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Abstract 
In this paper, we propose a Gasser-Müller type spot volatility estimator (ab-
breviated as GM type estimator) for diffusion process, which is weighted by 
integrals, it is different from the kernel spot volatility estimator discussed by 
Kristensen (2010). Under more general conditions, the asymptotic unbiased-
ness and the asymptotic normality of the GM type estimator are derived. The 
simulation results show that the GM type spot volatility estimator has good 
estimation effect, and its mean square error tends to be less than that of the 
kernel spot volatility estimator discussed by Kristensen (2010), so it provides 
a selection method for estimating the spot volatility in high frequency data 
environment. 
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1. Introduction 

Volatility is the main component of describing the price movement towards 
financial market, so we need to use the observed actual data to estimate vola-
tility. However, the traditional low-frequency data cannot meet the needs of 
high-frequency traders in today’s market, and the common models in the tradi-
tional low-frequency field are no longer applicable to the high-frequency field. 
In order to avoid errors caused by setting any model, more and more scholars 
consider using non-parametric methods to estimate volatility in high-frequency 
data. 

Consider the diffusion process { } { }: 0t tX X t= ≥ , which satisfies that  

d d d ,t t t tX t Wµ σ= +                        (1.1) 
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where { }tW  is a standard Brownian motion, while { }tµ  and { }tσ  are adapted 
stochastic processes. The process { }tσ  is usually denoted the spot volatility 
process, while { }tµ  is the drift process. In the diffusion process, the volatility is 
an important measure to reflect the volatility of financial products’ logarithmic 
price. 

Under the condition that asset prices obey the diffusion process, the quadratic 
variation of the price process converges in probability to the integrated volatility. 
So quadratic variation, also known as realized volatility, is a consistent estimator 
of integrated volatility, and has attracted more and more attention. For example, 
Barndorff—Nielsen and Shephard [1] (2002) prove the central limit theorem of 
realized volatility. Christensen and Podolskij [2] (2005) give another estimator of 
integral volatility, range-based realized volatility, and prove the consistency and 
central limit theorem of this estimator under diffusion model. A nonparametric 
estimator is proposed by Li Guo and Bao [3] (2013) for the class of integrated 
self-weighted cross volatilities. Under assuming that processes X and Y are sam-
pled with microstructure noise and in an asynchronous way, the asymptotic prop-
erties, which include consistency and asymptotic normality, are obtained. There 
is still a lot of further research on the integrated volatility estimator, see also, 
Zhang, Mykland and At-Sahalia [4] (2005), Hansen, Large and Lunde [5] (2008), 
Li, et al. [6] (2013), Jing and Liu and Kong [7] (2015) and Li, Xie and Zheng [8] 
(2016). 

Merton [9] (1976) first proposed the jump-diffusion model. Later, Duffie, Pan 
and Singleton [10] (2000), Pan [11] (2002), Eraker, Johannes and Polson [12] 
(2003) found that asset price process contains improper mutation behavior, so 
jump part should be added in diffusion model. Previous studies have shown 
that integrated volatility is generally estimated by realized multiple power var-
iation and realized threshold volatility when asset prices obey jump-diffusion 
model. Barndorff-Nielsen and Shephard [13] [14] (2004, 2006) proposed realized 
power variation and realized bipower variation, and proved that realized bipow-
er variation is a robust consistent estimator of integrated volatility with jump 
process. By using the properties of Brown’s motion path, when the price obeys 
the jump-diffusion model with finite jump, another estimator of integrated vola-
tility, the realized threshold volatility, is proposed, and the central limit theorem 
is obtain by Mancini [15] [16] (2004, 2009). Christensen and Podolskij [17] 
(2012) put forward the realized multiple power variation of based-range. They 
also show the robustness of the estimator to jump behavior in probability limit 
and asymptotic distribution. The further research can be seen in Todorov [18] 
[19] (2009, 2010), At-Sahalia and Jacod [20] [21] (2009, 2011), Tauchen and Zhou 
[22] (2011). 

