 1 1

e ,
1

1

y
k n k i

n k
i j m

m j n i m k jy
i

i

y k n k i
i j mB k n k

y

δθ

θ

θ δ α θ

α δ

δ α δ θ

α δ

−−
− −

− +
= = =

+ + − − −−

Γ + − −   
=    

   − + + Γ

Γ Γ
× −

+ Γ

∑∑∑

 
and 

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( )( )
( )( ) ( )( )

:

3

3

3

3

3

3
0

3

3 0

0

e ,
1

1

e ,
1

e ,
1

1

1 e ,
1

k n

j
yn

Y
j k

n j
y

i
yjn

i

j k i

n j m n j my
n j

m

jn

j k i

yn
F y

j

y

yn j
j i

n j
y

m

θ

θ

θ

θ

δ α δ θ

α δ

δ α δ θ

α δ

δ α δ θ

α δ

δ α δ θ
α δ

−

=

−
−

−

= =

−
− −−

−
=

= =

 Γ + Γ  = −  + Γ  

 Γ + Γ ×
 + Γ 

 Γ + Γ     = −     + Γ     
− 

× Γ Γ 
 + Γ

=

∑

∑ ∑

∑

∑∑ ( )
( )( ) ( )( )

( ) ( )( )
3

30 0

e ,
1 ,

1

m p n i p m jyn j i
i

n i j
m p

yn j n j i
j i m p

θδ α δ θ

α δ

+ + − − −−−

+ −
= =

Γ Γ−    
× −    

     + Γ
∑ ∑
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respectively. 

4. Reliability, Inequality and Entropy Measures 

In this section, we derive and study some important reliability measures of MQLD, 
namely survival function/reliability function ( )S y , hazard rate function/failure 
rate function ( )h y , reversed hazard rate function ( )r y , cumulative hazard rate 
function ( )H y , mean residual life function ( )m y ; inequality measures, namely 
Lorenz curve ( )( )L F y , and Benferroni curve ( )( )B F y ; and the Renyi entropy 
measure. 

4.1. Survival and Hazard Rate Functions 

The survival function and hazard rate function are crucial functions to specify a 
survival distribution. The survival function is the probability of surviving up to a 
point λ . Then, the survival function of MQLD is defined as: 

( ) ( ) ( ) ( ) ( )
( ) ( )

3

3

e ,
1

1

y y
S y p Y y F y

θδ α δ θ

α δ

−Γ + Γ
= > = − =

+ Γ
.       (12) 

Note that, ( )0 1S =  and ( )lim 0y S y→∞ = . 
The instantaneous failure rate is described by the hazard rate function (hrf). 

The hrf of MQLD is given by: 

( ) ( ) ( )
( )

( ) ( )( )
( ) ( )

0

13

3

|
li

.

m

e

e ,

y

y

y

P y Y y y Y y f y
h y

y S y

y

y

δθ

θ

θ δ α θ

δ α δ θ

∆ →

−−

−

< < + ∆ >
= =

∆

Γ +
=

Γ + Γ

           (13) 

Note that, ( ) ( )
3

30 0
1

h fθα
α

= =
+

 and ( )lim y h y θ→∞ = . 

Figure 4 illustrates the possible patterns of the hrf of MQLD at different pa-
rameter values. The results indicate that MQLD has the capability to model the 
monotonic increasing and decreasing, constant, and bathtub failure rate shapes 
while QLD has only increasing failure rate shape. 

The reversed hazard rate function of MQLD is defined as: 

( ) ( )

( )
( )

( ) ( )( )
( ) ( )( ) ( )

0

13

3

|
lim

e
,

1 e 1 ,

y

y

y

P y Y y y Y y
r y

y

yf y
F y y

δθ

θ

θ δ α θ

δ α δ θ

∆ →

−−

−

< < + ∆ <
=

∆

Γ +
= =

Γ − + −Γ

         (14) 

and the corresponding cumulative hazard rate function that represents the total 
number of failures over an interval of time is defined for MQLD as: 

( ) ( ) ( ) ( )
( ) ( )

3

3

e ,
log log .

1

y y
H y S y

θδ α δ θ

α δ

− Γ + Γ = − = −    + Γ 
      (15) 
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Figure 4. The hazard rate function of MQLD at different parameter values of θ , α , and δ . 
 

This is a monotonic increasing function and satisfies ( )0 0H =  and  
( )lim y H y→∞ = ∞ . 

