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Abstract 
Influential observation is one which either individually or together with sev-
eral other observations has a demonstrably large impact on the values of var-
ious estimates of regression coefficient. It has been suggested by some authors 
that multicollinearity should be controlled before attempting to measure in-
fluence of data point. In using ridge regression to mitigate the effect of mul-
ticollinearity, there arises a problem of choosing possible of ridge parameter 
that guarantees stable regression coefficients in the regression model. This 
paper seeks to check whether the choice of ridge parameter estimator influ-
ences the identified influential data points. 
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1. Introduction 

It is well understood that not all observations in the data set play equal role when 
fitting a regression model. We occasionally find that a single or small subset of 
the data exerts a disproportionate influence on the fitted regression model. That 
is, parameter estimates or prediction may depend more on the influential subset 
than the majority of the data. Belsley et al. [1] defined an influential observation 
as one which either individually or together with several other observations has 
demonstrably large impact on the calculated values of various estimates, than is 
the case of most of the other observations. Influential observation in either de-
pendent or independent variable can be as a result of data error or other prob-
lem, for example, the influential data points in dependent variable can arise from 
skewness in the independent variable or from differences in the data generation 
process for small subset of sample. Obviously, outliers which are observations in 
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a data set which appears to be inconsistent with the remainder of other set of 
data [2] need not be influential observation in affecting the regression Equation 
[3]. Andrew and Pregibon [4] highlighted the need to find outliers that matter. 
They stated that it is not all outliers that need to be harmful in the way that they 
have undue influence on for instance, the estimation of the parameters in the 
regression model. If not all outliers matter, examining residual alone might not 
lead to the detection of influential observation. Thus, other ways of detecting in-
fluential observations are needed. 

Regression diagnostic comprises of a collection of method used in the identi-
fication of influential points and multicollinearity [1]. This includes methods of 
exploratory data analysis for influential points and identification of violation of 
assumption of least squares. When the assumption of Ordinary Least Squares 
(OLS) method that the explanatory variables are not linearly correlated is vi-
olated, this results to multicollinearity problem and should be controlled before 
attempting to measure influence [1]. One of the most popular methods of con-
trolling multicollinearity is the use of Ridge Regression (RR) suggested by Hoerl 
and Kennard [5]. The idea in RR method is to add small positive number (k > 0) 
to diagonal elements of the matrix ( )X X′  in order to obtain a ridge regression 
estimator  

( ) 1ˆ
R X X kI X Yβ −′ ′= +                      (1) 

Though the estimator obtained is bias but it yields minimum Mean Squares 
Error (MSE) when compared to OLS estimator. If k = 0, ˆ

Rβ  becomes the un-
biased OLS estimator ( β̂ ).The choice of ridge parameter k has always been a 
problem in using RR to solve for multicollinearity, hence methods of estimating 
the value of k had been suggested by several authors. Below are some suggested 
methods of estimating k: Hoerl and Kennard [5], Hoerl et al. [6], Lawless and 
Wang [7], Nomura [8], Khalaf and Shukur [9], Dorugade [10], Al-Hassan [11], 
Dorugade and Kashid [12], Saleh and Kibria [13], Kibria [14], Zang and Ibrahim 
[15], Alkhamisi et al. [16], Al-Hassan [17], Muniz and Kibria [18], Khalaf and 
Shukur [9], Khalaf and Mohamed [19], Uzuke et al. [20] etc. 

Several diagnostic methods have been developed to detect influential observa-
tion. Firstly, Cook [21] introduced Cook’s distance ( iD ) which is based on de-
leting the observations one after another and measuring their effect on linear re-
gression model. Other measures developed on the idea of Cook’s distance in-
cludes; modified cook’s distance ( iD∗ ), DFFITS, Hadi’s measure, Pena statistic, 
DFBETAS, COVRATIO, etc. 

