

On Identifying Influential Observations in the Presence of Multicollinearity

Chinwendu Alice Uzuke, Ifeyinwa Christiana Ezeilo

Department of Statistics, Nnamdi Azikiwe University, Awka, Nigeria Email: ca.uzuke@unizik.edu.ng, prisca087@yahoo.com

How to cite this paper: Uzuke, C.A. and Ezeilo, I.C. (2021) On Identifying Influential Observations in the Presence of Multicollinearity. *Open Journal of Statistics*, **11**, 290-302. https://doi.org/10.4236/ojs.2021.112016

Received: December 3, 2020

Accepted: March 29, 2020 Published: April 1, 2021

Copyright © 2021 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

Influential observation is one which either individually or together with several other observations has a demonstrably large impact on the values of various estimates of regression coefficient. It has been suggested by some authors that multicollinearity should be controlled before attempting to measure influence of data point. In using ridge regression to mitigate the effect of multicollinearity, there arises a problem of choosing possible of ridge parameter that guarantees stable regression coefficients in the regression model. This paper seeks to check whether the choice of ridge parameter estimator influences the identified influential data points.

Keywords

Multicollinerity, Ridge Parameter, Influential Measures, Outliers, Leverage Point

1. Introduction

It is well understood that not all observations in the data set play equal role when fitting a regression model. We occasionally find that a single or small subset of the data exerts a disproportionate influence on the fitted regression model. That is, parameter estimates or prediction may depend more on the influential subset than the majority of the data. Belsley *et al.* [1] defined an influential observation as one which either individually or together with several other observations has demonstrably large impact on the calculated values of various estimates, than is the case of most of the other observations. Influential observation in either dependent or independent variable can be as a result of data error or other problem, for example, the influential data points in dependent variable can arise from skewness in the independent variable or from differences in the data generation process for small subset of sample. Obviously, outliers which are observations in a data set which appears to be inconsistent with the remainder of other set of data [2] need not be influential observation in affecting the regression Equation [3]. Andrew and Pregibon [4] highlighted the need to find outliers that matter. They stated that it is not all outliers that need to be harmful in the way that they have undue influence on for instance, the estimation of the parameters in the regression model. If not all outliers matter, examining residual alone might not lead to the detection of influential observation. Thus, other ways of detecting influential observations are needed.

Regression diagnostic comprises of a collection of method used in the identification of influential points and multicollinearity [1]. This includes methods of exploratory data analysis for influential points and identification of violation of assumption of least squares. When the assumption of Ordinary Least Squares (OLS) method that the explanatory variables are not linearly correlated is violated, this results to multicollinearity problem and should be controlled before attempting to measure influence [1]. One of the most popular methods of controlling multicollinearity is the use of Ridge Regression (RR) suggested by Hoerl and Kennard [5]. The idea in RR method is to add small positive number (k > 0) to diagonal elements of the matrix (X'X) in order to obtain a ridge regression estimator

$$\hat{\beta}_{R} = \left(X'X + kI\right)^{-1} X'Y \tag{1}$$

Though the estimator obtained is bias but it yields minimum Mean Squares Error (MSE) when compared to OLS estimator. If k = 0, $\hat{\beta}_R$ becomes the unbiased OLS estimator ($\hat{\beta}$). The choice of ridge parameter k has always been a problem in using RR to solve for multicollinearity, hence methods of estimating the value of k had been suggested by several authors. Below are some suggested methods of estimating k: Hoerl and Kennard [5], Hoerl *et al.* [6], Lawless and Wang [7], Nomura [8], Khalaf and Shukur [9], Dorugade [10], Al-Hassan [11], Dorugade and Kashid [12], Saleh and Kibria [13], Kibria [14], Zang and Ibrahim [15], Alkhamisi *et al.* [16], Al-Hassan [17], Muniz and Kibria [18], Khalaf and Shukur [9], Khalaf and Mohamed [19], Uzuke *et al.* [20] etc.

Several diagnostic methods have been developed to detect influential observation. Firstly, Cook [21] introduced Cook's distance (D_i) which is based on deleting the observations one after another and measuring their effect on linear regression model. Other measures developed on the idea of Cook's distance includes; modified cook's distance (D_i^*), DFFITS, Hadi's measure, Pena statistic, DFBETAS, COVRATIO, etc.

Therefore, problem of multicollinearity and influential observation affect the regression analysis or estimates remarkably. And in using Ridge Regression to mitigate multicollinearity problem, there is always a problem of the method to use to estimate the ridge parameter (k) to achieve reduction in variance larger than increase in bias furthermore, one may want to know whether multiticollinearity affects identification of influential observations.