The integrated volatility characterizes the total volatility over a certain period 
of time for the past, but investors pay more attention to the spot volatility at a 
certain time, so we need to use high-frequency data to estimate the spot volatility. 
As the price process obeys the diffusion process, the rolling sample estimator for 
spot volatility was first proposed by Foster and Nelson [23] (1996). This rolling 
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sample method is extended by Andreou and Ghysels [24] (2002) to construct the 
rolling sample variance to estimate the quadratic variation of asset returns, and a 
rolling sample estimator with many similar characteristics to the instantaneous 
volatility estimator is proposed. They further discussed the asymptotically effec-
tive bandwidth and weighted form of the quadratic variation estimator, and es-
tablished the relationship between the instantaneous volatility estimator and the 
integrated volatility estimator. 

Moreover, Fan and Wang [25] (2008), Shigeyoshi and Simona [26] (2011), Zu 
and Boswijk [27] (2014), Yu, et al. [28] (2014), Mancini, Mattiussi and Renò [29] 
(2015), Curato, Mancino and Recchioni [30] (2018) and Liu, et al. [31] (2018) et 
al. have done a lot of research on instantaneous volatility estimation. Fan and 
Wang [25] (2008) employs a bivariate diffusion to model the price and volatility 
of an asset and investigates kernel type estimators of spot volatility based on 
high-frequency return data. And they establish both pointwise and global asymp-
totic distributions for the estimators. Zu and Peter [27] (2014) constructs a spot 
volatility estimate for high frequency financial data with market microstructure 
noise. At the same time, the consistency of the estimator is proved and the 
asymptotic distribution of the estimator is derived. Curato, Mancino and Rec-
chioni [30] (2018) defines a new nonparametric estimation of spot volatility based 
on the relationship between Laplace transformation of price process and fluctua-
tion process of Brownian semi-martingale model, and proves the consistency and 
asymptotic normality of the estimation. The simulation results confirm the theo-
retical results of the proposed estimator in the presence of noise effects on the 
microstructure. 

According to the idea of Nadaraya-Watson kernel regression estimation, 
Kristensen [32] (2010) proposes the NW type kernel estimation of spot volatility 

tσ   

( )( ) [ ]
22

1
ˆ , 0,

i

n

h i t
i

K t X Tτσ τ τ
=

= − ∆ ∈∑                (1.2) 

where T is the time interval, , 0,1, ,it i i nδ= =  , T nδ = , 
1i i it t tX X X
−

∆ = − , 
( )h

sK s K h
h
ττ − − =  

 
, :K R R  is a kernel, 0h >  is the bandwidth. And 

the asymptotic property of the kernel estimator is proved in Kristensen [32] 
(2010). 

In non-parameter kernel regression estimation, there are two popular kernel 
methods, Nadaraya-Watson estimator ( ),ˆn NW tµ  and Gasser-Müller estimator 

( ),ˆn GM tµ . Gasser and Müller [33] (1979) gave  

( )( ) ( ) ( ) ( )( )0
1 11

, 0
ˆ d ,K

n NW
t sE t h K s s O n nh n

h
µ γγ δµ µ −− − −− − = + + + 

 ∫   (1.3) 

and 

( )( ) ( ) ( )11
, 0

ˆ d ,n GM
t sE t h K s s O n

h
µγµ µ −− − = + 

 ∫           (1.4) 

where 0, 0Kµγ γ> >  and 0 1δ > . The two equations imply that Gasser-Müller 
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estimator ( ),ˆn GM tµ  has a better remainder term for the bias than Nadaraya- 
Watson estimator ( ),ˆn NW tµ . 