4.2. Mean Residual Life Function 

The mean residual life function represents the expected additional lifetime of a 
component that has survived up to time 0y > . It is an important characteristic 
in the reliability study. The mean residual life function say ( )m y , is defined as:  

( ) ( ) ( ) ( )1/ d
1 y

m y E Y y Y y tf t t y
F y

∞
= − > = −

− ∫ . The following proposition gi- 

ves the ( )m y  for the MQLD. 

Proposition 3. The mean residual life function of MQLD is given by: 

( )
( ) ( )( ) ( )( )

( ) ( )( )

3

3

e ,
.

e ,

y

y

y y y
m y

y

δθ

θ

δ α θ δ θ δ θ

θ δ α δ θ

−

−

Γ + + Γ −
=

Γ + Γ
         (16) 

Proof. ( ) ( ) ( )1 d
1 y

m y tf t t y
F y

∞
= −

− ∫  and note that, 

( ) ( ) ( )
( ) ( )( )

( ) ( )
( )( )

( ) ( )
( ) ( ) ( )( )

13
3

3 1
3

3
3

ed d
1

e d e d
1

1 e 1 1,
1

y

y y

t t
y y

y

tf t t t y t

t t t t

y y

θ
δ

θ δ δ θ

θ

θ δ α θ
α δ

θ δ α θ
α δ

δ α θ δ θ
θ α δ

−
∞ ∞ −

∞ ∞− − −

−

= Γ +
+ Γ

= Γ +
+ Γ

= Γ + + Γ +
+ Γ

∫ ∫

∫ ∫
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Therefore, 

( ) ( ) ( ) ( )
( ) ( )( )
( ) ( )( ) ( )( )

( ) ( )( )

3

3

3

3

e 1 1,
e ,

e ,
.

e ,

y

y

y

y

y y
m y y

y

y y y

y

θ

θ

δθ

θ

δ α θ δ θ

θ δ α δ θ

δ α θ δ θ δ θ

θ δ α δ θ

−

−

−

−

Γ + + Γ +
= −

Γ + Γ

Γ + + Γ −
=

Γ + Γ

 

Then, Equation (16) satisfies: ( ) 0m y ≥ , ( ) ( )
3

3
0

1
m α δ µ

θ α
+

= =
+

, and  

( ) 1lim y m y
θ→∞ = . 

4.3. Lorenz and Bonferroni Curves 

The Lorenz and Bonferroni curves are used to measure the income inequality. 
They are widely used in reliability, insurance, economises, and medicine. The  

Lorenz curve say ( )( )L F y , is defined as: ( )( )
( )d

1 y
tf t t

L F y
µ

∞

= −
∫

, and the 

Bonferroni curve say ( )( )B F y , is defined as ( )( ) ( )( )
( )

L F y
B F y

F y
= . By substi-

tuting the integral part, ( )d
y

tf t t
∞

∫  value from the previous proposition’s proof, 

the ( )( )L F y  for MQLD can be obtained as: 

( )( )
( ) ( ) ( )

( ) ( )

3

3

e 1 1,
1 .

1

y

L F y

y yθδ α θ δ θ

α δ

−Γ + + Γ +
= −

+ Γ

             (17) 

Then, the ( )( )B F y  for the MQLD is given by: 

( )( )
( ) ( ) ( ) ( ) ( ) ( )( )( )

( ) ( ) ( ) ( ) ( )( )( )
3 3 3

3 3 3

1 e 1 1,

1 e ,

y

y

B F y

y y

y

θ

θ

α α δ δ δ α θ δ θ

α δ α δ δ α δ θ

−

−

+ + Γ − Γ + + Γ +
=

+ + Γ − Γ + Γ

    (18) 

4.4. Renyi Entropy 

The entropy measure is a measure of the variation of uncertainty for a distribu-
tion and widely used in the information theory. The Renyi entropy is a popular 
uncertainty measure say ( )RH γ  and it is an extension of Shannon entropy  

[13]. The ( )RH γ  is defined as: ( ) ( )( )
0

1 ln d
1RH f y y

γ
γ

γ
∞

=
− ∫ . The following 

proposition derives the Renyi entropy for MQLD: 
Proposition 4. The Renyi entropy for the MQLD is obtained as: 

( )
( )

( ) ( )( )
( )( ) ( )

1 3

13 30

1 11 ln
1 1

R i ii

i i
H

i

γ γ γ

γ δ

δ δγθ αγ
γ α γ δ α γ

−

−=

 − Γ −  =   −   + Γ 
∑           (19) 
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Proof. 

