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Abstract 
In this paper, we have studied the nonparameter accelerated failure time 
(AFT) additive regression model, whose covariates have a nonparametric ef-
fect on high-dimensional censored data. We give the asymptotic property of 
the penalty estimator based on GMCP in the nonparameter AFT model. 
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1. Introduction 

With the development of the Internet, high-dimensional data has been widely 
collected in life, especially in the field of medical research and finance, the results 
or responses of data are censored, so the study of high-dimensional censored 
data is meaningful. However, due to the impact of “disaster of dimension”, the 
study of high-dimensional data becomes extremely difficult, and some special 
methods must be adopted to deal with it. As the number of data dimensions in-
creases, the performance of high-dimensional data structures declines rapidly. In 
low-dimensional spaces, we often use Euclidean distance to measure the similar-
ity between data; but in high-dimensional spaces, this kind of similarity no 
longer exists, which makes the data mining of high-dimensional data very se-
verely challenging. On the one hand, the performance of the data mining algo-
rithm based on the index structure is reduced; on the other hand, many mining 
methods based on the entire spatial distance function will fail. By reducing the 
number of dimensions, the data can be reduced from high to low dimensions, 
and then using low-dimensional data processing methods. Therefore, the study 
of effective dimensionality reduction methods becomes significant in statistics. 
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In many studies, the main results or responses of survival data are censored. 
Survival analysis is another important theme of statistics, and it has been widely 
used in medical research and finance. Therefore, the study of survival data has 
attracted a lot of attention. The Cox model [1] is the most commonly used re-
gression model for survival data. The alternative method of the PH model is the 
accelerated failure time model, which directly correlates the logarithm of the 
failure time with the covariate, and is similar to the traditional linear model, 
which is easier to explain than the PH model. [2] takes into account both Lasso 
and threshold gradient oriented regularization for high-dimensional AFT model 
estimation and variable selection. [3] uses partial least squares (PLS) and Lasso 
methods to select variables in AFT models with high-dimensional covariates. [4] 
proposed a robust weighted minimum absolute deviation method to estimate the 
high-dimensional AFT model. [5] uses COSSO penalty in the nonparameter 
AFT model for variable selection [6] in the high-dimensional nonparameter 
AFT model, using the reproduction kernel Hilbert norm penalty for estimation, 
a new enhanced algorithm is proposed for censoring time data. The algorithm is 
suitable for fitting parameter accelerated failure time models. [7] studied the 
elastic net method for variable selection under the Cox proportional hazard 
model and the AFT model with high-dimensional covariates. [8] developed a 
robust prediction model for event time results through LASSO regularization. 
This model is aimed at the Gehan estimation of high-dimensional prediction va-
riables accelerated failure time AFT model. [9] extends rank-based Lasso estima-
tion to the estimation and variable selection in the high-dimensional partial li-
near acceleration failure time model. [10] uses the bridge penalty for regular es-
timation and parameter selection of high-dimensional AFT models. Based on 
the high-dimensional semi-parameter accelerated failure time model, [11] pro-
posed the Buckley-James method of double penalty, which can perform variable 
selection and parameter estimation at the same time. [12] has developed a me-
thod for quickly predicting variable selection and contraction estimation of 
high-dimensional predictive variable AFT models. The model is related to the 
correlation vector machine (RVM), which relies on maximum posterior estima-
tion to get sparse estimates quickly. [13] proposes a semiparametric regression 
model whose covariate effect contains parametric and nonparametric parts. The 
selection of parametric covariates is achieved by iterative LASSO method, and 
the nonparametric components are estimated using the sieve method [14], and 
based on kullback-leibler geometry [15], an empirical model selection tool for 
nonparameter components was obtained. However, they leave behind some theo-
retical issues that have not yet been resolved. [16] takes into account the estima-
tion and variable selection of LASSO and MCP in AFT models with high cova-
riates. [17] implements regularization in the high-dimensional AFT model L1/2 
for variable selection. [18] proposed a covariate adjustment screening and varia-
ble selection procedure under the accelerated failure time model. It also appro-
priately adjusted the low-dimensional confounding factors to achieve a more 
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accurate estimation of regression coefficients. [19] proposed an adaptive elastic 
net and weighted elastic net with censored data and high-dimensional variable 
selection in the AFT model. [20] proposed to apply a tensor recursive neural 
network architecture to extract latent representations from the entire patient 
medical record of the high-dimensional AFT model. [21] considers a novel 
Sparse L2 Boosting algorithm, which is based on a semiparameter variable coeffi-
cient accelerated failure time model of right-censored survival data with high- 
dimensional covariates model prediction and variable selection. [22] developed a 
variable selection method in an AFT model with high-dimensional predictive 
variables, which consists of a set of algorithms based on two widely used tech-
niques in the field of variable selection in survival analysis synthesis: Buck-
ley-James method and Dantzig selector. 

In this article, based on potential predictors, we applied the GMCP (Group 
Minimax Concave Penalty) penalty method for the first time to the study of a 
high-dimensional nonparametric accelerated failure time additive regression 
model (2.1) (MCP, [23]). The weighted least squares solution of the model based 
on GMCP penalty is given. We also derived the group coordinate descent algo-
rithm used to calculate the GMCP estimate in this model. Our simulation results 
show that the weighted least squares estimation based on GMCP penalty works 
well in the high-dimensional nonparameter accelerated failure time additive re-
gression model, and is superior to the GLasso (Group Least Absolute Shrinkage 
and Selection Operator) penalty method. 

The rest of the paper is organized as follows. In Section 2, we describe the 
nonparameter accelerated failure time additive regression (NP-AFT-AR) model 
and our research methods. In Section 3, we give the asymptotic oracle property 
of GMCP estimation. The simulation results are given in Section 4. Verification 
of actual data is given in Section 5. The conclusion is given in Section 6. 