2. Methodology

The influence of an observation is measured by the effect it produces on the fit when it is deleted in the fitting process. This deletion is always done one point at a time. Let $\hat{\beta}_{0(i)}, \hat{\beta}_{1(i)}, \dots, \hat{\beta}_{p(i)}$ denote the regression coefficients obtained when the ith observation is deleted $(i = 1, 2, \dots, n)$. Similarly, let $\hat{y}_{1(i)}, \hat{y}_{2(i)}, \dots, \hat{y}_{n(i)}$ and $\hat{\sigma}_{(i)}^2$ be the predicted values and residual mean square respectively when the ith observation is dropped. Note that

$$\hat{y}_{m(i)} = \beta_{0(i)} + \hat{\beta}_{1(i)} x_{m1} + \dots + \hat{\beta}_{p(i)} x_{mp}$$
(2)

is the fitted value for the observations *m* when the fitted equation is obtained with the ith observation deleted. Influential measures look at differences produced in quantities such as $(\hat{\beta}_j - \hat{\beta}_{j(i)})$ or $(\hat{y}_j - \hat{y}_{j(i)})$. Several diagnostic methods have been developed to detect influential observation. Firstly, Cook [21] introduced Cook's Distance (D_i) which is based on deleting the observations one after another and measuring their effect on linear regression model. Other measures developed on the idea of Cook's Distance includes; modified Cook's Distance (D_i^*) , DFFITs, Hadi's influence measure, Pena statistic, DFBETAS, COVRATIO, etc. This work, adopted the following influential measures;

1) Cook's Distance

Cook [21] proposed this measure and it is widely used. Cook's distance measures the difference between the fitted values obtained from the full data and the fitted values obtained by deleting the ith observation. Cook's distance measure is defined as,

$$C_{i} = \frac{\sum_{j=1}^{n} \left(\hat{y}_{j} - \hat{y}_{j(i)} \right)^{2}}{\hat{\sigma}^{2} \left(p + 1 \right)}$$
(3)

which can also be expressed as

$$C_i = \frac{r_i^2}{p+1} \times \frac{h_{ii}}{1-h_{ii}} \tag{4}$$

Thus, Cook's distance is a multiplication function of two quantities. The first term in Equation (4) is the square of the standardized residual r_i , which is given as $r_i = \frac{e_i}{\hat{\sigma}\sqrt{1-h_{ii}}}$ and the second term is called potential function $\frac{h_{ii}}{1-h_{ii}}$ where h_{ii} is the leverage of the ith observation given as $h_{ii} = X'(XX + kI)^{-1}X$. If a point is influential, its deletion causes large changes and the value of C_i will be large. Therefore, large value of C_i indicates that the point is influential. It has also be suggested that points with C_i value greater than the 50% point of the F distribution with p + 1 and (n - p - 1) degrees of freedom be classified as influential points.

2) Welsch and Kuh Measure

Welsch and Kuh [22] developed a similar measure to Cook's Distance named DFFITs, defined as

DFFITs_i =
$$\frac{\hat{y}_j - \hat{y}_{j(i)}}{\hat{\sigma}_{(i)}\sqrt{h_{ii}}}$$
 (5)

DFFITs_{*i*} is the scaled difference between the *ith* fitted value obtained from the full data and the ith fitted value obtained by deleting the *ith* observation. DFFITs_{*i*} can as well be written as

DFFITs_i =
$$r_i^* \sqrt{\frac{h_{ii}}{1 - h_{ii}}}, i = 1, 2, \dots, n$$
 (6)

where r_i^* is the standardized residual defined as $r_i^* = \frac{e_i}{\hat{\sigma}_{(i)}\sqrt{1-h_{ii}}}$.

Points with $|\text{DFFITs}_i| > 2\sqrt{p + 1/(n - p - 1)}$ are usually classified as influential points.

3) Hadi's Influence Measure

Hadi [23] proposed a measure of the influence of ith observation based on the fact that influential observations are outliers in the response variable or in the predictors or both. Accordingly, the influence of the ith observation can be measured by

$$H_{i} = \frac{h_{ii}}{1 - h_{ii}} + \frac{p + 1}{1 - h_{ii}} \frac{d_{i}^{2}}{1 - d_{i}^{2}}, i = 1, 2, \cdots, n$$
(7)

where $d_i = \frac{e_i}{\sqrt{SSE}}$ (normalized residual). H_i is an additive function. The first term of the equation is the potential function which measures outlyingness in the X-space and the second term is a function of the residual, which measures outlyingness in the response variable. Observations with large H_i are influential observations in the response and/or the predictor variables. Although the measure H_i does not focus on a specific regression result, but it can be thought of as an overall general measure of influence which depicts observations that are influential on at least one regression result.