In view of this advantage, this paper will study the Gasser-Müller integrated 
type spot volatility estimator (or the GM type spot volatility estimator)  

( ) ( ) [ ]
1

22
,

1

1ˆ d , 0, .i

i i

n t
GM t ht

i
X K s s Tτσ τ τ

δ −=

= ∆ − ∈∑ ∫           (1.5) 

We will demonstrate the asymptotic property of the GM type instantaneous 
volatility estimator under more general conditions, including asymptotic unbias 
and asymptotic normality. 

The remainder of the paper is organized as follows. In Section 2, asymptotic 
property of the GM type instantaneous volatility estimator are proved. Simula-
tion study is put in Section 3. Finally, our conclusion is given in Section 4. 

2. Asymptotic Property of Estimation 

Throughout the paper, we will use the following basic assumptions. 
1) Let , , 0,1, ,iT n t i i nδ δ= = =  . 
2) (a) The processes { }tµ  and { }tσ  are jointly independent of { }tW , ab-

solutely integral and locally bounded; (b) There exist constants 0λ >  and  
0C >  such that  

.t tE C t s λσ σ− ≤ −                    (2.1) 

(c) Let ( ) 2
tf t σ= . Assume that ( )f t  is m times differentiable where 0m ≥ , 

and there exist constants 0α >  and 0C >  such that  
( ) ( ) ( ) ( ) .m mE f t f C t ατ τ− ≤ −               (2.2) 

3) (a) The kernel ( )K u  is bounded in 1R  and satisfies that ( )d 1K u u
+∞

−∞
=∫ , 

( ) dK u u
+∞

−∞
< ∞∫ , ( )d 0ju K u u

+∞

−∞
=∫  for 1,2, ,j m=  , and  

( ) dru K u u
+∞

−∞
< ∞∫  for some r m α≥ +  and r λ≥ ; (b) ( )K u  satisfies the 

βth order Lipschitz condition where 0β > . 
4) As n →∞ , 0nh →  and 1 1

nnh β+ → ∞ . 
Notice that when ( )f t  is not differentiable, 0m =  in (c) of (2). In this case, 

the conditions (2.1) and (2.2) are identical. 
Bandi and Nguyen [34] (2003) and Bandi and Phillips [35] (2003) assumed that 

tσ  and tµ  are at least twice continuously differentiable and satisfy Lipschitz 
condition. Kristensen [32] (2010) relaxed the restriction of differentiability and 
allowed the order of differentiability 0m ≥ . Our assumption (2) is to refer to 
the assumption A.2 - A.4 in Kristensen [32] (2010). 

In this section, we first establish the asymptotic unbias of the kernel estimator 
(1.5), and then study its asymptotic normality. 

Theorem 2.1. Assume that the conditions (1)-(4) hold. Then  

{ }( )2 2 1
, 1

1ˆ | ,m
GM t p n

n

E O n h
n h

α
τ τ β βσ σ σ − +

+

 
− = + + 

 
         (2.3) 

furthermore 
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( )2 2 1
, 1

1ˆ .m
GM n

n

E O n h
n h

α
τ τ β βσ σ − +

+

 
− = + + 

 
            (2.4) 

Proof We introduce some denotations. Let 
1

di

i i

t
t s st

X Wσ
−

∆ = ∫  and  

( ) ( )
1

22
,

1

1ˆ d .i

i i

n t
GM t ht

i
X K s sτσ τ

δ −=

= ∆ −∑ ∫

                (2.5) 

Obviously,  

( ) ( )

( ) ( )

( ) ( )

( )

1 1 1

1 1

1 1

1 1 1

2
2 2
, ,

1
2

1
2

1

1

1ˆ ˆ d d d

1 d d

1 d d

2 d d d .

i i i

i i i

i i

i i

i i

i i

i i i

i i i

n t t t
GM GM s s s ht t t

i
n t t

s s ht t
i

n t t
s ht t

i
n t t t

s s s ht t t
i

s W K s s

W K s s

s K s s

s W K s s

τ τσ σ µ σ τ
δ

σ τ
δ

µ τ
δ

µ σ τ
δ

− − −

− −

− −

− − −

=

=

=

=

− = + −

− −

= −

+ −

∑ ∫ ∫ ∫

∑ ∫ ∫

∑ ∫ ∫
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     (2.6) 