Therefore, problem of multicollinearity and influential observation affect the 
regression analysis or estimates remarkably. And in using Ridge Regression to 
mitigate multicollinearity problem, there is always a problem of the method to 
use to estimate the ridge parameter (k) to achieve reduction in variance larger 
than increase in bias furthermore, one may want to know whether multiticolli-
nearity affects identification of influential observations. 

https://doi.org/10.4236/ojs.2021.112016


C. A. Uzuke, I. C. Ezeilo 
 

 

DOI: 10.4236/ojs.2021.112016 292 Open Journal of Statistics 
 

2. Methodology 

The influence of an observation is measured by the effect it produces on the fit 
when it is deleted in the fitting process. This deletion is always done one point at 
a time. Let ( ) ( ) ( )0 1

ˆ ˆ ˆ, , ,i i p iβ β β  denote the regression coefficients obtained when 
the ith observation is deleted ( )1,2, ,i n=  . Similarly, let ( ) ( ) ( )1 2ˆ ˆ ˆ, , ,i i n iy y y  
and ( )

2ˆ iσ  be the predicted values and residual mean square respectively when 
the ith observation is dropped. Note that 

( ) ( ) ( ) ( )10 1̂
ˆˆ m mpm i i i p iy x xβ β β= + + +                 (2) 

is the fitted value for the observations m when the fitted equation is obtained 
with the ith observation deleted. Influential measures look at differences pro-
duced in quantities such as ( )( )ˆ ˆ

j j iβ β−  or ( )( )ˆ ˆj j iy y− . Several diagnostic me-
thods have been developed to detect influential observation. Firstly, Cook [21] 
introduced Cook’s Distance ( iD ) which is based on deleting the observations 
one after another and measuring their effect on linear regression model. Other 
measures developed on the idea of Cook’s Distance includes; modified Cook’s 
Distance ( iD∗ ), DFFITs, Hadi’s influence measure, Pena statistic, DFBETAS, 
COVRATIO, etc. This work, adopted the following influential measures;  

1) Cook’s Distance 
Cook [21] proposed this measure and it is widely used. Cook’s distance meas-

ures the difference between the fitted values obtained from the full data and the 
fitted values obtained by deleting the ith observation. Cook’s distance measure is 
defined as, 

( )( )
( )

2

1
2

ˆ ˆ

ˆ 1

n

j j i
j

i

y y
C

pσ
=

−
=

+

∑
                      (3) 

which can also be expressed as 
2

1 1
i ii

i
ii

r h
C

p h
= ×

+ −
                       (4) 

Thus, Cook’s distance is a multiplication function of two quantities. The first 
term in Equation (4) is the square of the standardized residual ir , which is given  

as 
ˆ 1

i
i

ii

e
r

hσ
=

−
 and the second term is called potential function 

1
ii

ii

h
h−

 where 

iih  is the leverage of the ith observation given as ( ) 1
iih X X X kI X−′ ′= + .  

If a point is influential, its deletion causes large changes and the value of iC  
will be large. Therefore, large value of iC  indicates that the point is influential. 
It has also be suggested that points with iC  value greater than the 50% point of 
the F distribution with p + 1 and (n – p – 1) degrees of freedom be classified as 
influential points.  

2) Welsch and Kuh Measure 
Welsch and Kuh [22] developed a similar measure to Cook’s Distance named 

DFFITs, defined as 
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( )

( )

ˆ ˆ
DFFITs

ˆ
j j i

i
iii

y y

hσ

−
=                        (5) 

DFFITsi  is the scaled difference between the ith fitted value obtained from 
the full data and the ith fitted value obtained by deleting the ith observation. 
DFFITsi  can as well be written as  

*DFFITs , 1,2, ,
1

ii
i i

ii

h
r i n

h
= =

−
                  (6) 

where *
ir  is the standardized residual defined as 

( )

*

ˆ 1
i

i
iii

e
r

hσ
=

−
. 

Points with ( )DFFITs 2 1 1i p n p> + − −  are usually classified as influen-
tial points. 