4) DFBETAS [1]

DFBETAS measures the difference in each parameter estimate with and without the influential data point. It is an influential measure used to ascertain which observation influence specific regression coefficient

DFBETAS_{ij} =
$$\frac{b_j - b_{j(i)}}{\sqrt{s_{(i)}^2 (XX)_{ij}^{-1}}}$$
 (8)

where $b_{j(i)}$ denote the regression coefficients obtained when the ith observation is deleted in fitting process $(i = 1, 2, \dots, n)$ and b_j the predicted values from the full data, when ith observation is used in the fitting process.

5) Kuh and Welsch Ratio (COVRATIO)

The COVRATIO statistic measures the change in the determinant of the covariance matrix of the estimates by deleting the ith observation. This influential measure is given as

$$COVRATIO = \left[\frac{\det\left(s_{i}^{2}\left(X_{i}^{\prime}X_{i}\right)^{-1}\right)}{\det\left(s^{2}\left(X_{i}^{\prime}X\right)^{-1}\right)}\right]$$
(9)

which can also be expressed as below

$$\text{COVRATIO} = \frac{\left(\frac{n-p'-r_i^2}{n-p'-1}\right)}{1-h_{ii}} \tag{10}$$

where *n* is the sample size, p' is the number of independent variable and h_{ii} is the hat matrix.

The ridge parameter estimators which were selected to control multicollinearity are

a) $\hat{k}_1 = \frac{\hat{\sigma}^2}{\hat{\sigma}^2}$ Hoerl and Kennard [5] b) $\hat{k}_2 = \frac{\hat{\sigma}^2}{\left(\prod_{i=1}^{p} \hat{\alpha}_i^2\right)^{1/p}}$ Kibria [14] c) $\hat{k}_3 = \max_{1 \le i \le p} \left(\frac{\lambda_i S^2}{\lambda_i \hat{\beta}^2 + (n-p)S^2} \right)$ Alkhamisi *et al.* [16] d) $\hat{k}_4 = \left(\prod_{i=1}^p \frac{\lambda_i \hat{\sigma}^2}{(n-p)\hat{\sigma}^2 + \lambda \hat{\alpha}_i^2}\right)^{\frac{1}{p}}$ Muniz and Kibria [18] e) $\hat{k}_5 = \left(\prod_{j=1}^p \frac{1}{m}\right)^{\frac{1}{p}}$ Muniz and Kibria [18] f) $\hat{k}_6 = \left(\prod_{i=1}^p m_i\right)^{\frac{1}{p}}$ Muniz and Kibria [18] g) $\hat{k}_7 = \text{median}\left(\frac{1}{m_i}\right)$ Muniz and Kibria [18] where $m_i = \sqrt{\frac{\hat{\sigma}_i^2}{\hat{\alpha}^2}}$ h) $\hat{k}_8 = \frac{2p}{\lambda} \sum_{i=1}^p \frac{\hat{\sigma}^2}{\hat{\alpha}_i^2}$ Dorugade [10] i) $\hat{k}_9 = \left(\prod_{i=1}^p w_i\right)^{1/p}$ Uzuke *et al.*, [20] where $w_j = \frac{In2(\hat{\sigma}^2)}{(n-p)\hat{\sigma}^2 + In2(\hat{\alpha}_i^2)}$ j) $\hat{k}_{10} = (X'X)^{-1} X'Y$

3. Illustration

Using the Nigeria Economic indicator (1980-2010) data from the Central Bank of Nigeria (CBN) Statistical Bulletin 2010. The data consist of Gross Domestic Product as the dependent variable (y) and ten [10] independent variables namely Money Supply (x_1), Credit to Private Sector (x_2), Exchange Rate (x_3), External Reserve (x_4), Agricultural Loan (x_5), Foreign Reserve (x_6), Oil Import (x_7), Non-oil Export (x_3) , Oil Export (x_5) , and Non-oil Export (x_{10}) shown in **Appendix III**.

Table 1 showed that there is presence of multicollinearity in the data, since most of the independent variables have VIF > 10, the eigen-value close to zero(0), T < 0.1 and CN > 5 The correlation matrix of the data set also showed the presence of multicollinearity.