Due to boundedness of tµ , it follows that  

( ) ( ) ( )

( )

( )

1 1 1

2

1 1

0

1

1 d d d

d

d

.

i i i

i i i

n nt t t
s h ht t t

i i

T
h

s K s s C K s s

C K s s

C K u u

Cn

µ τ δ τ
δ

δ τ

δ

− − −= =

∞

−∞

−

− ≤ −

= −

≤

≤

∑ ∑∫ ∫ ∫

∫

∫

      (2.7) 

Note that 

( )
1 1

1 2
2d d ,i i

i i

t tlaw
s s s it t

W s Uσ σ
− −

=∫ ∫                    (2.8) 

where 1 2, , , nU U U  are independently and identically standard normal  
( )0,1N  and independent of the process σ . Let  

( ) ( )
1 1 1

1 2
2

1

2 d d d ,i i i

i i i

n t t t
n h s s it t t

i
A K s s s s Uτ µ σ

δ − − −=

= −∑∫ ∫ ∫           (2.9) 

Since { }( )| 0n tE A σ = , from (2.6)-(2.8), we find that  

{ }( ) { }( ) ( )2 2 1
, ,ˆ ˆ| | .GM t GM tE E O nτ τσ σ σ σ −− =             (2.10) 

Therefore, it is sufficient to show that  

{ }( )2 2
, 1

1ˆ | .m
GM t p n

n

E O h
n h

α
τ τ β βσ σ σ +

+

 
− = + 

 
            (2.11) 

By (2.8), we have that  

( ) { } ( ) { }
1 1

22 2| d | d ,i i

i i i

t t
t t s s t st t

E X E W sσ σ σ σ
− −

  ∆ = =     
∫ ∫         (2.12) 

and  

{ }( ) ( ) ( ) { }( )
( )

1

1 1

22 2 2
,

1

2 2

1

1ˆ | d |

1 d d .

i

ii

i i

i i

n t
GM t h t tt

i
n t t

h vt t
i

E K s sE X

K s s v

τ τ τ

τ

σ σ σ τ σ σ
δ

τ σ σ
δ

−

− −

=

=

− = − ∆ −

= − −

∑∫

∑∫ ∫





  (2.13) 
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By the mean value theorem of integrals, there exist [ ] ( )1, 1, 2, ,i i it t t i n−∈ =

  
such that  

{ }( ) ( )
1

2 2 2 2
,

1
ˆ | d .i

i

n t
GM t h i vt

i
E K t vτ τ τσ σ σ τ σ σ

−=

− = − −∑ ∫

         (2.14) 

We know that ( )K u  satisfies the βth Lipschiztz condition and 2
tσ  is bounded 

in [ ]0,T . It follows that  

( ) ( )

( ) ( ){ }

1

1

1

2 2
0

1

2

1

2 2
1 10

1

d d

d

1 d d ,

i

i

i

i

i

i

n t T
h i v h vt

i

n t
h i h vt

i

n t Ti
v vt

i n n n n

K t v K v v

K t K v v

t v C CC v v
h h h h

β β β

β β

τ σ τ σ

τ τ σ

δ δσ σ

−

−

−

=

=

+ +
=

− − −

= − − −

−
≤ ≤ ≤

∑ ∫ ∫

∑∫

∑∫ ∫







        (2.15) 

hence 

{ }( ) ( )

( )

( ) ( )

2 2 2 2
, 10

2 2
1

2 2
1

ˆ | d

d

d d .

n
n

n

n n
n

n n

T
GM t h v

n

T
h

uh
nh

T T
h h

uh
nh h

E K v v O
h

K u u O
h

K u u K u u O
h

β

τ τ τ β

τ β

τ ττ β

τ τ β

τ ττ τ β

δσ σ σ τ σ σ

δσ σ

δσ σ

+

−

+ +−

− −

+ +− −

 
− = − − +  

 