2. Models and Methods 
2.1. Model 

In this paper, we study the following nonparametric accelerated failure time ad-
ditive regression (NP-AFT-AR) model to describe the relationship between the 
independent predictors or covariates Xj’s and the failure time T: 

( )0
1

exp
p

j j
j

T f X ε
=

 
= + + 

 
∑η                  (2.1) 

where 0η  is the intercept, ( )1, , pX X=X   is a 1p×  vector of covariates, fj’s 
are unknown smooth functions with zero means, i.e., ( ) 0j jEf X =  and ε  is 
the random error term with mean zero and a finite variance 2σ . We consider 
sample size is small n p< , assuming that some additive components jf  are 
zero, the main purpose of our research is to find the non-zero components and 
zero components; the second goal is to find the specific functional form of the 
non-zero components in order to propose a more parsimonious model. In this 
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study, we apply the GMCP penalty in the proposed NP-AFT-AR model for 
component selection and estimation. We use B-splines to parameterize the non-
parameter components, then invoke the inverse probability-of-censoring weighted 
least squares method to achieve the goals. We treat the spline approximation for 
each component as a group of variables subject to selection. By the GMCP pe-
nalty approach, we show that the proposed method can select significant com-
ponent functions by choosing the nonzero spline basis functions. 

2.2. Weighted Least Squares Estimation 

We define iT  as the ith subject’s survival time, and let iC  denote the censoring 
time and iδ  denote the event indicator, i.e., ( )i i iI T Cδ = ≤ ; which takes value 
1 if the event time is observed, or 0 if the event time is censored. Define iY  as the 
minimum of the survival time and the censoring time, i.e., ( )( )log min ,i i iY T C= : 
Then, the observed data are in the form ( ), ,i i iY Xδ , 1, ,i n=  . which are as-
sumed to be an independent and identically distributed (i.i.d.) sample from 
( ), ,Y δ X . 

Let ( ) ( )1 nY Y≤ ≤  be the order statistics of Yi’s, ( ) ( )1 , , nδ δ  and ( ) ( )1 , , nX X  
are the associated censoring indicators and covariates. Let F be the distribution 
of T and nF  be its Kaplan-Meier estimator  ( ) ( )( )1 1n

n ni iiF y Y yω
=

= ≤∑ , where 
the niω ’s are Kaplan-Meier weights ([24]) calculated by 

( ) ( )
( )11

1
1

, , 2, ,
1 1

jii
n ni

j

n j i n
n n i n j

δδ δ
ω ω

−

=

 −
= = = − + − + 

∏ 

 
[4] showed that the weights, niω ’s, are the jumps in the Kaplan-Meier esti-

mator. These are equivalent to the inverse probability-of-censoring weights ([25] 
[26]), ( )



( )( )ni ni iG Yω δ= − ; where nG  is the Kaplan-Meier estimator of G, the 
distribution function of C. The Stute’s weighted least squares loss function for 
the NP-AFT-AR model (2.1) is defined as 

( ) ( )( )
2

0
1 1

1
2

pn

n ni ji i j
i j

Q n Y f Xω η
= =

 
= − − 

 
∑ ∑              (2.2) 

Here, we use B-spline basis functions to approximated unknown functions fj’s. 
For every function component, assuming that jX  is bounded; and  

( ){ } 0, 1, ,j jE f X j p= =  ; The basis functions are determined by the order 

( )1p +  and the number of interior knots κ . The total number of B-spline ba-
sis functions for each function component would be 1p κ+ + : For identifiabil-
ity, satisfy ( ) 0j jEf X = ; we take the total number of basis functions to be  

nM p κ= +  only and center all the basis functions at their means. Then the 
B-splines approximation for each function component, ( ) , 1, ,j jf X j p=  ; is 
given by 

( ) ( )
=1

nM

j j jk jk j
k

f X B Xβ≈ ∑
 

where ( )jk jB X  are the B-spline basis functions and ( )T

1, ,
nj j jMβ β= β  is 
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the corresponding coefficient parameter vector. Let jB  denote the nn M×  
design matrix of B-spline basis of the jth predictor and ( )j iB  be its ith row vector 
corresponding to the sorted data. Denote the nn pM×  design matrix as  

( )1 2, , , p=B B B B ; the ith row of B  as ( )iB ; and the corresponding parame-
ter vector as ( )TT T

1 , , p= β β β . Then we have 

( )( ) ( )( ) ( )( )

( )( ) ( )( )

( )

1 1
1

1 1 1
1 1

1

n n

p

j pi j i i p
j

M M

k k pk pki i p
k k

p

ji j
j

f X f X f X

B X B Xβ β

=

= =

=

= + +

≈ + +

=

∑

∑ ∑

∑B





β

       (2.3) 

By plugging Equation (2.3) into Equation (2.2), we will get the new loss func-
tion as following: 

( ) ( ) ( )

2

0 0
1 1

1,
2

pn

n ni ji i j
i j

Q n Yη ω η
= =

 
= − − 

 
∑ ∑Bβ β            (2.4) 

By centering ( )i jB  and ( )iY  with their niω -weighted means, the intercept 

becomes 0. Denote ( ) ( ) ( )( )1 2 ˆ
ni ji j i jn ωω= −B B B  and ( ) ( )( )1 2

ni iY n Y Yωω= − ; 

where ( )1 1
n n

j ni nii ji iω ω ω
= =

= ∑ ∑B B  and ( )1 1
n n

ni niii iY Yω ω ω
= =

= ∑ ∑  Let  

( )1 22

12
m

jj a
=

= ∑a  denote the L2 norm of any vector mR∈a . For simplicity, 

we use ( ) ( )( )T

1 , ,j j n jB B=B  

  and ( ) ( )( )T

1 , , nY Y Y=  

 . Then we can rewrite the 

Stute’s weighted least squares loss function Equation (2.4) as 

( ) ( ) ( )

2 2

1 1 1 2

1 1
2 2

p pn

n j j ji i j
i j j

Q Y B Y
= = =

 
= − = − 

 
∑ ∑ ∑B   β β β         (2.5) 

2.3. Weighted Least Square Estimation of GMCP Penalty 

B-splines approximation is used on the unknown functions, which transforms 
the nonparameter regression into a parameter regression that makes variable se-
lection and parameter estimation easier to solve. Meanwhile, the grouped va-
riables in jB ; i.e., ; 1, ,jk nB k M=

 ; for each 1, ,j p=  , are all related to the 
variable jX ; so we can consider B-spline basis functions for each nonparameter 
function jf  to be a group. Instead of selecting the significant nonparameter 
functions, our task converts to choosing the significant B-spline basis functions 
from jB  or nonzero coefficients from jβ . 