(x_1	x_2	<i>x</i> ₃	x_4	x_5	x_6	<i>x</i> ₇	x_8	x_9	x_{10}
<i>x</i> ₁	1	0.7952	0.7218	0.7309	0.7838	0.7757	0.7789	0.8146	0.7532	0.7768
x_2	0.7952	1	0.6813	0.8586	0.9702	0.9168	0.9420	0.9517	0.8851	0.9693
x ₃	0.7218	0.6813	1	0.7277	0.7507	0.8270	0.7650	0.8234	0.8350	0.7810
x_4	0.7309	0.8586	0.7277	1	0.9372	0.9317	0.8657	0.8891	0.9438	0.8781
x ₅	0.7838	0.9702	0.7507	0.9372	1	0.9580	0.9365	0.9596	0.9505	0.9675
x ₆	0.7757	0.9168	0.8270	0.9317	0.9580	1	0.9660	0.9785	0.9877	0.9631
x ₇	0.7789	0.9420	0.7650	0.8657	0.9365	0.9660	1	0.9801	0.9455	0.9705
x ₈	0.8146	0.9517	0.8234	0.8891	0.9596	0.9785	0.9801	1	0.9612	0.9905
x_9	0.7532	0.8851	0.8350	0.9438	0.9505	0.9877	0.9455	0.9612	1	0.9406
$\left(x_{10} \right)$	0.7768	0.9693	0.7810	0.8781	0.9675	0.9631	0.9705	0.9905	0.9406	1)

Identification of Influential Observations

Using five different influential measures; Cook's distance, DFFITs, Hadi influence measure, DFBETAs and COVRATIO, influential observations in the real data are identified using the criteria of **Table 2** when multicolinearity is not controlled (OLS: k = 0) and when controlled using the selected ridge parameter estimators. The values for the measure criteria are presented in **Table 2**.

The influential observations identified by the five influential measures in the presence of multicollinearity and when controlled using some selected ridge parameters (k) were presented in Table 3. When compared with values of Table 2,

Independent variables (<i>x</i>)	VIF	Eigen-values (λ)	Tolerance (T)	Condition Number (CN)
<i>X</i> 1	5.9983	8.9344	0.1667	1.00
X_2	120.5980	0.4087	0.008	21.86
<i>X</i> 3	6.5232	0.3329	0.1533	26.83
X 4	18.1551	0.1937	0.0551	46.11
<i>X</i> 5	155.7352	0.0785	0.0064	113.75
<i>X</i> 6	84.1103	0.0191	0.0119	466.88
X 7	49.4181	0.0175	0.0202	510.49
X 8	282.6033	0.0093	0.0035	957.74
X 9	131.6438	0.0036	0.0076	2496.18
<i>X</i> ₁₀	168.8738	0.0019	0.0059	4505.02

Table 1. Result of test for multicollinearity.

Table showed that there is presence of multicollinearity in the data, since most of the independent variables have VIF > 10, the eigen-value close to zero (0), T < 0.1 and CN > 5 The correlation matrix of the data set also showed the presence of multicollinearity.

Cook's Distance	$D_i > F_{a(p',n-p')}$	2.3479
DFFITs	$GDFFITS \ge 3\sqrt{\frac{p'}{n-d}}$	1.1547
Hadi's Measure	$H_i^2 = \operatorname{mean}\left(H_i^2\right) + c\sqrt{\operatorname{var}\left(H_i^2\right)}$	6.2463
DFBETAS	$\text{DFBETAS}_{ij} > \frac{2}{\sqrt{n}}$	±0.3651
COVRATIO	$ \text{COVRATIO}-1 > \frac{3p'}{n}$	> 0

Table 2. Influential measures, calculated measure criteria and values obtained.

Table 3. Influential observations identified.