 
= − +  

 

 
= − +  

 

∫

∫

∫ ∫



 (2.16) 

Recalling ( ) 2
tf t σ=  in the assumption (2) and ( )f t  is m times differenti-

able and its mth derivative ( ) ( )mf t  satisfies the αth order Lipschitz condition 
in [ ]( )1 0,L T  where 0m ≥  and 0α > . By Taylor formula, we have that  

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2

1

1

d d

d d ,
! !

n n
n

n n

n n

n n

T T
h h

uh
h h

T Tj j mm
mn h hj mn

n
j h h

K u u K u u

f h h
u K u u f uh u K u u

j m

τ τ

τ ττ τ

τ τ

τ τ

σ σ

τ
τ θ

− −

+
− −

− −−

− −=

−

= + +

∫ ∫

∑ ∫ ∫
  (2.17) 

where 1θ ≤ . Note that ( )d 0, 1, 2, ,ju K u u j m
+∞

−∞
= =∫   and  

( ) dru K u u
∞

−∞
< ∞∫  where r m α≥ + , we have  

( ) ( ) ( ) ( )d d d ,n n

nn

T
h j j j r jh T n

hh

u K u u u K u u u K u u O h
τ τ

ττ

−
− ∞ −

−
−∞−

= − − =∫ ∫ ∫     (2.18) 

while  

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

d

d

d d

d ,

n

n

n

n

n

n

n

n

T
mh m

n
h

T
m mh m

n
h

m mm mh T
h

T
m mh m r m

n n
h

f uh u K u u

f uh f u K u u

f u K u u f u K u u

f uh f u K u u O h

τ

τ

τ

τ

τ

τ

τ

τ

τ θ

τ θ τ

τ τ

τ θ τ

−

−

−

−

− ∞
−

∞

−
−

−

+

 = + − 

− −

 = + − + 

∫

∫

∫ ∫

∫

     (2.19) 
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and  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

d

d

d .

n

n

n

n

n

n

T
m mh m

n
h

T
mm mh

n
h

T
mh

n n
h

E f uh f u K u u

E f uh f u K u u

C uh u K u u O h

τ

τ

τ

τ

τ
α α

τ

τ θ τ

τ θ τ

θ

−

−

−

−

−

−

 + − 

≤ + −

≤ =

∫

∫

∫

         (2.20) 

Combining (2.17)-(2.20), we find that  

( ) ( ) ( )2 2d d .n n
n

n n

T T
h h m

uh p n
h h

K u u K u u O h
τ τ

α
τ ττ τσ σ

− −
+

+
− −

− =∫ ∫         (2.21) 

We obtain the desire result (2.11) from (2.16) and (2.21). Complete the proof. 
Theorem 2.2. Assume that assumptions (1)-(3) hold, and 1 2β >  in (b) of 

(3). If the bandwidth nh  satisfies  
( ) ( )1 2 1 2 ,nnh β β+ − → ∞                     (2.22) 

( )2 1 0,m
nnh α+ + →                       (2.23) 

then 

( )
( )

( )
1 2 2

,

4 2

ˆ
0,1 .

2 d

n GM d
h

N
K z z

τ τ

τ

δ σ σ

σ

−

∞

−∞

−
→

∫
              (2.24) 

Here we give some explanations for the conditions. 
Remark 2.1. Obviously, 0nh →  from (2.23). Note that  

( ) ( )1 2 1 12 1β β β+ − > +  as 1 2β > , so that 1 1
nnh β+ → ∞  from (2.23). It 

implies that the assumption (4) naturally holds under (2.22) and (2.23). There-
fore, the assumption (4) doesn’t appear in the assumption of Theorem 2.2.  

Remark 2.2. Normally, the used kernel function ( )K u  is derivative bounded. 
Thus, ( )K u  usually satisfies 1β ≥  order Lipschitz condition. In this case,  

( ) ( )1 31 2 21 β β< + − ≤ . Thus it can be seen that (2.22) is a reasonable condi-
tion.  