In order to carry out variable selection at the group and individual variable 
levels simultaneously. In our case, the GMCP penalty function is 

0
, 1 dj

j

j
j

x xγρ λ λ
γλ +

   = −      
∫ A

A

β
β               (2.6) 

where γ  is a parameter that controls the concavity of ρ  and λ  is the pe-
nalty parameter. Here { }01 xx x+ ≥= . We require 0λ ≥  and 1γ > . The term 
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MCP comes from the fact that it minimizes the maximum concavity measure 
defined at (2.2) of [23], subject to conditions on unbiasedness and selection fea-
ture. The MCP can be easily understood by considering its derivative 

, 1 j

j

j

jγρ λ λ
γλ

+

 
   = −      

 

A

A


β
β                 (2.7) 

where for any 1m×  vector a , 
1a  is the L1 norm: 11 ma a= + +a  , 

0λ >  is the penalty tuning parameter and { }:j jk jA k β= ∈β . In our case, 
each jA  represents the jth group of basis functions, i.e., , 1, ,jk nB k M=

 ; the 
values of the basis functions for each nonparameter function jf  may be dif-
ferent from those for another function jf ′ ; and when j j′≠ ; we assume there 
is no overlap between groups. Now combining the objective function in Equa-
tion (2.5) and the penalty function in Equation (2.6), we have the penalized 
weighted least squares objective function for the proposed NP-AFT-AR model as 
follows: 

( )
2

0
1 12

1 1 d
2

j
j

p p

n j j
j j

xQ Y xλ λ
γλ= = +

 
= − + − 

 
∑ ∑ ∫ AB 

β
β β         (2.8) 

We can conduct group or component selection and estimation by minimizing 
( )nQ λ β : If 0

j
j =

A
β ; it implies that the function component jf  is deleted, 

otherwise, it is selected, further, the individual basis functions within a group 
can be selected. 

2.4. Computation 

We derive a group coordinate descent algorithm for computing β . This algo-
rithm is a natural extension of the standard coordinate descent algorithm ([27]). 
It has also been used in calculating the penalized estimates based on concave 
penalty functions ([28]). 

The group coordinate descent algorithm optimizes a target function with re-
spect to a single group at a time, iteratively cycling through all groups until con-
vergence is reached. It is particularly suitable for computing β , since it has a 
simple closed form expression for a single-group model, see (2.11) below. 

We write j j=A R  for an n nM M×  upper triangular matrix jR  via the Cho-
lesky decomposition. Let j j j= Rθ β  and 1ˆ

j j j
−=B B R . Simple algebra shows 

that 

( )
2

0
1 12

1 ˆ, , 1 d
2

j
p p

j j
j j

xQ xλ γ λ
γλ= = +

 
= − + − 

 
∑ ∑ ∫Y B

θ
θ θ         (2.9) 

Note that ( )1 1 1ˆ ˆ ˆ ˆ
nj j j j j j mn n I− − −′ ′ ′= =B B R B B R . ˆ ˆ ˆp

j k kk jY Y
≠

= −∑ B θ  and 

( ) 2

02

1 ˆ, , 1 d
2

j
j j j j j

xQ Y xλ γ λ
γλ +

 
= − + − 

 
∫B

θ
θ θ          (2.10) 

Let ( ) 1ˆ ˆ ˆ ˆ
j j j j jY

−
′= B B Bη . For 1γ > , it can be verified that the value that mi-
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nimizes ( ), ,jQ λ γθ  is 

( ) ( ),

0 if

, ; , 1 if
1

if

j

j GM j j j
j

j j

M

λ

γ λθ λ γ λ γ λ γλ
γ

γλ

 ≤

    = ≡ − < ≤  −  


>



η

η η η
η

η η

  (2.11) 

In particular, when γ = ∞ , we have 

, 1 ,j GL j
j

λθ
+

 
 = −
 
 

 η
η

 
which is the GLasso estimate for a single-group model ([29]). 

The group coordinate descent algorithm can now be implemented as follows. 
Suppose the current values for the group parameter ( ) ,s

k k j≠θ  are given. We 
want to minimize ( ), ,Q λ γθ  with respect to jθ . Let 

( ) ( )
2

0
2

1 ˆ ˆ, , 1 d
2

js
j j k k j j

k j

xQ Y xλ γ λ
γλ≠ +

 
= − − + − 

 
∑ ∫B B

θ
θ θ θ     (2.12) 

and write ( )ˆ s
j k kk jY

≠
= ∑ B  θ  and ( )1 ˆ

j j jn Y Yη − ′= −B   . Let j
θ  be the minimizer 

of ( ), ,j jQ λ γθ . When 1γ > , we have ( ), ,j jM η λ γ=θ , where M is defined in 
(2.11). 

For any given ( ),λ γ , we use (2.11) to cycle through one component at a 

time. Let ( ) ( ) ( )( )0 0 0
1 , , p

′′ ′=  

θ θ θ  be the initial value. The proposed coordinate 

descent algorithm is as follows. 
Initial vector of residuals r Y Y= −  , where ( )0

1
ˆp

j jjY
=

= ∑ B θ , For 0,1,s =  , 
carry out the following calculation until convergence. For 1, ,j p=  , repeat 
the following steps. 

Step 1: Calculate ( )1 ˆ s
j j jn r− ′= +B 

η θ . 
Step 2: Update ( ) ( )1 ; ,s

j jM λ γ+ = θ η . 

Step 3: Update ( ) ( )( )1ˆ s s
j j jr r += − −B θ θ  and 1j j= + . 

The last step ensures that r holds the current values of the residuals. Although 
the objective function is not necessarily convex, it is convex with respect to a 
single group when the coefficients of all the other groups are fixed. 