Measures	Criteria	OLS	<i>k</i> ₁ = 5.345	<i>k</i> ₂ = 5.9566	<i>k</i> ₃ = 6.3345	$k_4 = 10.345$	<i>k</i> ₅ = 10.002	<i>k</i> ₆ = 10.984	<i>k</i> ₇ = 10.567	<i>k</i> ₈ = 4.023	<i>k</i> ₉ = 3.874
Cook's Distance	2.3479	22, 24, 25, 26, 27, 28, 29, 30	None	None	None	None	None	None	None	None	None
DFFITs	1.1547	25	25	25	25	25	25	25	25	25	25
Hadi Measure	6.2463	25, 26, 28	None	None	None	None	None	None	None	None	None
Dfbetas	±0.3651	29	29	29	29	29	29	29	29	29	29
Covratio	≈0	25	25	25	25	25	25	25	25	25	25

any observation whose calculated influence measure is greater than the criteria value obtained is identified as an influential observation or data point. Cook's Distance and Hadi influence measure performed alike. They fail to identify influential data points when ridge estimators were used to control multicollinearity. DFFITs and COVRATIO measure identified single observation 25 in both OLS and when multicollinearity was controlled while DFBETAS identified data point 29 as well.

4. Summary and Conclusion

Ridge estimator affects influential observation identified. Cook's distance and Hadi influence measure were able to identify several influential data points on the data in the presence of multicollinearity but failed to identify any data points when the multicollinear effect has been controlled. DFFITs, DFBETAs and COVRATIO identified the same single data point in the presence of multicollinearity and when it has been controlled. Cook's distance and Hadi influence measure are very sensitive in the presence of multicollinearity, this made them to identify several influential data points but they are less sensitive when multicollinearity is controlled where they fail to identify and data point. DFFITs, DFBETAs and COVRATIO perform better than them and should be used when multicollinearity is controlled.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

- [1] Belsley, A., Kuh, E. and Welsch, R. (1989) Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. John Wiley and Sons, New York.
- [2] Johnson, R.A. and Wichern, D.W. (2002) Applied Multivariate Statistical Analysis. Pearson Education, Delhi.
- [3] Mickey, M.R., Dunn, O.J. and Clark, V. (1976) Note on the Use of Stepwise Regression in Detecting Outliers. *Computers and Biomedical Research*, 1, 105-111. https://doi.org/10.1016/0010-4809(67)90009-2
- [4] Andrews, D.F. and Pregibon, D. (1978) Finding the Outliers That Matters. *Journal of Royal Statistical Society, Series B*, 40, 85-93. https://doi.org/10.1111/j.2517-6161.1978.tb01652.x
- Hoerl, A.E. and Kennard, R.W. (1970) Ridge Regression: Biased Estimation for Non-Orthogonal Problems. *Technometrics*, 12, 55-67. https://doi.org/10.1080/00401706.1970.10488634
- [6] Hoerl, A.E., Kennard, R.W. and Baldwin, K.F. (1975) Ridge Regression: Some Simulations. *Communications in Statistics*, 4, 105-123. <u>https://doi.org/10.1080/03610917508548342</u>
- [7] Lawless, J.F. and Wang, P. (1976) A Simulation Study of Ridge and Other Regression Estimators. *Communications in Statistics A*, 5, 307-323. https://doi.org/10.1080/03610927608827353
- [8] Nomura, M. (1988) On the Almost Unbiased Ridge Regression Estimation. Communications in Statistics—Simulation and Computation, 17, 729-743. https://doi.org/10.1080/03610918808812690
- Khalaf, G. and Shukur, G. (2005) Choosing Ridge Regression Parameters for Regression Problems. *Communications in Statistics—Simulation and Computations*, 32, 419-435.
- [10] Dorugade, A. (2014) New Ridge Parameters for Ridge Regression. Journal of the Association of Arab Universities for Basic and Applied Sciences, 15, 94-99. https://doi.org/10.1016/j.jaubas.2013.03.005
- [11] Al-Hassan, Y.M. (2010) Performance of a New Ridge Regression Estimator. *Journal of the Association of Arab Universities for Basic and Applied Science*, 9, 23-26. https://doi.org/10.1016/j.jaubas.2010.12.006
- [12] Dorugade, A.V. and Kashid, D.N. (2010) Alternative Methods for Choosing Ridge Parameter for Regression. *Applied Mathematical Science*, 4, 447-456.
- [13] Saleh, A.K.Md. and Kibria, B.M.G. (1993) Performances of Some New Preliminary Test Ridge Regression Estimators and Their Properties. *Communication in Statistics*—*Theory and Methods*, **22**, 2747-2764. https://doi.org/10.1080/03610929308831183
- [14] Kibria, B.M.G. (2003) Performance of Some New Ridge Regression Estimators. Communications in Statistics—Simulation and Computation, 32, 417-435. https://doi.org/10.1081/SAC-120017499
- [15] Zang, J. and Ibrahim, M. (2005) A Simulation Study on SPSS Ridge Regression and Ordinary Least Square Regression Procedures for Multicollinearity Data. *Journal of Applied Statistics*, **32**, 571-588. <u>https://doi.org/10.1080/02664760500078946</u>
- [16] Alkhamisi, M., Khalaf, S. and Shukur, G. (2006) Some Modifications for Choosing Ridge Parameters. *Communications in Statistics—Theory and Methods*, **37**, 544-564. <u>https://doi.org/10.1080/03610920701469152</u>