Remark 2.3. The condition (2.23) is used in Kristensen [32] (2010, Theorem 3 
and Theorem 4). It requires that 2

tσ  has smoothness. If 1m α= = , then (2.23) 
is equivalent to 5 0nnh → , while If 2m =  and 1α =  (refer to Bandi and Nguyen 
[34] (2003) and Bandi and Phillips [35] (2003)), then (2.23) is equivalent to  

7 0nnh → . 
To prove the theorem, we introduce the following lemmas. 
Lemma 2.1. (Rosenthal [36], 1970) Let { }: 1i iξ ≥  be a sequence of indepen-

dent random variables with ( ) 0iE ξ =  and ( )p
iE ξ < ∞  for some 2p ≥ . Then 

there exists constant C no depending on n such that  
2

2

1 1 1
.

p pn n np
i i i

i i i
E C E Eξ ξ ξ

= = =

   ≤ +  
   

∑ ∑ ∑             (2.25) 
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Lemma 2.2. Let the kernel ( )K u  satisfies ( ) dK u u
+∞

−∞
< ∞∫ ,  

( ) dru K u u
+∞

−∞
< ∞∫  where 0r > , and there exists constants 0β >  and  

0C >  such that  

( ) ( ) for any , .K u K v C v v u v Rβ− ≤ − ∈            (2.26) 

If 0h →  and 1 1nh β+ → ∞ , then for any given ( )0,Tτ ∈ ,  

( ) ( ) ( )( )11 1

1
d .

n
r

h i
i

K s K u u O h nh βδ τ
−∞ +

−∞
=

− = + +∑ ∫       (2.27) 

where 1i i it s t− ≤ ≤ .  
Proof By the mean value theorem, there exist [ ]1

ˆ ,i i it t t−∈  such that  

( ) ( )
11 1

ˆd .i
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h n h it

i i
K s s K tτ δ τ

−= =

− = −∑ ∑∫               (2.28) 

Hence, 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )
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δ τ τ

−= = = =

=

∞
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Complete the proof. 
Proof of Theorem 2.2. Let  
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Recalling nA  defined in (2.9), we have that ( )1

2 ,n
n i iiA a Uµ σ
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= ∑ . Hence, 

by Lemma 2.1,  
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It implies that ( )4 4 2
n nE A Cn h− −≤ . From this and (2.6)-(2.9), it follows that, for 

any given 0ε >   
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that is  

https://doi.org/10.4236/ojs.2021.112017


W. W. Xu et al. 
 

 

DOI: 10.4236/ojs.2021.112017 311 Open Journal of Statistics 
 

( ) ( )1 2 2
, ,ˆ ˆ 1 .n GM GM ph oτ τδ σ σ− − =                 (2.33) 

Therefore, the remaining task is to show that  
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Let  
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First, consider 2,nI . Denote that  
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By the mean value theorem, there exists [ ] ( )1, , , 1, 2, ,i i i i iv s s t t i n−∈ =
 , such 

that  
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Using Lemma 2.2, we get that 
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and  
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thus  

( ) ( )( )1, .n p nJ O n nh βλτ −−= +                   (2.46) 

Using the integral transform ( ) nu s hτ= −  for ( )2,nJ τ , and by (2) and (3), 
we known that  
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Note that ( ) du K u uα+∞

−∞
< ∞∫ , we find that  
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Combining (2.42) and (2.46)-(2.48), we have  
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It follows that  
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nI τ →                         (2.50) 
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where ( )2 2 1 2i iU U= −  are independent and identically distributed random 
variables with mean zero and variance one. According to (2.49), we obtain  

( ) ( )

( ) ( )

( )