3. Asymptotic Oracle Properties of GMCP 

Let A  denote the cardinality of any set { }1, ,A p∈   and A nd A M= . De-
fine 

( ), 1, , ; and A A
A jk n A

B BB B k M j A
n
′

= = ∈ Σ =



 
Here AB  is An nd×  dimensional sub-design matrix corresponding to the 

variables in A, Denote ( )2
2j j jf Ef X =    We make the following assump-

tions. 
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Similar to [5], we assume: 
(C1) T and C are independent. 
(C2) ( ) ( )| , |Pr T C T X Pr T C T≤ = ≤ . 
(C3) ( )2E T < ∞  and ( )| 0E ε =X . 
(C4) Denote Tτ  and Cτ  as the least upper bounds of T and C, respectively. 

Then T Cτ τ<  or T Cτ τ= = ∞ . 
(C5) 2f  has finite envelope function. 
(C6) ( ) ( ){ }20E f f−X X  for 0f f≠ . 
These assumptions correspond to the conditions in [30]. In the random cen-

sorship model, (C1) is a basic assumption. (C2) given the failure time T, the 
censoring indicator is independent of the X . (C3) in least-squares estimation, 
we need the second moment. (C4) assumes the probability of an event being ob-
served is greater than zero, which guarantees the consistency of the estimator. 
(C5) is a fundamental condition for the consistency and convergence rate in the 
proofs, and is used in the entropy calculation. (C6) guarantees that 0f  is iden-
tifiable. 

(C7) There exist constant *
10, 0q c> >  and 2 0c >  where 1 20 c c< ≤ < ∞  

such that 
2

*2
1 2 2, , 1 and AA dB

c c A q R
n
ν

ν ν≤ ≤ ∀ = = ∈
 

(C8) There is a small constant 1 0η ≥  such that 
0 12k A jf η∈Σ ≤ . 

(C9) The random errors , 1, ,i i nε =   are independent and identically dis-
tributed as ε , where ( ) 0E ε =  and ( )2 2E ε σ= < ∞ ; moreover, the tail 
probabilities satisfy ( ) ( )2expP x K Cxε > ≤ −  for 0x >  and some constants 
C and K. 

(C10) There exists a positive constant M such that  
, 1, , ; 1, ,ikx M i n k p≤ = =  . 

(C7) is the sparse Riesz condition (SRC) formulated for the nonparameter 
AFT model (2.1), which controls the range of eigenvalues of the matrix Z. This 
condition was introduced to study the properties of Lasso for the linear regres-
sion model by [31]. (C8) assumes that the unimportant predictors are small in 
the 2L  sense, but do not need to be exactly zero. If 1 0η = , (C8) becomes 

0jf =  for all 0k A∈ . The problem of variable selection is equivalent to distin-
guishing nonzero functions from zero functions. (C9) assumes that the distribu-
tion of the error terms has sub-Gaussian tails. This condition holds when the 
error distribution is normal. (C10) assumes that all the predictors are uniformly 
bounded, which is satisfied in many practical situations. 

In this subsection, we simply write ( ) 1
ˆ ˆnM

j j jk jkkf X Bβ
=

= ∑  is GMCP estimator. 

Let { }02
min ,o o c

j j A∗ = ∈β β  and set o
∗ = ∞β  if 0

cA  is empty. Define 

2

021 2

1ˆ arg min ; 0,
2

p
o o o c

j j j
j

j A
=

  = − = ∀ ∉ 
  

∑b Y B β β β        (3.1) 
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and 

( )
=1

ˆnM
o o
j jk jk

k
f X = ∑ Bβ

 
This is the oracle least squares estimator. Of course, it is not a real estimator, 

since the oracle set is unknown. 
We first consider the case where the 2-norm GMCP objective function is 

convex. This necessarily requires min 0c >  where minc  be the smallest eigen-
value of Σ , and recall 1n− ′Σ = B B . As in [32], define the function 

( ) ( )2
, exp 2 1 1 4 , 1, 1,2,h t k k t t k = − − − > = 

 
         (3.2) 

This function arises from an upper bound for the tail probabilities of the 
chi-square distributions given in Lemma A.2 in Appendix. This is derived from 
an exponential inequality for chi-square random variables of [33]. 

Theorem 3.1. Suppose 1, , nε ε  are independent and identically distributed 
as ( )20,N σ  and (C1)-(C10). Then for any ( ),λ γ  statisfying min1 cγ > ,  

o λγ∗ >β  and 2 2nλ σ> , we have 

( )( ) ( ) ( )1 2
ˆ ˆ, o

n nP λ γ η λ η λ≠ ≤ +β β
 

and 

( ) ( ) ( )1 2
ˆ ˆ o

n nP f f η λ η λ≠ ≤ +
 

where ( ) ( ) ( )2 2
1 ,n np q h n Mη λ λ σ= −  and  

( ) ( )( )2 2
2 1 ,o

n nqh c n Mη λ γλ σ∗= −β . 

We give the proof of Theorem 3.1 in Appendix. It provides an upper bound 
on the probability that f̂  is not equal to the oracle estimator in terms of the 
tail probability function h in (3.2). The key condition min1 cγ >  ensures that 
the 2-norm GMCP criterion is strictly convex. Nonetheless, this result is a start-
ing for a similar result in p n>  case. The following corollary is an immediate 
consequence of Theorem 3.1. 

Corollary 1. suppose that the condition of Therorm 3.1 are satisfied. Also 
suppose that o

n naγλ τ∗ ≥ +β  for na →∞  as n →∞ . If n naλ λ≥ , then 

( )( )ˆ ˆ, 0 asoP nλ γ ≠ → →∞β β
 

and 

( )ˆ ˆ 0 asoP f f n≠ → →∞
 

where 

{ }( ) ( ) { }( ) ( )( )12 log max ,1 and 2log max ,1n n n np q nM q nc Mλ σ τ σ= − =
 

By Corollary 1, the 2-norm GMCP estimator equals the oracle least squares 
estimator with probability converging to one. This implies it is group selection 
consistent. We now consider the high-dimensional case where p n> . Under 
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condition (C7), let 1 2K c∗ = − , m K q∗ ∗=  and ( )*1 4 nc Mξ = . Define 

( ) ( ) ( )2 2
3 ,

m
m

n n nm

ep q h n M m M
m

η λ ξ λ σ
∗

∗

∗

−
∗

∗

= −
 

Theorem 3.2. suppose 1, , nε ε  are independent and identically distributed 
as ( )20,N σ  and B satisfies the ( )*

1 2, ,SRC q c c  in (C7) with ( )* 1 2q c≥ − , 
m K q∗ ∗=  and ( )*1 4 nc Mξ = , we have 

( )( ) ( ) ( ) ( )1 2 3
ˆ ˆ, o

n n nP β λ γ η λ η λ η λ≠ ≤ + +β
 

and 

( ) ( ) ( )1 2
ˆ ˆ o

n nP f f η λ η λ≠ ≤ +
 

where ( ) ( ) ( )2 2
1 ,n np q h n Mη λ λ σ= −  and  

( ) ( )( )2 2
2 1 ,o

n nqh c n Mη λ γλ σ∗= −β . 