3) Hadi’s Influence Measure 
Hadi [23] proposed a measure of the influence of ith observation based on the 

fact that influential observations are outliers in the response variable or in the 
predictors or both. Accordingly, the influence of the ith observation can be meas-
ured by  

2

2

1 , 1, 2, ,
1 1 1

ii i
i

ii ii i

h dpH i n
h h d

+
= + =

− − −
               (7) 

where i
i

e
d

SSE
=  (normalized residual). iH  is an additive function. The first 

term of the equation is the potential function which measures outlyingness in 
the X-space and the second term is a function of the residual, which measures 
outlyingness in the response variable. Observations with large iH  are influen-
tial observations in the response and/or the predictor variables. Although the 
measure iH  does not focus on a specific regression result, but it can be thought 
of as an overall general measure of influence which depicts observations that are 
influential on at least one regression result. 

4) DFBETAS [1] 
DFBETAS measures the difference in each parameter estimate with and without 

the influential data point. It is an influential measure used to ascertain which 
observation influence specific regression coefficient 

( )

( ) ( ) 12
DFBETAS j j i

ij

i ij

b b

s X X −

−
=

′
                  (8) 

where ( )j ib  denote the regression coefficients obtained when the ith observa-
tion is deleted in fitting process ( )1,2, ,i n=   and jb  the predicted values 
from the full data, when ith observation is used in the fitting process. 

5) Kuh and Welsch Ratio (COVRATIO) 
The COVRATIO statistic measures the change in the determinant of the co-

variance matrix of the estimates by deleting the ith observation. This influential 
measure is given as  

( )( )
( )( )

12

12

det
COVRATIO

det

i i is X X

s X X

−

−

 ′
 =  ′  

               (9) 
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which can also be expressed as below 
2

1
COVRATIO

1

i

ii

n p r
n p

h

 ′− −
 ′− − =

−
                (10) 

where n is the sample size, p' is the number of independent variable and hii is the 
hat matrix. 

The ridge parameter estimators which were selected to control multicollinear-
ity are  

a) 
2

1 2

ˆˆ
ˆi

k σ
α

=  Hoerl and Kennard [5] 

b) 
2

2 1
2

1

ˆˆ

ˆ
pp

i
i

k σ

α
=

=
 
 
 
∏

 Kibria [14] 

c) 
( )

2

3 2 21
ˆ max ˆ

i

i p
i i

S
k

n p S
λ

λ β≤ ≤

 
=   + − 

 Alkhamisi et al. [16] 

d) 
( )

1
2

4 2 2
1

ˆˆ
ˆˆ

p p
i

i i i

k
n p

λσ
σ λα=

 
=   − + 
∏  Muniz and Kibria [18] 

e) 

1

5
1

1ˆ
p p

i i

k
m=

 
=  
 
∏  Muniz and Kibria [18] 

f) 

1

6
1

ˆ
p p

i
i

k m
=

 
=  
 
∏  Muniz and Kibria [18] 

g) 7
1ˆ median

i

k
m

 
=  

 
 Muniz and Kibria [18] 

where 
2

2

ˆ
ˆ

i
i

i

m
σ
α

=  

h) 
2

8 2
1max

ˆ2ˆ
ˆ

p

i i

pk σ
λ α=

= ∑  Dorugade [10] 

i) 
1

9
1

ˆ
pp

j
j

k w
=

 
=  
 
∏  Uzuke et al., [20] 

where 
( )

( ) ( )
2

2 2

ˆ2

ˆˆ 2j
j

In
w

n p In

σ

σ α
=

− +
 

j) ( ) 1
10k̂ X X X Y−′ ′=  

3. Illustration 

Using the Nigeria Economic indicator (1980-2010) data from the Central Bank 
of Nigeria (CBN) Statistical Bulletin 2010. The data consist of Gross Domestic 
Product as the dependent variable (y) and ten [10] independent variables namely 
Money Supply (x1), Credit to Private Sector (x2), Exchange Rate (x3), External 
Reserve (x4), Agricultural Loan (x5), Foreign Reserve (x6), Oil Import (x7), 
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Non-oil Export (x8), Oil Export (x9), and Non-oil Export (x10) shown in Appen-
dix III.  