1 1

2

,
,

4 2 4 2

1 2

4 2

1 d d

1 1d d

1 ,
1d

i i

i i

t t
vt t

n i n n
n i

p p
n n n n

n

n
p

n n

sv K s
y h h

c
T TK z z o K z z o

nh nh nh nh

C
nh

C
nhT K z z o

nh nh

τ τ

τ

τσ
τ δ

τ

σ σ

σ

− −

∞ ∞

−∞ −∞

∞

−∞

 −
 
 = =

   
+ +   

   

 
≤ ≤  

   
+  

 

∫ ∫

∫ ∫

∫

 

(2.52) 

https://doi.org/10.4236/ojs.2021.112017


W. W. Xu et al. 
 

 

DOI: 10.4236/ojs.2021.112017 313 Open Journal of Statistics 
 

and ( )2
,1 1n

n ii c τ
=

=∑ , by Barndorff-Nielsen and Shephard [14] (2006, Cor. 3.1), 
we obtain  
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Finally, consider 3,nI . By (2.3), we known  
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then  
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     (2.55) 

By (2.22) and (2.23), we obtain  

( ) ( )3, 1 .n pI oτ =                        (2.56) 

Therefore, it follows (2.34) from (2.50), (2.53) and (2.56). Complete the proof. 

3. Simulation 

Here, we will show the performance of the Gasser-Müller integrated type spot vo-
latility estimator 2

,ˆ GMτσ  (see 1.5) proposed in this paper and compare it with the 
kernel estimator 2ˆτσ  proposed by Kristensen [32] (2010). We consider the follow-
ing stochastic volatility model as referred in Kanaya and Kristensen [37] (2016),  

1,d d ,t t tX Wσ=  

( )2 2 2
2,d d d ,t t t tt Wσ β α σ κσ= − +  

where 1,tW  and 2,tW  are independent standard Brownian motions, parameters 
are respectively 0.510β = , 0.476α =  and 2 0.0518κ =  (refer to Kanaya and 
Kristensen [37] (2016), page 888). In order to simulate the above model, we use 
Euler discretization scheme (see Kloeden and Platten [7], 1999) to obtain the 
following model.  

( ) 1,1 ,i iiX δ δσ δε−∆ =                      (3.1) 

( )( ) ( )
2 2 2

2,1 1 .i ii iδ δ δσ β α σ δ κσ δε− −∆ = − +              (3.2) 

where { }1,iε  and { }2,iε  are i.i.d ( )0,1N , 0δ >  is the length of the discreti-
zation step. 

In the actual operation of the simulation, we assume that the drift term  
0tµ = , and the observed time is 2T =  (48 hours). The specific steps are as 

follows: 
1) Get the true value { }tσ . According to model (3.2), the truth sequence 
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{ }tσ  of tσ  is obtained, because the discretized model is approximated to the 
original continuity model and the simulation interval is as small as possible, so 
the time interval 100δ = ∆  is selected in model (3.2), where 1 3 60 24 2−∆ = × × × . 

2) Produce samples. iX δ∆  is sampled at 20 seconds, 1 minute, 5 minutes, 10 
minutes, 15 minutes and 30 minutes sampling frequency. Model (3.1) is used to 
generate simulated sample { }, 1, 2, ,iX i nδ∆ =  . The numbers of samples cor-
responding to various sampling frequencies are 

1 3 60 24 2,60 24 2,12 24 2,6 24 2,4 24 2,2 24 2δ − = × × × × × × × × × × × × × , 
respectively. At the same time, the sample is repeated 400 times and 400 sets of 
sample data are obtained for each sampling case. Define  

2
, , 1, 2, , ; 1, 2, , 400

it j i n jσ = =
   as the estimated value at time it  using the 

group j sample data. 
3) Choose kernel function and bandwidth. In the process of calculating esti-

mators 2
,ˆ GMτσ  and ˆτσ , we choose the Gaussian kernel. Since the choice of the 

kernel function has a great influence on estimates on the boundary (see Silver-
man [38] (1986)), in order to avoid the boundary effects, we only considered es-
timated values of the [ ]1 2,3 2 . Because the selection of bandwidth has a great 
influence on the internal estimation performance, we apply the cross-validated 
mentioned in Kristensen [32] (2010) to obtain the optimal bandwidth, namely, 
the optimum bandwidth is the minimum bandwidth for  