Corollary 2. suppose that the condition of Therorm 3.2 are satisfied. Also 
suppose that o

n naγλ τ∗ ≥ +β  for na →∞  as n →∞ . If *
n naλ λ≥ , then 

( )( )ˆ ˆ, 0 asoP nλ γ ≠ → →∞β β
 

and 

( )ˆ ˆ 0 asoP f f n≠ → →∞
 

where ( )*
22 2 logn nc M p q nλ σ= − . 

Theorem 3.2 and Corollary 2 provide sufficient conditions for the asymptotic 
oracle property of the global 2-norm GMCP estimator in the p n>  situations. 
Here we allow ( )( ){ }0 2expc

np A O n c M− = . So p can be greater than n. The 
condition 2 2

nn Mλ ξ σ>  is stronger than the corresponding condition 2 2nλ σ>  
in Theorem 3.5 ([34]). The condition 1

1 4c cγ −≥ +  ensures that the GMCP 
criterion is convex in any q-dimensional subspace. It is stronger than the mi-
nimal sufficient condition 1

1cγ −>  for convexity in q-dimensional subspaces. 
This is the price we need to pay in search for a lower-dimensional space that 
contains the true model. 

4. Numerical Simulation 

In this section, we conduct simulation studies to evaluate the performance of the 
GMCP and GLasso penalties in a high-dimensional NP-AFT-AR model with li-
mited samples. We therefore focus on the comparisons of the group selection 
methods with only the BIC ([35]) selected tuning parameter ( ), nMλ , is given: 

( ) ( ) ( ) ,
,BIC , log RSS log n

n

M
n M

df
M n

n
λ

λλ = +
 

Where RSS is the sum of squared residuals, df is the number of selected va-
riables given ( ), nMλ . We choose nM  from the increasing sequence in Section 
5, for any given value of nM , We choose from a sequence of 100 values λ , from 

max0.01λ  to maxλ , Where max 1 2
max j p j n jMλ ≤ ≤ ′ ′= B Y B    is corresponding to 
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the covariate , 1, ,jX j p=   with nn M×  “design” matrix. maxλ  is the max-
imum penalty value, which compresses all estimated coefficients to zero. 

We compute the empirical prediction mean square error (MSE) to reveal the 
estimation accuracy. Let ˆ

jf  be the estimator of , 1, ,jf j p=  ; and we define 
MSE as 

( ) ( ) 2

1

1 ˆMSE
j

n

f j ij p ij
i

f X f X
n =

= −∑
 

Three scenarios are considered in the following, where some nonzero com-
ponents are linear and the response variable is subject to various censoring rates. 
The sample size 400,200n =  and a total of 100 simulation runs are used. The 
logarithm of censoring time iC  is generated from a uniform distribution  
( )1 2 1 2, , 0; 0U c c c c> > , where 1c  and 2c  are determined by a Monte-Carlo 

method to achieve the censoring rates of 35% and 40% respectively. For example, 
the censoring rate ( )cr Pr T C= >  is approximated by  ( )1 >M

i iicr I T C M
=

= ∑  
where iT  is drawn from the proposed model (2.1) and iC  is drawn from 
( )1 2 1 2, , 0; 0U c c c c− > > , M is the Monte-Carlo simulation runs used to compute 

cr. When we chose 

1 20, 4, 40%c c cr= = ≈ , which is considered to be the de-
sired censoring rate. To take account of the computational efficiency and accu-
racy, we use the cubic B-spline with five evenly distributed interior knots for all 
the functions , 1, ,jf j p=  , which gives the number of 3 1 5 9+ + =  basis 
functions for each nonparametric component. Due to the identifiability con-
straint, ( ){ } 0j jE f X = ; the actual number of basis functions used is 8. This 
choice is made because our simulation studies indicated that using a larger 
number of knots does not improve the finite sample performance (results are 
not shown). 

4.1. Scenario 1 (Covariates Are Independent) 

In this scenario, we consider independent covariates and set the intercept 0 0η = : 
The logarithm of failure times, , 1, ,iT i n=  , are generated from 

( ) ( ) ( ) ( ) ( )

( ) ( )

1 1 2 2 3 3 4 4 5 5

6 6
7

exp

p

j j
j

T f X f X f X f X f X

f X f X ε
=


= + + + +




+ + + 


∑
 

where 

( ) ( )( ) ( ) ( ) ( )3 2
1 1 1 2 2 2 3 3 3

32 sin 0.25 , 2sin 2 , ,
4

f X X f X X f X X= −π= =
 

( ) ( ) ( )4 4 4 5 5 5
251.2 , exp ,
12

f X X f X X= = − −
 

( ) ( ) ( )3
6 6 6 7 7

1 , 0.
4 p pf X X f X f X= = = ≡

 
The predictors are sampled from the ( )0,1N . 
We set 500p =  and consider the cases where 400,200n = , respectively to 
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see the performance of our proposed methods as the sample size increases. The 
penalty parameters are selected using CV as described above. 

The results for the the GMCP, GSCAD and GLasso methods are given in Ta-
ble 1 and Table 2 based on 100 replications. The columns in Table 1 include the 
average number of variables (NV) being selected, model error (ER), percentage 
of occasions on which correct variables are included in the selected model (%IN) 
and percentage of occasions on which the exactly correct variables are selected 
(%CS) with standard error in parentheses. Table 2 summarizes the mean square 
errors for the six important functions ( ) ( ) 21

1
ˆ , 1, ,6n

j ji j jiin f X f X j−
=

− =∑   
with standard error in parentheses. 