- [17] Al-Hassan, Y.M. (2008) A Monte Carlo Evaluation of Some Ridge Estimators. Japan Journal of Applied Science. Natural Science Series, 10, 101-110.
- [18] Muniz, G. and Kibria, B.M.G. (2009) On Some Ridge Regression Estimators: An Empirical Comparison. *Communications in Statistics—Simulations and Computation*, 38, 621-630. <u>https://doi.org/10.1080/03610910802592838</u>
- [19] Khalaf, G. and Iguernane, M. (2014) Ridge Regression and Ill-Conditioning. *Journal of Modern Applied Statistical Methods*, 13, 355-363. <u>https://doi.org/10.22237/jmasm/1414815420</u>
- [20] Uzuke, C.A., Mbegbu, J.I. and Nwosu, C.R. (2017) Performance of Kibria, Khalaf and Shukur's Methods When the Eigenvalues Are Skewed. *Communications in Statistics—Simulation and Computation*, **46**, 2071-2102. https://doi.org/10.1080/03610918.2015.1035444
- [21] Cook, R. (1977) Detection of Influential Observations in Linear Regression. *Technometrics*, 19, 15-18. <u>https://doi.org/10.1080/00401706.1977.10489493</u>
- [22] Welsch, R. and Kuh, E. (1977) Linear Regression Diagnostics. Technical Report, Solan School of Management, Massachusetts Institute of Technology, Cambridge, 923-977. <u>https://doi.org/10.3386/w0173</u>
- Hadi, A. (1992) A New Measure of Overall Potential Influence in Linear Regression. *Computational Statistics and Data Analysis*, 14, 1-27. <u>https://doi.org/10.1016/0167-9473(92)90078-T</u>

Appendix I

Algorithm for the R Programme

The model

$$Y_i = X \beta + \varepsilon_i$$
$$= \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \varepsilon_i$$

Using the unit length scaling shown below:

Y

$$\tilde{Y} = \frac{Y - \overline{y}}{L_y},$$
$$\tilde{X}_j = \frac{X_j - \overline{x}_j}{L_j}, \ j = 1, 2, \cdots, p$$

where \overline{y} is the mean of Y, \overline{x}_i is the mean of X_i , and

$$L_{y} = \sqrt{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}$$
, and $L_{j} = \sqrt{\sum_{i=1}^{n} (x_{ij} - \overline{x}_{j})^{2}}$, $i = 1, 2, \dots, n$

such that $\sum_{i=1}^{n} x_{ij}^2 = 1$, $j = 1, 2, \dots, p$ We obtain the following model

$$\tilde{Y} = \beta_1 \tilde{X}_1 + \beta_2 \tilde{X}_2 + \dots + \beta_p \tilde{X}_p + \varepsilon'$$

Obtain $A = \tilde{X}'\tilde{X}$ Eigenvalues of $A = t_j$ Eigenvectors of A = DConfirm that DD' = IConfirm that $D'\tilde{X}'\tilde{X}D = t_j$ Obtain $\alpha_j = D'\beta$ Obtain $\hat{\sigma}^2 = \frac{\sum_{i=1}^n \varepsilon_i}{n-p}$

Methods of estimating ridge parameter k

1) $\hat{k}_1 = \frac{\hat{\sigma}^2}{\hat{\alpha}_i^2}$ Hoerl and Kennard (1970)

where, $\hat{\sigma}^2 = \sum_{i=1}^{p} e_i^2 / n - p$ is the residual mean square estimate of σ^2 and $\hat{\alpha}_i$ is the ith element of $\hat{\alpha}$ which is an unbiased estimator of $\alpha = D'\beta$ where D is the eigenvectors of the matrix X'X

2)
$$\hat{k}_2 = \frac{\hat{\sigma}^2}{\left(\prod_{i=1}^p \hat{\alpha}_i^2\right)^{1/p}}$$
, $i = 1, 2, \dots, p$ Kibria (2003)
3) $\hat{k}_3 = \max\left(\frac{\lambda_i \hat{\sigma}^2}{\lambda_i \hat{\alpha}_i^2 + (n-p)\hat{\sigma}^2}\right)$ Alkhamisi *et al.* (2006)

where λ_i is the ith eigenvalues of the matrix XX and $S^2 = \frac{\sum_{j=1}^{p} \varepsilon_i^2}{n-p}$