( ) ( )( )

( ) ( )
( ) ( )( )

( ) ( )( )
( ) ( )( )

( )( )
( ) ( )( )

( ) ( )

( )( )

( )
( ) ( )( )

( )

0

13
30

13
0 3

3 1

00 3 3

3

0 03 3

1 ln d
1

1 eln d
1 1

1 ln e d
1 1

1 ln e d
1 1

1 1ln
1 1

R

y

y

i
y

ii

i
ii

H f y y

y y

y y

y
y

i

y
i

γ

γ
θ

δ

γ γδ θγ
γ γ

γγ δ
γ θγ

γ γ

γ

δγ
γ

γ
γ

θ δ α θ
γ α δ

θ δ α θ
γ α δ

θ δ α γ θ
γ α δ δ α

θα γ
θ

γ α δ α

∞

−
∞ −

∞ − −

−
∞ −

=

∞

=

=
−

 
 = Γ +
 − + Γ 

= Γ +
− + Γ

Γ  
=   − + Γ Γ 

 
=   − + Γ 

∫

∫

∫

∑∫

∑ ∫
( )

( )
( ) ( )( )
( )( ) ( )

1

1 3

0 13 3

e d

1 11 ln
1 1

y

ii i

y

i i

i

θγ

γ γ
γ

γ δ

γ δ δθ α
γ α γ δ α γ

− −

−

= −

 
 
  
 

 − Γ −  =    −  + Γ  
∑

 

5. The Size-Biased of MQLD 

The weighted distributions are used to record the observations with an unequal 
chance. The application of the weighted distributions in reliability, medical, and 
ecological sciences have studied by Patil et al. (1978) [14]. The weighted random 
variable wY  of MQLD is defined as: 

( ) ( ) ( )
( )( )

; 0
wY

w y f y
f y y

E w y
= >                   (20) 

where ( )( ) ( ) ( ) ( )( )
0

d ; 0E w y w y f y y E w y
∞

= < < ∞∫ . 

When ( ) , 0w y yγ γ= > , the resulting distribution is called size-biased version 
of MQLD with order γ , and is defined as:  

( ) ( )
( )

; 0, 0
sY

y f y
f y y

E y

γ
γ

γ
γ= > > , 

where sY  is the respective random variable. The following proposition gives the 
density function for the sized-biased version of MQLD: 

Proposition 5. The density function for rth order sized-biased form of MQLD 
is derived as: 

( )
( ) ( )( )

( ) ( ) ( )

11 3

3

e
; 0, 1, 0, 0

1s

y

Y

y y
f y y

δγ γ θ

γ
θ δ α θ

γ δ γ δ
δ α γ γ δ

−+ −Γ +
= > > − > + >

Γ Γ + + Γ +
 (21) 

Proof. ( ) ( )
( )sY

y f y
f y

E y

γ
γ

γ
= . 

Note that 
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( ) ( )

( ) ( )
( ) ( )( )

( ) ( )
( )( )

( ) ( )
( ) ( ) ( )( )

0

13
30

3 1 1
3 0 0

3
3

d

e d
1

e d e d
1

1 1 .
1

y

y y

E y y f y y

y y y

y y y y

γ γ

θ
δγ

γ θ δ γ δ θ

γ

θ δ α θ
α δ

θ δ α θ
α δ

δ α γ γ δ
α δ θ

∞

−
∞ −

∞ ∞− − + − −

=

= Γ +
+ Γ

= Γ +
+ Γ

= Γ Γ + + Γ +
+ Γ

∫

∫

∫ ∫

 

Therefore, ( )
( ) ( )( )

( ) ( ) ( )

11 3

3

e

1s

y

Y

y y
f y

δγ γ θ

γ
θ δ α θ

δ α γ γ δ

−+ −Γ +
=

Γ Γ + + Γ +
 

The length-biased density function can be obtained by substituting 1γ =  in 
Equation (21) for MQLD and is given as: 

( )
( ) ( )( )
( )( )

12 3

1
3

e
; 0, 0,

s

y

Y

y y
f y y

δ θθ δ α θ
δ

δ α δ

− −Γ +
= > >

Γ +
        (22) 

and corresponding cdf is given as: 

( )
( )( ) ( ) ( )( ) ( )( )1 3

3

1 1 e 1 , ;

0, 0, 0,

s

y
YF y y y

y

θθ δ α θ γ δ θ
δ α δ θ

δ θ

−= Γ − − +
Γ +

> > >

   (23) 

where ( ) 1
0

, e d
b aa b λγ λ λ− −= ∫  is the lower incomplete gamma function. 