Several observations can be obtained from Tables 1-4. The model that was 
selected by the GMCP and is better than the one selected by the GLasso in terms 
of model error, the percentage of occasions on which the true variables being se-
lected and the mean square errors for the important coefficient functions. The 
GMCP includes the correct variables with high probability. When the sample 
size increases, the performance of both methods becomes better as expected. To 
examine the estimated nonparametric functions from Concave group Selection 
methods, we plot GMCP along with the true function components in Figure 1 
and Figure 2. The estimated nonparametric coefficient functions are from 
GMCP method in one run when 100. From the graph, the estimators of the  

 
Table 1. Simulation results. NV, number of selected variables; ER, model error; IN%, 
percentage of occasions on which the correct variables are included in the selected model; 
CS%, percentage of occasions on which exactly correct variables are selected, averaged 
over 100 replications. Enclosed in parentheses are the corresponding standard errors. 

 Results for high dimension, 500p =  

 NV ER IN% CS% 

 ( )400 CR 35%n = =  

Group Lasso 6.0 0.0004 100.0 100.0 

 (0.00) (0.0003) (0.00) (0.00) 

Group SCAD 6.0 0.0001 100.0 100.0 

 (0.00) (0.0001) (0.00) (0.00) 

Group MCP 6.0 0.00009 100.0 100.0 

 (0.00) (0.00009) (0.00) (0.00) 

 ( )200 CR 35%n = =  

Group Lasso 8.0 0.0015 97.0 97.0 

 (1.83) (0.0018) (0.171) (0.171) 

Group SCAD 6.1 0.0007 99.0 99.0 

 (0.35) (0.0014) (0.100) (0.100) 

Group MCP 6.2 0.0005 99.0 98.0 

 (1.62) (0.0010) (0.100) (0.140) 
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Table 2. Simulation results. Mean Square errors for the important coefficient functions 
based on 100 replications. Enclosed in parentheses are the corresponding standard errors. 

 ( )1 1f X  ( )2 2f X  ( )3 3f X  ( )4 4f X  ( )5 5f X  ( )6 6f X  

 ( )400 CR 35%n = =  

group Lasso 0.109 0.312 0.324 0.150 0.682 0.624 

 (0.054) (0.087) (0.105) (0.065) (0.584) (0.299) 

group SCAD 0.076 0.227 0.262 0.114 0.683 0.519 

 (0.049) (0.086) (0.089) (0.068) (0.626) (0.319) 

group MCP 0.073 0.226 0.258 0.111 0.644 0.516 

 (0.048) (0.085) (0.094) (0.064) (0.540) (0.319) 

 ( )200 CR 35%n = =  

group Lasso 0.259 0.803 1.399 0.415 0.864 0.711 

 (0.101) (0.268) (0.558) (0.168) (0.610) (0.313) 

group SCAD 0.202 0.378 0.724 0.175 0.603 0.584 

 (0.125) (0.274) (0.374) (0.142) (0.533) (0.662) 

group MCP 0.200 0.365 0.720 0.162 0.639 0.547 

 (0.117) (0.262) (0.367) (0.123) (0.687) (0.646) 

 
Table 3. Simulation results. NV, number of selected variables; ER, model error; IN%, 
percentage of occasions on which the correct variables are included in the selected model; 
CS%, percentage of occasions on which exactly correct variables are selected, averaged 
over 100 replications. Enclosed in parentheses are the corresponding standard errors. 

 Results for high dimension, 500p =  

 NV ER IN% CS% 

 ( )400 CR 40%n = =  

Group Lasso 6.6 0.0003 100.0 100.0 

 (1.16) (0.0003) (0.0) (0.0) 

Group SCAD 6.1 0.0001 100.0 100.0 

 (0.29) (0.0001) (0.0) (0.0) 

Group MCP 6.1 0.00009 100.0 100.0 

 (0.37) (0.00009) (0.0) (0.0) 

 ( )200 CR 40%n = =  

Group Lasso 8.4 0.0016 96.0 95.0 

 (2.31) (0.0031) (0.196) (0.219) 

Group SCAD 6.1 0.0010 97.0 95.0 

 (2.04) (0.0031) (0.171) (0.219) 

Group MCP 6.2 0.0007 97.0 96.0 

 (2.23) (0.0027) (0.171) (0.196) 
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Table 4. Simulation results. Mean Square errors for the important coefficient functions 
based on 100 replications. Enclosed in parentheses are the corresponding standard errors. 

 ( )1 1f X  ( )2 2f X  ( )3 3f X  ( )4 4f X  ( )5 5f X  ( )6 6f X  

 ( )400 CR 40%n = =  

group Lasso 0.111 0.247 0.176 0.132 0.750 0.666 

 (0.055) (0.102) (0.140) (0.074) (0.702) (0.313) 

group SCAD 0.077 0.202 0.110 0.109 0.681 0.563 

 (0.051) (0.100) (0.059) (0.087) (0.592) (0.357) 

group MCP 0.074 0.202 0.113 0.107 0.655 0.555 

 (0.050) (0.100) (0.074) (0.087) (0.552) (0.345) 

 ( )200 CR 40%n = =  

group Lasso 0.392 0.746 0.777 0.543 1.304 0.439 

 (0.144) (0.343) (0.456) (0.272) (0.834) (0.197) 

group SCAD 0.133 0.441 0.271 0.217 0.894 0.297 

 (0.159) (0.357) (0.369) (0.283) (0.769) (0.244) 

group MCP 0.122 0.428 0.286 0.197 0.916 0.289 

 (0.148) (0.346) (0.462) (0.240) (1.125) (0.243) 

 

 
Figure 1. 200n = , the solid black line is the real function, the dotted red line is the GMCP estimation, CR = 35%. 
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Figure 2. 200n = , the solid black line is the real function, the dotted red line is the GMCP estimation, CR = 40%. 

 
nonparameter ( ) , 1, ,6j jf X j =  , fit the true functions well, which are consis-
tent with the mean square errors for the functions reported in Table 2, Table 4. 