Table 1 showed that there is presence of multicollinearity in the data, since 
most of the independent variables have VIF > 10, the eigen-value close to ze-
ro(0), T < 0.1 and CN > 5 The correlation matrix of the data set also showed the 
presence of multicollinearity. 

1 2 3 4 5 6 7 8 9 10

1

2

3

4

1 0.7952 0.7218 0.7309 0.7838 0.7757 0.7789 0.8146 0.7532 0.7768
0.7952 1 0.6813 0.8586 0.9702 0.9168 0.9420 0.9517 0.8851 0.9693
0.7218 0.6813 1 0.7277 0.7507 0.8270 0.7650 0.8234 0.8350 0.7810
0.7309

x x x x x x x x x x
x
x
x
x

5

6

7

0.8586 0.7277 1 0.9372 0.9317 0.8657 0.8891 0.9438 0.8781
0.7838 0.9702 0.7507 0.9372 1 0.9580 0.9365 0.9596 0.9505 0.9675
0.7757 0.9168 0.8270 0.9317 0.9580 1 0.9660 0.9785 0.9877 0.9631
0.7789 0.9420 0.7650 0.8657 0.9365 0.966

x
x
x

8

9

10

0 1 0.9801 0.9455 0.9705
0.8146 0.9517 0.8234 0.8891 0.9596 0.9785 0.9801 1 0.9612 0.9905
0.7532 0.8851 0.8350 0.9438 0.9505 0.9877 0.9455 0.9612 1 0.9406
0.7768 0.9693 0.7810 0.8781 0.9675 0.9631 0.9705 0.9905 0.9406 1

x
x
x



















 
 
 
 
 
 
 
 
  



 

Identification of Influential Observations 
Using five different influential measures; Cook’s distance, DFFITs, Hadi in-

fluence measure, DFBETAs and COVRATIO, influential observations in the real 
data are identified using the criteria of Table 2 when multicolinearity is not 
controlled (OLS: k = 0) and when controlled using the selected ridge parameter 
estimators. The values for the measure criteria are presented in Table 2. 

The influential observations identified by the five influential measures in the 
presence of multicollinearity and when controlled using some selected ridge pa-
rameters (k) were presented in Table 3. When compared with values of Table 2,  
 
Table 1. Result of test for multicollinearity. 

Independent 
variables (x) 

VIF 
Eigen-values 

(λ) 
Tolerance 

(T) 
Condition Number 

(CN) 

x1 5.9983 8.9344 0.1667 1.00 

x2 120.5980 0.4087 0.008 21.86 

x3 6.5232 0.3329 0.1533 26.83 

x4 18.1551 0.1937 0.0551 46.11 

x5 155.7352 0.0785 0.0064 113.75 

x6 84.1103 0.0191 0.0119 466.88 

x7 49.4181 0.0175 0.0202 510.49 

x8 282.6033 0.0093 0.0035 957.74 

x9 131.6438 0.0036 0.0076 2496.18 

x10 168.8738 0.0019 0.0059 4505.02 

Table showed that there is presence of multicollinearity in the data, since most of the independent variables 
have VIF > 10, the eigen-value close to zero (0), T < 0.1 and CN > 5 The correlation matrix of the data set 
also showed the presence of multicollinearity. 
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Table 2. Influential measures, calculated measure criteria and values obtained. 

Cook’s Distance ( ),i p n pD Fα ′ ′−>  2.3479 

DFFITs GDFFITS 3 p
n d

′
≥

−
 1.1547 

Hadi’s Measure ( ) ( )2 2 2me van ari i iH H c H+=  6.2463 

DFBETAS 
2DFBETASij n

>  ±0.3651 

COVRATIO 3COVRATIO 1 p
n
′

− >  > 0 

 
Table 3. Influential observations identified. 