 ( ) { }
( )2

2
1 ,

1
ˆ ,i

i

n t
n l i u i t

i

X
ISE h I T t T σ

δ− −
=

 ∆ = ≤ ≤ − 
  

∑        (3.3) 

where 2
,ˆ

ii tσ−  is based on the samples removed from the ith sample to calculate 
the spot volatility estimator of the time it iδ= , lT  and uT  are severally the up-
per and lower limits of the time span we consider, ,1 2 3 2l uT T= = . Using the 
simulated sample { }iX δ∆  and (3.3), we acquire the optimal bandwidth of the 
kernel spot volatility estimator and the GM type spot volatility estimator under 
the different time intervals. 

We want to measure the accuracy of the estimator (i.e. estimation effect) by 
the bias, the variance and the integrated mean square error of this estimator. The 
calculation formulas for the bias, the variance and the integrated mean square 
error of the estimators are respectively  

2
400

2 2 2
,

1 1

1 1Bias ,
400 i i

n

t j t
i jn

σ σ
= =

 
= − 

 
∑ ∑   

2
400 400

2 2
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1 1 1

1 1 1Var ,
400 400i i

n

t j t j
i j jn

σ σ
= = =

 
= − 

 
∑ ∑ ∑   

and 

( )
400 22 2

,
1 1

1 1IMSE .
400 i i

n

t j t
i jn

σ σ
= =

= −∑ ∑   

Obviously, 2IMSE Var Bias= + . 
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Table 1. Performance in interior. 

Sampling frequency Type Bias2 Var IMSE 

20 seconds 

2
,ˆ GMτσ  0.46374 7.65629 8.12003 

ˆτσ  0.46388 7.65646 8.12033 

1 minute 

2
,ˆ GMτσ  1.59960 15.46301 17.06261 

ˆτσ  1.60059 15.46395 17.06454 

5 minutes 

2
,ˆ GMτσ  2.75254 28.00331 30.75585 

ˆτσ  2.76279 28.00738 30.77016 

10 minutes 

2
,ˆ GMτσ  4.16189 38.34402 42.50591 

ˆτσ  4.16406 38.38035 42.54441 

15 minutes 

2
,ˆ GMτσ  5.04384 47.84588 52.88972 

ˆτσ  5.02933 47.90483 52.93416 

30 minutes 

2
,ˆ GMτσ  7.52807 89.87464 97.40271 

ˆτσ  7.33064 90.20958 97.54365 

[Note: Integrated sq.bias (×10−4), variance (×10−4), and IMSE (×10−4) of estimators]. 

 
The bias, the variance and the integrated mean square error of the GM in-

stantaneous volatility estimator and the kernel instantaneous volatility estimator 
under the different time intervals are reported in Table 1. 

According to the simulation results shown in Table 1, we find that the higher 
the sampling frequency, the better the accuracy of both the GM type spot volatil-
ity estimator 2

,ˆ GMτσ  and the kernel spot volatility estimator ˆτσ , indicating that 
both estimators are suitable for high frequency data. At the same time, we see 
that the IMSE of 2

,ˆ GMτσ  is slightly smaller than that of ˆτσ . This shows that the 
GM type spot volatility estimator provides a selection method for estimating the 
spot volatility, especially in high frequency data environment, its estimation 
performance is better. 

4. Conclusion 

We propose a Gasser-Müller type spot volatility estimator for diffusion process, 
and prove its asymptotic unbiasedness and asymptotic normality under mild 
conditions. By simulation analysis, we find that the GM type spot volatility esti-
mator is a better estimator. Therefore, it provides a selection method for esti-
mating the spot volatility in high frequency data environment. 
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