4.2. Scenario 2 (Covariates Are Correlated) 

In this scenario, we consider correlated covariates and set the intercept 0 0η = : 
The logarithm of failure times, , 1, ,iT i n=  , are generated from? 

( ) ( ) ( ) ( ) ( )

( ) ( )

1 1 2 2 3 3 4 4 5 5

6 6
7

exp

p

j j
j

T f X f X f X f X f X

f X f X ε
=


= + + + +




+ + + 


∑
 

( ) ( ) ( ) ( ) 2
1 1 1 2 2 2 3 3 3

31.2 , 2sin 2 , ,
4

f X X f X X f X X = = = − 
   

( ) ( ) ( ) ( )4 4 5 5 5 5
25exp , sin 0.5 ,
12

f X X f X X= − − π=
 

( ) ( )( ) ( ) ( )3
6 6 6 7 72 sin 0.25 , 0.p pf X X f X f X= =π= ≡

 
where the covariates ( )1 2, , , pX X X=X   are generated from  

( )0.5 1.5p pX W U= +  where 1, , pW W  and U are i.i.d. ( )0,1N . This pro-
vides a design with a correlation coefficient of 0.5 between all of the covariates. 

The simulation study results are reported in Tables 5-8. The conclusions for 
Scenario 2 are very similar to those for Scenario 1. When the censoring rate in-
creases, the estimation and selection performance decreases for all methods. The 
results in Table 6, Table 8 show that the GMCP estimator is more accurate than 
the GLasso estimator for both the individual component functions and the full  
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Table 5. Simulation results. NV, number of selected variables; ER, model error; IN%, 
percentage of occasions on which the correct variables are included in the selected model; 
CS%, percentage of occasions on which exactly correct variables are selected, averaged 
over 100 replications. Enclosed in parentheses are the corresponding standard errors. 

 Results for high dimension, 500p =  

 NV ER IN% CS% 

 ( )400 CR 35%n = =  

Group Lasso 9.0 0.0024 100.0 99.0 

 (2.05) (0.0011) (0.00) (0.10) 

Group SCAD 7.8 0.0015 100.0 100.0 

 (1.58) (0.0009) (0.00) (0.00) 

Group MCP 8.3 0.0013 100.0 100.0 

 (2.07) (0.0007) (0.00) (0.00) 

 ( )200 CR 35%n = =  

Group Lasso 12.9 0.0043 86.5 86.0 

 (3.47) (0.0033) (0.343) (0.347) 

Group SCAD 8.3 0.0033 93.5 92.0 

 (1.63) (0.0031) (0.247) (0.271) 

Group MCP 8.6 0.0024 93.5 93.5 

 (1.72) (0.0024) (0.247) (0.247) 

 
Table 6. Simulation results. Mean Square errors for the important coefficient functions 
based on 100 replications. Enclosed in parentheses are the corresponding standard errors. 

 ( )1 1f X  ( )2 2f X  ( )3 3f X  ( )4 4f X  ( )5 5f X  ( )6 6f X  

 ( )400 CR 35%n = =  

group Lasso 0.149 0.173 0.224 0.998 0.073 0.124 

 (0.059) (0.082) (0.218) (0.166) (0.026) (0.069) 

group SCAD 0.086 0.117 0.191 0.757 0.032 0.114 

 (0.047) (0.082) (0.527) (0.139) (0.017) (0.122) 

group MCP 0.070 0.133 0.177 0.715 0.028 0.113 

 (0.042) (0.089) (0.479) (0.132) (0.013) (0.124) 

 ( )200 CR 35%n = =  

group Lasso 0.404 0.597 0.586 1.406 0.233 0.256 

 (0.149) (0.264) (0.143) (0.304) (0.109) (0.065) 

group SCAD 0.221 0.365 0.441 0.956 0.119 0.206 

 (0.162) (0.503) (0.326) (0.338) (0.125) (0.120) 

group MCP 0.175 0.374 0.363 0.849 0.082 0.177 

 (0.138) (0.496) (0.337) (0.275) (0.1044) (0.106) 
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Table 7. Simulation results. NV, number of selected variables; ER, model error; IN%, 
percentage of occasions on which the correct variables are included in the selected model; 
CS%, percentage of occasions on which exactly correct variables are selected, averaged 
over 100 replications. Enclosed in parentheses are the corresponding standard errors. 

 Results for high dimension, 500p =  

 NV ER IN% CS% 

 ( )400 CR 40%n = =  

Group Lasso 9.0 0.0019 100.0 98.0 

 (1.71) (0.0010) (0.00) (0.14) 

Group SCAD 7.7 0.0012 100.0 98.0 

 (1.18) (0.0007) (0.00) (0.14) 

Group MCP 8.4 0.0009 100.0 98.0 

 (1.54) (0.00055) (0.00) (0.14) 

 ( )200 CR 40%n = =  

Group Lasso 13.0 0.0044 89.0 85.0 

 (3.57) (0.0031) (0.313) (0.357) 

Group SCAD 8.2 0.0033 95.0 85.0 

 (1.66) (0.0030) (0.218) (0.357) 

Group MCP 8.4 0.0024 95.0 86.0 

 (1.50) (0.0023) (0.218) (0.347) 

 
Table 8. Simulation results. Mean Square errors for the important coefficient functions 
based on 100 replications. Enclosed in parentheses are the corresponding standard errors. 