Measures Criteria OLS k1 = 5.345 k2 = 5.9566 k3 = 6.3345 k4 = 10.345 k5 = 10.002 k6 = 10.984 k7 = 10.567 k8 = 4.023 k9 = 3.874 

Cook’s 
Distance 

2.3479 
22, 24, 25, 
26, 27, 28, 

29, 30 
None None None None None None None None None 

DFFITs 1.1547 25 25 25 25 25 25 25 25 25 25 

Hadi Measure 6.2463 25, 26, 28 None None None None None None None None None 

Dfbetas ±0.3651 29 29 29 29 29 29 29 29 29 29 

Covratio ≈0 25 25 25 25 25 25 25 25 25 25 

 
any observation whose calculated influence measure is greater than the criteria 
value obtained is identified as an influential observation or data point. Cook’s 
Distance and Hadi influence measure performed alike. They fail to identify in-
fluential data points when ridge estimators were used to control multicollineari-
ty. DFFITs and COVRATIO measure identified single observation 25 in both 
OLS and when multicollinearity was controlled while DFBETAS identified data 
point 29 as well. 

4. Summary and Conclusion 

Ridge estimator affects influential observation identified. Cook’s distance and 
Hadi influence measure were able to identify several influential data points on 
the data in the presence of multicollinearity but failed to identify any data 
points when the multicollinear effect has been controlled. DFFITs, DFBETAs 
and COVRATIO identified the same single data point in the presence of multi-
collinearity and when it has been controlled. Cook’s distance and Hadi influence 
measure are very sensitive in the presence of multicollinearity, this made them 
to identify several influential data points but they are less sensitive when multi-
collinearity is controlled where they fail to identify and data point. DFFITs, 
DFBETAs and COVRATIO perform better than them and should be used when 
multicollinearity is controlled. 
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Appendix I 

Algorithm for the R Programme 
The model 

i iY X β ε= +  

1 1 2 2 p p iY X X Xβ β β ε= + + + +  

Using the unit length scaling shown below: 

y

Y yY
L
−

= , 

, 1, 2, ,j j
j

j

X x
X j p

L
−

= =

  

where y  is the mean of Y, jx  is the mean of jX , and  

( )2

1

n

y i
i

L y y
=

= −∑ , and ( )2

1

n

j ij j
i

L x x
=

= −∑ , 1,2, ,i n=   

such that 2

1
1

n

ij
i

x
=

=∑ , 1,2, ,j p=   
We obtain the following model 

1 1 2 2 p pY X X Xβ β β ε ′= + + + +   

  

Obtain A X X′=    
Eigenvalues of A = tj 

Eigenvectors of A = D 
Confirm that DD I′ =  
Confirm that jD X XD t′ ′ =   
Obtain j Dα β′=  

Obtain 2 1ˆ

n

i
i

n p

ε
σ ==

−

∑
 

Methods of estimating ridge parameter k 

1) 
2

1 2

ˆˆ
ˆi

k σ
α

=  Hoerl and Kennard (1970) 

where, 2 2

1
ˆ

p

i
i

e n pσ
=

= −∑  is the residual mean square estimate of 2σ  and ˆiα  
is the ith element of α̂  which is an unbiased estimator of Dα β′=  where D 
is the eigenvectors of the matrix X X′  

2) 
2

2 1
2

1

ˆˆ

ˆ
pp

i
i

k σ

α
=

=
 
 
 
∏

, 1,2, ,i p=   Kibria (2003) 

3) 
( )

2

3 2 2

ˆˆ max
ˆ ˆ

i

i i

k
n p

λσ
λα σ

 
=   + − 

 Alkhamisi et al. (2006) 

where iλ  is the ith eigenvalues of the matrix X X′ and 

2

12
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i
jS
n p

ε
==
−

∑
 

https://doi.org/10.4236/ojs.2021.112016


C. A. Uzuke, I. C. Ezeilo 
 

 

DOI: 10.4236/ojs.2021.112016 300 Open Journal of Statistics 
 

4) 
( )