The mean and variance of length-biased MQLD are: 
( )

( )
3

3

2 1
s

α δ δ
µ

α δ θ

+ +
=

+
 

and 
( ) ( )( )( )

( )

2 3 3
2

23 2

1 2 4 1
s

δ δ α α δ δ δ
σ

α δ θ

+ + + − −
=

+
, respectively. 

6. Parameter Estimation 

This section introduces the parameter estimation methods of MQLD by using 
the method of moment estimation, maximum likelihood estimation method, 
and weighted least square estimation method. 

6.1. Method of Moment Estimation (MME) 

The method of moment estimators of ,θ α , and δ , abbreviated as MME MME
ˆ ˆ,θ α , 

and MMEδ̂  can be derived by equating the raw-moments, say rµ′ , to the sample 

moments, say 1 , 1, 2,3
n r

ii y
r

n
= =∑ . Then, we need to solve the following system 

of equations: 

( ) ( ) ( )( ) ( )3 3 3 3 2 2
1 11 0, 2 1 1 0,n n

i ii in y n yα δ α θ α δ δ α θ
= =

+ − + = + + − + =∑ ∑  and 

( )( )( ) ( )3 3 3 3
16 1 2 1 0n

iin yα δ δ δ α θ
=

+ + + − + =∑ . 

Since the simultaneous equations are not a closed-form, the numerical me-
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thods such as Newton-Rapshon can be employed to find the roots of the equa-
tions. 

6.2. Maximum Likelihood Estimation (MLE) 

The MLE method is the most commonly employed due to its better asymptotic 
properties. Suppose 1 2, , , ny y y  be the observed values from MQLD with the 
parameters ,θ α , and δ . The likelihood function of the ith sample value iy  
can be written as: 

( ) ( ) ( )
( ) ( )( )13

3

eŁ , , | ,
1

iy

i iy y
θ

δθθ α δ δ α θ
α δ

−
−= Γ +

+ Γ
 

and the log likelihood function is given by: 

( )( ) ( )

( ) ( ) ( )( )
( ) ( )( )

13
1 1

3

log , , | , , |

log log

log 1 log

n n
i ii i

L l

n y y

n n

δ

θ α δ θ α δ

θ θ δ α θ

α δ

−

= =

=

= − + Γ +

− + − Γ

∑ ∑

y y

. 

By solving the expressions 
( ), , |

0
l θ α δ

θ
∂

=
∂

y
, 

( ), , |
0

l θ α δ
α

∂
=

∂
y

, and 
 

( ), , |
0

l θ α δ
δ

∂
=

∂
y

, the maximum likelihood estimators of ,θ α , and δ , abbre-

viated as MLE MLE
ˆ ˆ,θ α , and MLEδ̂  can be obtained. The system of the equations 

are: 

( )
( ) ( )

( )
( ) ( )

2 1 2 2

1 1 31 13 3

1 3 3, ,
1

n ni
ii i

i i

yn ny
y y

δ δ

δ δ

δ θ α δ α
θ αδ α θ δ α θ

− −

− −= =

− Γ
+ = =

+Γ + Γ +
∑ ∑

 

and 
( ) ( ) ( ) ( )

( ) ( )
( )

13

13

logi i

i

y y
n

y

δ

δ

δ ψ δ α θ θ
χ δ

δ α θ

−

−

Γ +
=

Γ +
, where 

( ) ( ) ( )
( )

log
a

a a
a a

ψ
′Γ∂

= Γ =
∂ Γ

 

The asymptotic confidence intervals for the parameters ,θ α , and δ  are de-
rived by the asymptotic theory. The estimators are asymptotic three-variate 
normal with mean ( ), ,θ α δ  and the observed information matrix: 

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2 2

2

2 2 2

2

2 2 2

2

, , | , , | , , |

, , | , , | , , |
, ,

, , | , , | , , |

l l l

l l l
I

l l l

θ α δ θ α δ θ α δ
θ α θ δθ

θ α δ θ α δ θ α δ
θ α δ

α θ α δα
θ α δ θ α δ θ α δ
δ θ δ α δ

 ∂ ∂ ∂
− − − 

∂ ∂ ∂ ∂∂ 
 ∂ ∂ ∂
 = − − −

∂ ∂ ∂ ∂∂ 
 ∂ ∂ ∂ − − − ∂ ∂ ∂ ∂ ∂ 

y y y

y y y

y y y

 
at MLE MLE

ˆ ˆ,θ θ α α= = , and MLE
ˆδ δ= . That is,  

( ) ( ) ( )( )1
MLE MLE MLE 3

ˆ ˆˆ, , , , , , ,N Iθ α δ θ α δ θ α δ−


. The elements of the observed 
information matrix are given in Appendix. 