4)
$$\hat{k}_4 = \left(\prod_{i=1}^p \frac{\lambda_i \hat{\sigma}^2}{(n-p)\hat{\sigma}^2 + \lambda_i \hat{\alpha}_i^2}\right)^{\frac{1}{p}}$$
 Muniz and Kibira [18]
5) $\hat{k}_5 = \left(\prod_{i=1}^p \frac{1}{m_i}\right)^{\frac{1}{p}}$
6) $\hat{k}_6 = \left(\prod_{i=1}^p m_i\right)^{\frac{1}{p}}$
7) $\hat{k}_7 = \text{median}\left(\frac{1}{m_i}\right)$
where $m_i = \sqrt{\frac{\hat{\sigma}_i^2}{\hat{\alpha}_i^2}}$
8) $\hat{k}_8 = \frac{2p}{\lambda_{\text{max}}} \sum_{i=1}^p \frac{\hat{\sigma}^2}{\hat{\alpha}_i^2}, \quad i = 1, 2, \cdots, p$ Dorugade [10]
9) $\hat{k}_9 = \left(\prod_{j=1}^p w_j\right)^{1/p}$ Uzuke *et al.* [20]
where the weight $w_j = \frac{\ln 2(\hat{\sigma}^2)}{(n-p)\hat{\sigma}^2 + \ln 2(\hat{\alpha}_j^2)}$

10) OLS = $(XX)^{-1}XY$

Methods of detecting influential observation Method 1 (cook's distance)

$$C_i = \frac{t_i^2}{p+1} \times \frac{h_{ii}}{1-h_{ii}},$$

The criteria is given as

$$C_i > F^{0.05}_{(p+1,n-p-1)}$$

where

$$h_{ii} = X' (XX + kI)^{-1} X$$
, and $t_i = \frac{e_i}{\hat{\sigma} \sqrt{1 - h_{ii}}}$

Method 2 (DFFITs)

DFITS_i =
$$t_i^* \sqrt{\frac{h_{ii}}{1 - h_{ii}}}, i = 1, 2, \dots, n$$

The criteria is given as

DFFITs > $2\sqrt{\frac{p'+1}{n-p-1}}$ where r_i^* is the R-residual defined as $t_i^* = t_i \sqrt{\frac{n-p-1}{n-p-t_i^2}}$ and $h_{ii} = X' (X'X + kI)^{-1} X$ Method 3 (11-3)

Method 3 (Hadi measure)

$$H_{i} = \frac{h_{ii}}{1 - h_{ii}} + \frac{p + 1}{1 - h_{ii}} \frac{d_{i}^{2}}{1 - d_{i}^{2}}, i = 1, 2, \dots, n$$

DOI: 10.4236/ojs.2021.112016

where $d_i = \frac{e_i}{\sqrt{SSE}}$ called normalized residual.

Method 4 (DFBETAS)

$$\frac{b_j - b_j(i)}{\sqrt{s_{(i)}^2 \left(X'X + kI\right)_{ij}^{-1}}}$$

The criteria is given as DIFBETAs > $\frac{2}{\sqrt{n}}$

Method 5 (COVRATIO)

$$\frac{\left(\frac{n-p'-t_i^2}{n-p'-1}\right)}{1-h_{ii}}$$

The criteria is given as

$$|\text{COVRATIO}-1| > \frac{3p}{n}$$

where

$$h_{ii} = X' (XX + kI)^{-1} X$$
, and $t_i = \frac{e_i}{\hat{\sigma} \sqrt{1 - h_{ii}}}$

Appendix II

R Codes for Detecting Influential Observation for Different k Values for(i in 1:9){ h=matrix(hatr(lmridge(V1~.,rr, k[i]],30,30) ss=(sqrt(h[i,i]/(1-h[i,i])))C=NULL DF9=NULL H=NULL DFB=NULL COV=NULL for(i in 1:30){ b1=coefficients(lm(V1~.,rr[-i,])) r1=c(residuals(lm(V1~.,rr[-i,]))) $sig1=(sum(r1^2))/(n-p)$ num=c[3]-b1[3] hh=solve(t(xx[-i,])%*%(xx[-i,]))denom=sqrt(sig1*hh[3,3]) $C=rbind(C,(((r[i]^2/((sig)^{(1-h[i,i]))))/(11))^{(h[i,i]/(1-h[i,i])))$ DF9=rbind(DF9,r[i]/(sqrt(sig1*(1-h[i,i])))*sqrt(h[i,i]/(1-h[i,i])))H=rbind(H,(h[i,i]/(1-h[i,i]))+(11/(1-h[i,i]))*(r1[i]/sqrt(ssr)))DFB=rbind(DFB,num/denom) COV=rbind(COV,(sig1/sig)*(h[i,i]/(1-h[i,i]))) }

Appendix III

 Table A1. Nigerian economic indicator (1980-2010) data.