1
2

4 2 2
1

ˆˆ
ˆˆ

p p
i

i i i

k
n p

λσ
σ λα=

 
=   − + 
∏  Muniz and Kibira [18] 

5) 

1

5
1

1ˆ
p p

i i

k
m=

 
=  
 
∏  

6) 

1

6
1

ˆ
p p

i
i

k m
=

 
=  
 
∏  

7) 7
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i

k
m

 
=  

 
 

where 
2

2

ˆ
ˆ

i
i

i

m
σ
α

=  

8) 
2

8 2
1max

ˆ2ˆ
ˆ

p

i i

pk σ
λ α=

= ∑ , 1,2, ,i p=   Dorugade [10] 

9) 
1

9
1

ˆ
pp

j
j

k w
=

 
=  
 
∏  Uzuke et al. [20] 

where the weight 
( )

( ) ( )
2

2 2

ˆ2

ˆˆ 2j
j

In
w

n p In

σ

σ α
=

− +
 

10) OLS = ( ) 1X X X Y−′ ′  
Methods of detecting influential observation 
Method 1 (cook’s distance) 

2

1 1
i ii

i
ii

t h
C

p h
= ×

+ −
, 

The criteria is given as 

( )
0.05

1, 1p n pi FC + − −>  

where 

( ) 1
iih X X X kI X−′ ′= + , and 

ˆ 1
i

i
ii

e
t

hσ
=

−
 

Method 2 (DFFITs) 

*DFITS , 1, 2, ,
1

ii
i i

ii

h
t i n

h
= =

−
  

The criteria is given as 

1DFFITs 2
1

p
n p

′ +
>

− −
 

where *
ir  is the R-residual defined as *

2

1
i i

i

n pt t
n p t
− −

=
− −

 and  
( ) 1

iih X X X kI X−′ ′= +  
Method 3 (Hadi measure) 

2
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1 , 1, 2, ,
1 1 1

ii i
i

ii ii i

h dpH i n
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+
= + =

− − −
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where i
i

e
d

SSE
=  called normalized residual. 

Method 4 (DFBETAS) 
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( ) ( ) 12

j j

i ij

b b i

s X X kI −

−

′ +
 

The criteria is given as 
2DIFBETAs
n

>  

Method 5 (COVRATIO) 
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1

i

ii

n p t
n p

h

 ′− −
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The criteria is given as 

3COVRATIO 1 p
n

− >  

where 

( ) 1
iih X X X kI X−′ ′= + , and 

ˆ 1
i

i
ii

e
t

hσ
=

−
 

Appendix II 

R Codes for Detecting Influential Observation for Different k Values 
for(i in 1:9){ 
h=matrix(hatr(lmridge(V1~.,rr, k[i]],30,30) 
ss=(sqrt(h[i,i]/(1-h[i,i]))) 
C=NULL 
DF9=NULL 
H=NULL 
DFB=NULL 
COV=NULL 
for(i in 1:30){ 
b1=coefficients(lm(V1~.,rr[-i,])) 
r1=c(residuals(lm(V1~.,rr[-i,]))) 
sig1=(sum(r1^2))/(n-p) 
num=c[3]-b1[3] 
hh=solve(t(xx[-i,])%*%(xx[-i,])) 
denom=sqrt(sig1*hh[3,3]) 
C=rbind(C,(((r[i]^2/((sig)*(1-h[i,i]))))/(11))*(h[i,i]/(1-h[i,i]))) 
DF9=rbind(DF9,r[i]/(sqrt(sig1*(1-h[i,i])))*sqrt(h[i,i]/(1-h[i,i]))) 
H=rbind(H,(h[i,i]/(1-h[i,i]))+(11/(1-h[i,i]))*(r1[i]/sqrt(ssr))) 
DFB=rbind(DFB,num/denom) 
COV=rbind(COV,(sig1/sig)*(h[i,i]/(1-h[i,i]))) 
} 
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Appendix III 

Table A1. Nigerian economic indicator (1980-2010) data. 