Therefore, the ( )1 100%a−  confidence interval for the parameters ,θ α , 
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and δ  are given by 

( ) ( ) ( )MLE 2 MLE MLE 2 MLE MLE 2 MLE
ˆ ˆ ˆ ˆˆ ˆ, , ,a a az var z var z varθ θ α α δ δ± ± ±

 
wherein, the ( ) ( )MLE MLE

ˆ ˆ,var varθ α , and ( )MLE
ˆvar δ  are the variance of  

MLE MLE
ˆ ˆ,θ α , and MLEδ̂ , respectively, and can be derived by diagonal elements of 

( )1 , ,I θ α δ−  and 2az  is the critical value at a level of significance. 

6.3. Weighted Least Square Estimation (WLE) 

The weighted least square estimators of ,θ α , and δ , abbreviated as MLE MLE
ˆ ˆ,θ α , 

and MLEδ̂  can be obtained by minimizing: 

( ) ( ) ( )
( ) ( )

:

2 2

1

1 2
, ,

1 1i n

n
Yi

n n iW F y
i n i n

θ α δ
=

+ +  = − − + + 
∑  with respect to , ,θ α δ , 

where ( )
:i nYF y  is the cdf of the order statistic defined in section 3.4. Then, the 

estimators can be found by solving the non-linear equations: 

( ) ( )
( ) ( ) ( ) ( )

: :

2 2

1

1 2
0; 1,2,3,

1 1i n i n

n D m
Y Yi

n n iF y F y m
i n i n=

+ +  − = = − + + 
∑

 

where 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

: :: :

::

1 2

3

, ,

.

i n i ni n i n

i ni n

D D
Y YY Y

D
YY

F y F y F y F y

F y F y

θ α

δ

∂ ∂
= =
∂ ∂
∂

=
∂

 

7. Simulation Study 

In this section, we examine the performance of the MME and MLE method in 
the unknown parameter estimation of MQLD with respect to the sample size n. 
Further, a comparison study is performed among the MQLD, QLD, and LD 
based on minimum negative log-likelihood ( 2log L− ) by using various simu-
lated samples from MQLD. The following algorithm is used to generate the 
random samples from MQLD: 

Algorithm 
1) Generate ( )0,1 ; 1,2,iu uniform i =   
2) Solve the non-linear equation for uy ;  
( ) ( )( ) ( ) ( ) ( )3 31 1 e , 1 0uy

uy uθδ α δ θ α δ−Γ + − −Γ − + Γ = . 

7.1. Performance of MME and MLE Methods 

The simulation study is designed to examine the performance of  

( )MLE MLE MLE
ˆ ˆˆ, ,θ α δ  and ( )MME MME MME

ˆ ˆˆ, ,θ α δ  with respect to the sample size n 
as follows: 

1) generate thousand samples of size n 
2) Compute the average biases, and mean squared errors of ˆ ˆ,θ α , and δ̂  of 

the parameters ,θ α , and δ  by using the equations: 
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a) The average biases are: 

( ) ( ) ( )
1000 1000 1000

1 1 1

ˆ ˆˆ
, , .

1000 1000 1000
i i i

θ θ α α δ δ
= = =

− − −∑ ∑ ∑

 
b) The average MSEs are: 

( ) ( ) ( )
1000 1000 10002 22

1 1 1

ˆ ˆˆ
, , .

1000 1000 1000
i i i

θ θ α α δ δ
= = =

− − −∑ ∑ ∑

 
Table 3 and Table 4 represent the performance of MME and MLE method for the 

combinations of parameter values ( )0.25, 0.75, 2.25θ α δ= = =  that represents 
the unimodel case and ( )0.75, 1.5, 3.25θ α δ= = =  that represents the monotonic 
decreasing case, respectively. They summarize average MMEs, MLEs, biases, and 
MSEs for different sample sizes and corresponding results of MLE method are 
given in parentheses. We consider sample sizes of 60,100,140n =  and 180. 