 ( )1 1f X  ( )2 2f X  ( )3 3f X  ( )4 4f X  ( )5 5f X  ( )6 6f X  

 ( )400 CR 40%n = =  

group Lasso 0.104 0.192 0.157 0.781 0.071 0.152 

 (0.071) (0.103) (0.0844) (0.191) (0.036) (0.058) 

group SCAD 0.070 0.103 0.132 0.737 0.037 0.100 

 (0.037) (0.076) (0.160) (0.269) (0.030) (0.065) 

group MCP 0.065 0.099 0.127 0.740 0.034 0.081 

 (0.037) (0.074) (0.171) (0.298) (0.028) (0.059) 

 ( )200 CR 40%n = =  

group Lasso 0.414 0.578 0.495 1.466 0.213 0.231 

 (0.134) (0.232) (0.132) (0.332) (0.087) (0.069) 

group SCAD 0.224 0.262 0.389 1.213 0.115 0.211 

 (0.176) (0.246) (0.301) (0.489) (0.109) (0.172) 

group MCP 0.176 0.204 0.351 1.141 0.084 0.207 

 (0.148) (0.190) (0.365) (0.527) (0.099) (0.166) 
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model, since the MSE under the GMCP approach is always smaller than that 
under the GLasso approach. The results in Table 5, Table 7 show that the 
GMCP method conducts component selection more precisely than the GLasso 
method, while the GLasso method chooses many zero component functions as 
nonzero functions. To examine the estimated nonparametric functions from the 
GMCP, we plot them along with the true function components in Figure 3, 
Figure 4. The estimated functions are from the GMCP method in one run when 

200n = . The estimation and selection accuracy decrease when covariates are 
correlated, we can still see that the estimated curves under the GMCP method 
are close to the true curves compared with the estimated curves under the 
GLasso method. 

5. Application in NA-AFT-Model 

In this section, we will use Shedden 2008 (for short) to conduct an empirical 
analysis of part of the collected lung adenocarcinoma data to illustrate the pro-
posed method. For more information, see [36]. Retrospective data of 442 lung 
adenocarcinoma patients were collected at multiple locations, including their 
survival time, some other clinical and demographic data, and the expression lev-
el of the 22,283 gene from the following genes: tumor samples. However, most 
samples have small changes. Therefore, in our application, we randomly select 
321 samples, the first 500, 1000 genes. Therefore, 321, 1000n p= = , and the 
survival rate is 35.8%. 

 

 
Figure 3. 200n = , the solid black line is the real function, the dotted red line is the group MCP estimation, the dotted 
blue line is the group SCAD estimation, and the black line is the group lasso estimation, CR = 35%. 
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Figure 4. 200n = , the solid black line is the real function, the dotted red line is the group MCP estimation, the dotted 
blue line is the group SCAD estimation, and the black line is the group lasso estimation, CR = 40%. 

 

 
Figure 5. The estimation function graph based on GLasso and GMCP approximates the 
corresponding 200746_s_at by using the same covariate, where the red dotted line is the 
GMCP estimate and the gray dotted line is the GLasso estimate. 

 
Here, we are interested in the effect of tumor gene expression levels on the 

survival time of lung adenocarcinoma patients. Since the linear assumption is 
always latent in high dimensions, the proposed method may be more suitable for 
analyzing feature selection problems considering nonlinear effects. In our analy-
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sis, we set the spline base 5nM =  for each gene. The proposed method selects 1 
gene locus under GMCP (ie 200746_s_at). However, when 500,1000p = , the 
method under GLasso penalized regression alone selected the 6, 10 gene. 

From Figure 5, we find that the larger the dimension, the worse the GLasso 
method estimation, but it has little effect on the GMCP estimation. Therefore, 
the verification of the actual data shows that the GMCP penalty is better than the 
GLasso penalty, and the accuracy is higher, and the calculation cost of the two is 
the same. Under the same conditions, the GMCP method is more suitable than 
the GLasso. 

6. Concluding Remarks 

In this paper, we study the weighted least squares estimation and selection 
attributes of GMCP in the NP-AFT-AR model with high-dimensional data. For 
the GMCP method, our simulation results show that GLasso tends to select 
some unimportant variables. In contrast, GMCP has progressive predictability, 
which shows that it also has selection consistency. 
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Appendix Proof 

Lemma 1. Let 2
kχ  be a random variable with chi-square distribution with k 

degrees of freedom. For 1t > , ( ) ( )2 ,kP kt h t kχ ≥ ≤ , where ( ),h t k  is defined 
in (3.2). 

This lemma is a restatement of the exponential inequality for chi-square dis-
tributions of [33]. 

proof of Theorem 3.1. Since ˆ oβ  is the oracle least squares estimator, we have 

0
ˆ ,o

j j A∈β  and 

( ) 0
ˆ 0,o c

j Y n j A′− − = ∀ ∈B B  β
 

If 
2

ˆ o
j nM λγ≥β , then by the definition of the MCP,  

( )2
ˆ ; , 0o

j nMρ λ γ = β . Since min 1c γ> , the criterion (2.8) is strictly convex. 

By the Karush-Kuhn-Tucker (KKT) conditions, the equality ( )ˆ ˆ, oλ γ =β β  holds 
in the intersection of the events 
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We first bound ( )( )11 P λ− Ω . Let ( )
0

0
ˆ ˆ ,c

c
jA

j A ′= ∈β β . By (A.1) [34] and us-
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I P ε σ−B  is distributed 
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where we used lemma 1 in the third line. Now consider ( )2 λΩ , Recall  

0 2
min c

o o
jj A∗ ∈

=β β . If 
2

ˆ o o o
j j nM γλ∗− ≤ −β β β  for all 0
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≥β . This implies 
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Combining ( )1nη λ  and ( )2nη λ , we have 
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Since ( )ˆ ˆf x = Bβ , we can obtain ( ) ( ) ( )1 2
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n nP f f η λ η λ≠ ≤ + . This com-
pletes the proof. 
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This and Lemma A.2 imply that 
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, this completes the proof. 
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Lemma 3. Suppose that B  satisfies that ( )*
1 2, ,SRC q c c , ( )* 1 nq K m q∗≥ + , 

and 1
1 4c cγ −≥ + . Let m K q∗ ∗= . Then for any nY ∈   with  
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proof This lemma can be proved along the line of the proof of Lemma 1 of 
[23] and is omitted. proof of Theorem 3.2. By Lemma 3, in the event 
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we have ( )1I K q∗≤ + , Thus in the event (6.4), the original model with p 
groups reduces a model with at most ( )1K q∗ +  groups, in this reduced model, 
the condition of Theorem 3.2 implies that the conditions of Theorem 3.2. By 
Lemma 2, 
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Therefore, combining (6.5) and Theorem 3.1, we have  
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