GDP	Money Supply	Cred Priv. Sector	Exchange Rate	External Reserv	Agric Loan	Foreign Trade	Oil Import	Nonoil Import	Oil Export	Nonoil Export
	14,471	8570	0.61	56,195	35,642	23,863	120	12,720	10,681	343
53,659	15,787	10,668	0.673	12,324	31,764	18,977	226	10,545	8003	203
57,963	17,688	11,668	0.724	7171	36,308	16,406	172	8732	7201	301
64,326	20,106	12,463	0.765	5480	24,655	16,266	282	6896	8841	247
73,542	22,299	13,070	0.894	10,998	44,244	18,783	52	7011	11,224	497
74,542	23,806	15,247	2.021	18,922	68,417	14,904	914	5070	8369	552
111,913	27,574	21,083	4.018	62,554	102,153	48,222	3170	14,692	28,209	2152
147,941	38,357	27,326	4.537	72,267	118,611	52,639	3803	17,643	28,435	2757
228,451	45,903	30,403	7.392	43,953	129,300	88,831	4672	26,189	55,017	2954
281,550	52,857	33,548	8.038	40,293	98,494	155,604	6073	39,645	106,627	3260
329,071	75,401	41,352	9.909	48,620	82,107	211,024	7772	81,716	116,858	4677
555,446	111112	58,123	17.298	33,392	88,032	348,763	19,562	123,590	201,384	4227
715,242	165,339	127,118	22.051	58,824	80,846	384,400	41,136	124,493	213,779	4991
945,557	230,293	143,424	21.886	95,329	103,186	3,688,480	42,350	120,439	200,710	5349
2,008,564	289,091	180,005	21.886	32,345	164,162	1,705,789	155,826	599,302	927,565	23,096
2,799,036	345,854	238,597	21.886	25,896	225,503	1,872,170	162,179	400,448	1,286,216	23,328
2,906,625	413,280	316,207	21.886	73,492	242,038	2,087,379	166,903	678,814	1,212,499	29,163
2,816,406	488,146	351,956	21.886	93,777	215,697	1,589,275	175,854	661,565	717,787	34,070
3,312,241	628,952	431,168	92.693	63,709	246,083	2,051,486	211,662	650,854	1,169,477	19,493
4,717,332	878,457	530,373	102.105	91,089	361,450	2,930,746	220,818	764,205	1,920,900	24,823
4,909,526	12,699,322	764,962	111.943	123,330	728,545	3,226,134	237,107	1,121,074	1,839,945	28,009
7,128,203	1,508,173	930,494	120.97	103,104	1,051,590	3,256,873	361,710	1,150,985	1,649,446	94,732
8,742,647	1,952,922	1,096,536	129.356	91,702	1,164,460	5,168,122	398,922	1,681,313	2,993,110	94,776
11,673,602	2,131,820	1,421,664	133.5	144,753	2,083,745	6,589,827	318,115	1,668,931	4,489,472	113,309
1.48E+08	2,637,914	1,838,390	132.147	291,849	3,046,739	10,047,391	797,299	2,003,557	7,140,579	105,956
18,709,786	3,799,538	2,290,618	128.651	449,473	4,263,060	10,433,200	710,683	2,397,836	7,191,086	133,595
20,874,172	5,138,701	3,680,090	125.833	544,732	4,425,862	12,221,711	768,227	3,143,726	8,110,500	199,258
25,424,948	8,029,089	6,941,383	118.566	701,675	6,721,075	15,357,293	1,386,730	3,803,073	9,913,651	247,839
2,896,746	9,456,480	9,147,417	148.902	536,428	8,349,509	13,458,920	1,063,544	4,038,990	8,067,233	289,153
3,124,539	11,034,941	10,157,021	150.298	448,268	7,740,508	19,041,169	2,073,579	5,931,795	10,639,417	396,377