Observations from Table 3 and Table 4, the biases and MSEs decrease as n 
increases in both methods. Then, both methods verify the asymptotic property. 
However, comparing between MME and MLE method for given combination of 
parameter values and different sample sizes, it is clear that the MLE method is 
better than the MME since its’ ability to converge to the actual parameter value 
is stronger than the method of moment estimation. Further, we have noted that 
this ability is very strong for a large sample. Among the MLEs of unknown pa-
rameters, θ  and δ  are overestimated and α  is underestimated for both 
combinations of parameters. Further, MLEθ̂  has low biases and MSEs while 

MLEδ̂  has high biases and MSEs. 
 

Table 3. Performance of MME and MLE methods for MQLD  
( 0.25, 0.75, 2.25θ α δ= = = ). 

Sample size  0.25θ =  0.75α =  2.25δ =  

60n =  MME (MLE) 0.4238 (0.3265) 0.9074 (0.7305) 4.5009 (2.9685) 

 bias 0.1738 (0.0765) 0.1574 (−0.0195) 2.2509 (0.7185) 

 MSE 0.0538 (0.0184) 0.0351 (0.0302) 7.9620 (1.3852) 

100n =  MME (MLE) 0.3875 (0.2996) 0.8858 (0.7268) 4.1126 (2.7266) 

 bias 0.1375 (0.0497) 0.1358 (−0.0232) 1.8626 (0.4765) 

 MSE 0.0407 (0.0098) 0.0332 (0.0324) 6.3121 (0.7030) 

140n =  MME (MLE) 0.3866 (0.2797) 0.8809 (0.7355) 3.8923 (2.5781) 

 bias 0.1366 (0.0298) 0.1309 (−0.0145) 1.6423 (0.3282) 

 MSE 0.0364 (0.0039) 0.0202 (0.0090) 5.0442 (0.4240) 

180n =  MME (MLE) 0.3523 (0.2682) 0.8703 (0.7362) 3.7950 (2.4670) 

 bias 0.1023 (0.0182) 0.1203 (−0.0137) 1.5450 (0.2170) 

 MSE 0.0213 (0.0027) 0.0195 (0.0077) 3.8063 (0.3170) 
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Table 4. Performance of MME and MLE methods for MQLD  
( 0.75, 1.50, 3.25θ α δ= = = ). 

Sample size  0.75θ =  1.50α =  3.25δ =  

60n =  MME (MLE) 0.5170 (0.9194) 0.9258 (1.3100) 1.5156 (3.7137) 

 bias −0.2329 (0.1694) −0.5741 (−0.1899) −1.7343 (0.4637) 

 MSE 0.1140 (0.1026) 0.4276 (0.3873) 3.6539 (2.0807) 

100n =  MME (MLE) 0.6202 (0.8710) 1.0321 (1.3759) 1.7230 (3.6485) 

 bias −0.1297 (0.1210) −0.4678 (−0.1240) −1.5269 (0.3985) 

 MSE 0.0894 (0.0617) 0.2200 (0.2026) 3.5129 (1.2336) 

140n =  MME (MLE) 0.6736 (0.8369) 1.0805 (1.4098) 1.9488 (3.5212) 

 bias −0.0763 (0.0869) −0.4194 (−0.0901) −1.3011 (0.2712) 

 MSE 0.0590 (0.0535) 0.2137 (0.1126) 2.9998 (0.8791) 

180n =  MME (MLE) 0.7005 (0.7832) 1.1019 (1.4652) 1.9701 (3.3997) 

 bias −0.0494 (0.0332) −0.3980 (−0.0347) −1.2798 (0.1497) 

 MSE 0.0456 (0.0140) 0.1985 (0.0650) 2.3752 (0.5366) 

7.2. Comparison Study among MQLD, QLD and LD 

This comparison study is performed to show how the MQLD provides a better 
fit than QLD and LD for the various data sets that are simulated from MQLD. 
Since the ranges of skewness, and kurtosis of QLD are, 12 2Qγ< < , and 

26 9Qγ< < , respectively, we define three ranges of SKs and EKs to simulate data 
sets as R1, R2 and R3, where R1: 2SK <  and 3EK < , R2: 2 2SK< < , and 
3 6EK< < , and R3: 2SK >  and 6EK > . This study is designed as follows: 

1) Generate 8 random samples of size, 150n =  from MQLD ( , ,θ α δ ) for 
each range R1, R2, and R3. 