GDP 
Money 
Supply 

Cred 
Priv. Sector 

Exchange 
Rate 

External 
Reserv 

Agric 
Loan 

Foreign 
Trade 

Oil 
Import 

Nonoil 
Import 

Oil 
Export 

Nonoil 
Export 

 
14,471 8570 0.61 56,195 35,642 23,863 120 12,720 10,681 343 

53,659 15,787 10,668 0.673 12,324 31,764 18,977 226 10,545 8003 203 

57,963 17,688 11,668 0.724 7171 36,308 16,406 172 8732 7201 301 

64,326 20,106 12,463 0.765 5480 24,655 16,266 282 6896 8841 247 

73,542 22,299 13,070 0.894 10,998 44,244 18,783 52 7011 11,224 497 

74,542 23,806 15,247 2.021 18,922 68,417 14,904 914 5070 8369 552 

111,913 27,574 21,083 4.018 62,554 102,153 48,222 3170 14,692 28,209 2152 

147,941 38,357 27,326 4.537 72,267 118,611 52,639 3803 17,643 28,435 2757 

228,451 45,903 30,403 7.392 43,953 129,300 88,831 4672 26,189 55,017 2954 

281,550 52,857 33,548 8.038 40,293 98,494 155,604 6073 39,645 106,627 3260 

329,071 75,401 41,352 9.909 48,620 82,107 211,024 7772 81,716 116,858 4677 

555,446 111112 58,123 17.298 33,392 88,032 348,763 19,562 123,590 201,384 4227 

715,242 165,339 127,118 22.051 58,824 80,846 384,400 41,136 124,493 213,779 4991 

945,557 230,293 143,424 21.886 95,329 103,186 3,688,480 42,350 120,439 200,710 5349 

2,008,564 289,091 180,005 21.886 32,345 164,162 1,705,789 155,826 599,302 927,565 23,096 

2,799,036 345,854 238,597 21.886 25,896 225,503 1,872,170 162,179 400,448 1,286,216 23,328 

2,906,625 413,280 316,207 21.886 73,492 242,038 2,087,379 166,903 678,814 1,212,499 29,163 

2,816,406 488,146 351,956 21.886 93,777 215,697 1,589,275 175,854 661,565 717,787 34,070 

3,312,241 628,952 431,168 92.693 63,709 246,083 2,051,486 211,662 650,854 1,169,477 19,493 

4,717,332 878,457 530,373 102.105 91,089 361,450 2,930,746 220,818 764,205 1,920,900 24,823 

4,909,526 12,699,322 764,962 111.943 123,330 728,545 3,226,134 237,107 1,121,074 1,839,945 28,009 

7,128,203 1,508,173 930,494 120.97 103,104 1,051,590 3,256,873 361,710 1,150,985 1,649,446 94,732 

8,742,647 1,952,922 1,096,536 129.356 91,702 1,164,460 5,168,122 398,922 1,681,313 2,993,110 94,776 

11,673,602 2,131,820 1,421,664 133.5 144,753 2,083,745 6,589,827 318,115 1,668,931 4,489,472 113,309 

1.48E+08 2,637,914 1,838,390 132.147 291,849 3,046,739 10,047,391 797,299 2,003,557 7,140,579 105,956 

18,709,786 3,799,538 2,290,618 128.651 449,473 4,263,060 10,433,200 710,683 2,397,836 7,191,086 133,595 

20,874,172 5,138,701 3,680,090 125.833 544,732 4,425,862 12,221,711 768,227 3,143,726 8,110,500 199,258 

25,424,948 8,029,089 6,941,383 118.566 701,675 6,721,075 15,357,293 1,386,730 3,803,073 9,913,651 247,839 

2,896,746 9,456,480 9,147,417 148.902 536,428 8,349,509 13,458,920 1,063,544 4,038,990 8,067,233 289,153 

3,124,539 11,034,941 10,157,021 150.298 448,268 7,740,508 19,041,169 2,073,579 5,931,795 10,639,417 396,377 
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