2) Fit the MQLD, QLD, and LD to the 24 generated random samples. 
3) Make the comparisons based on minimum 2log L−  values. 
Here, the estimates of the unknown parameters for the distributions are de-

rived by the MLE method. Tables 5-7 summarize 2log L−  values of MQLD, 
QLD, and LD for the generated random samples. Based on minimum 2log L−  
value, the MQLD performs better than QLD, and LD in all given ranges of SK, 
EK, and FF. 

 
Table 5. 2log L−  values of MQLD, QLD, and LD for the simulated random samples of 
R1. 

Model 

0.701, 0.527SK EK= = −  
FF →  

3 15 30 45 70 140 210 490 

MQLD 668.798 1268.201 1488.128 1624.744 1813.287 2047.060 2194.578 2500.956 

QLD 768.887 1368.29 1588.217 1724.834 1913.376 2149.149 2294.667 2601.045 

LD 805.976 1475.304 1718.870 1867.903 2070.464 2319.034 2470.226 2784.400 
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Table 6. 2log L−  values of MQLD, QLD, and LD for the simulated random samples of 
R2. 

Model 

1.899, 5.490SK EK= =  
FF →  

3 15 30 45 70 140 210 490 

MQLD 743.316 1357.026 1606.559 1734.962 1936.425 2185.957 2314.360 2619.387 

QLD 744.673 1358.383 1607.916 1736.319 1937.781 2187.314 2315.717 2620.744 

LD 747.689 1379.203 1636.435 1768.186 1973.894 2227.069 2356.761 2663.711 

 
Table 7. 2log L−  values of MQLD, QLD, and LD for the simulated random samples of 
R3. 

Model 

3.123, 14.144SK EK= =  
FF →  

3 15 30 45 70 140 210 490 

MQLD 304.039 887.055 1098.659 1222.417 1445.271 1671.57 1815.934 2122.564 

QLD 469.156 1052.172 1263.775 1387.533 1610.387 1836.686 1981.05 2287.681 

LD 510.242 1183.229 1436.436 1584.712 1850.108 2115.803 2282.799 2630.641 

8. Real-World Applications 

In this section, we fit the MQLD to three published real-data sets and compare 
its’ performance with some existing Lindley family distributions. The 2log L− , 
Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and 
Kolmogorov-Smirnov Statistics (K-S Statistics) are utilized to compare the per-
formance of distributions. Based on the minimum value of these statistics the 
best model is chosen to fit the data. The unknown parameters of distributions 
are estimated by using the MLE method. The three real-data sets are: 

Data set 1: Fuller et al. (1994) [15] discussed this data set that represents the 
strength of glass of the aircraft window. The data are: 

18.83, 20.80, 21.657, 23.03, 23.23, 24.05, 24.321, 25.50, 25.52, 25.80, 26.69, 
26.77, 26.78, 27.05, 27.67, 29.90, 31.11, 33.20, 33.73, 33.76, 33.89, 34.76, 35.75, 
35.91, 36.98, 37.08, 37.09, 39.58, 44.045, 45.29, 45.381. 

Data set 2: The following data set represents the tree circumferences in Mar-
shall, Minnesota and reported by Shakil et al. (2010) [16]. 

1.8, 1.8, 1.9, 2.4, 3.1, 3.4, 3.7, 3.7, 3.8, 3.9, 4.0, 4.1, 4.9, 5.1, 5.1, 5.2, 5.3, 5.5, 8.3, 
13.7. 

Data set 3: The data set was used by Murthy et al. (2004) [17] that represents 
50 items failure times in weeks. 

0.013, 0.065, 0.111, 0.111, 0.163, 0.309, 0.426, 0.535, 0.684, 0.747, 0.997, 1.284, 
1.304, 1.647, 1.829, 2.336, 2.838, 3.269, 3.977, 3.981, 4.520, 4.789, 4.849, 5.202, 
5.291, 5.349, 5.911, 6.018, 6.427, 6.456, 6.572, 7.023, 7.087, 7.291, 7.787, 8.596, 
9.388, 10.261, 10.713, 11.658, 13.006, 13.388, 13.842, 17.152, 17.283, 19.418, 
23.471, 24.777, 32.795, 48.105. 
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Some important statistical measures for data sets 1, 2, and 3, are summarized 
in Table 8. 

The empirical histogram of the data sets and the fitted densities of MQLD, 
QLD, and LD are displayed in Figure 5. One can observe that the fitted density 
of MQLD gives a closer fit with the empirical distributions of the data sets. Table 
9 lists the MLEs, SDs, 2log L− , AICs, BICs, and K-S statistics with critical val-
ues for the fitted models to the data set 1, 2, and 3. It is noted that from Table 9, 
the MQLD provides the lowest values for the 2log L− , AIC, and BIC among all 
fitted models. Then, it is clear from Table 9 and Figure 5 results that the MQLD 
provides a better fit than the QLD and LD. 

 
Table 8. Statistical measures for data set 1, 2, and 3 

Data set Sample size Minimum value Maximum value Mean Median SK EK FF 

Data 1 31 18.830 45.381 30.811 29.900 0.405 −0.713 1.708 

Data 2 20 1.800 13.700 4.535 3.950 2.173 5.353 1.550 

Data 3 50 0.013 48.105 7.821 5.32 2.237 6.035 10.836 

 
Table 9. MLEs, SDs, AICs, BICs, K-S statistics and its critical values of the fitted models. 

Data set Model MLE SD 2log L−  AIC BIC 
K-S  

statistic 
Critical  
value 

Data 1 

MQLD ˆ 0.616θ =  0.056 208.235 214.235 218.537 0.131  

 ˆ 0.013α =  0.618     

 ˆ 18.934δ =  1.556     

QLD 2ˆ 3.25 10θ −= ×  0.005 274.528 278.528 281.396 0.426 0.244 

 3ˆ 4.967 10α = ×  5.932     

TwPLD ˆ 0.032θ =  0.006 274.528 278.528 281.396 0.426  

 ˆ 0.408α =  5.931     

LD ˆ 0.063θ =  0.008 253.988 255.988 257.422 0.333  

Data 2 

MQLD ˆ 0.926θ =  0.299 85.167 91.167 94.155 0.184  

 ˆ 0.001α =  2.970     

 ˆ 4.198δ =  1.274     

QLD ˆ 0.220θ =  0.004 100.473 104.473 106.465 0.278 0.304 

 3ˆ 3.982 10α = ×  5.932     

TwPLD ˆ 0.220θ =  0.049 100.473 104.473 106.465 0.278  

 ˆ 0.167α =  8.389     

LD ˆ 0.380θ =  0.061 94.065 96.065 97.061 0.211  

Data 3 
MQLD ˆ 0.086θ =  0.021 300.5 306.5 312.236 0.076  

 ˆ 0.094α =  3.559      
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Continued 

 

 ˆ 0.684δ =  0.117      

QLD ˆ 0.013θ =  0.002 305.681 309.681 313.506 0.109 0.192 

 4ˆ 1.517 10α = ×  1.876     

TwPLD ˆ 0.013θ =  0.002 305.681 309.681 313.506 0.109 

 3ˆ 1.984 10α = ×  4.194     

LD ˆ 0.232θ =  0.023 322.558 324.558 326.470 0.181  

 

 
Figure 5. Empirical histograms of the data sets with fitted densities of MQLD, QLD, TwPLD, and LD. 

9. Conclusion 

In this paper, we have introduced a new three-parameter Lindley family distri-
bution, called the modified Quasi Lindley distribution (MQLD). We studied its’ 
fundamental structural properties such as the density, moments and related 
measures, quantile function, order statistics, failure rate function, mean residual 
life function, inequality and entropy measures, and size-biased of MQLD. The 
new distribution has very flexible properties for lifetime data. Its’ density func-
tion covers various ranges of horizontal symmetries, tail-weights, and disper-
sion. Further, the failure rate function of new distribution can be increasing, de-
creasing, constant, and bathtub shapes. A simulation study indicates that the 
maximum likelihood method offers better performance and accuracy than the 
method of moment estimation. The maximum likelihood estimation method was 
approached for estimating the unknown model parameters. A simulation study 
and three real-world applications showed its superiority over the Quasi Lindley 
distribution, Two-parameter Lindley distribution, and Lindley distribution. 
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Appendix 

The terms 1 2,T T , and 3T  are defined as follows: 

( ) ( ) 13
1 iT y δδ α θ −= Γ + , 

( ) 2 1
2 1 iT yδ δδ θ − −= − , and 

( ) ( ) ( ) ( )13 3
3 logi iT y yδα δ ψ δ α θ θ−= Γ + . 

Then, the second order partial derivatives of the log-likelihood function are as 
follows: 
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where ( )1 aψ  is the trigamma function and it is defined as: 
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