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Abstract 

Background: In discrete-time event history analysis, subjects are measured 
once each time period until they experience the event, prematurely drop out, 
or when the study concludes. This implies measuring event status of a subject 
in each time period determines whether (s)he should be measured in subse-
quent time periods. For that reason, intermittent missing event status causes a 
problem because, unlike other repeated measurement designs, it does not 
make sense to simply ignore the corresponding missing event status from the 
analysis (as long as the dropout is ignorable). Method: We used Monte Carlo 
simulation to evaluate and compare various alternatives, including event oc-
currence recall, event (non-)occurrence, case deletion, period deletion, and 
single and multiple imputation methods, to deal with missing event status. 
Moreover, we showed the methods’ performance in the analysis of an empir-
ical example on relapse to drug use. Result: The strategies assuming event 
(non-)occurrence and the recall strategy had the worst performance because 
of a substantial parameter bias and a sharp decrease in coverage rate. Deletion 
methods suffered from either loss of power or undercoverage issues resulting 
from a biased standard error. Single imputation recovered the bias issue but 
showed an undercoverage estimate. Multiple imputations performed reason-
ably with a negligible standard error bias leading to a gradual decrease in 
power. Conclusion: On the basis of the simulation results and real example, 
we provide practical guidance to researches in terms of the best ways to deal 
with missing event history data. 
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1. Introduction 

The aim of event history analysis is to study whether and when subjects expe-
rience some kind of event, such as smoking initiation, graduation from college 
or first criminal offence. The risk of event occurrence may be predicted from a 
set of covariates in order to study which individuals are at the highest risk of ex-
periencing the event. Furthermore, the development of this risk over time may 
also be studied. 

The timing of event occurrence can be measured in continuous time or in 
discrete time. With the first type of measurement, time is measured in very thin 
and precise units. The Cox regression model [1] is often used to analyze the con-
tinuous-time event history data. This model is especially common in the medical 
sciences where survival after disease is compared over various treatments. In the 
social and behavioral sciences, in contrast, it is not always possible to measure 
time precisely. In prospective studies, for instance, it is not always practical, 
cost-effective or ethical to measure subjects on a daily basis, hence measure-
ments are taken once each time interval. In retrospective studies subjects are not 
always able to remember the exact date at which they experienced the event, but 
they may be able to remember the calendar year or their age at the time of event 
occurrence. In both cases the underlying survival process is continuous, but the 
time axis is divided in intervals. This implies a loss of information but hardly af-
fects the estimates of model parameters, their standard errors and statistical 
power [2]. Furthermore, in some applications the process is truly discrete as 
events can only occur at some prefixed discrete points in time, such as gradua-
tion from college at the end of each term. 

Discrete-time event history data are analyzed by means of generalized linear 
models [3] [4]. The aim of such models is to estimate conditional hazard proba-
bilities; that is, the probability of event occurrence in a certain time period, con-
ditional on not yet having experienced the event prior to that period. It is there-
fore important a subject’s event status is recorded at the end of each time period, 
until and including the time period in which he or she experiences the event. 
The discrete-time event history data are generally represented in the so-called 
person period format. This means each subject can have multiple records in the 
data set, where each record corresponding to a subject represents a time period 
for which he or she is still under observation. The person period format is some-
times called the long format [5]. It should also be mentioned that the number of 
records per subject can vary across subjects because they do not necessarily ex-
perience the event during the same time period. 

Missing observations are essentially inevitable with any kind of data, particu-
larly in longitudinal studies. The naïve solution of removing subjects with in-
complete data (the so-called complete-case analysis) typically invalidates the re-
sults of an analysis from a longitudinal study because the remaining subjects 
(after removing incomplete subjects) cannot generally be considered as a ran-
dom sample from the original population except for an unrealistic case where 
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the missing values occur purely by chance [6]. 
In general, it is difficult to manage the problem of missing data in longitudinal 

studies as the pattern of missing observations may complicate the statistical 
analysis of the data at hand. We distinguish two types of missing data patterns in 
longitudinal research: drop-out and an intermittent pattern of missing data. 
Drop-out (or attrition) occurs when a subject does not respond in a certain time 
period and all subsequent time periods. Subjects may drop out from the study 
for various reasons, for instance because they lose interest in the study or be-
cause they move to a different location, and lose contact with the study’s admin-
istrative staff. Drop-out may be the most common type of missing data in longi-
tudinal research [7] and it does not invalidate the results of longitudinal data 
analysis as long as the drop-out is ignorable [8] [9]. In an event history analysis 
this implies drop-out does not depend on event status in the time period in 
which drop-out occurs and any other succeeding time periods. It can then be 
assumed that all subjects who remain in the study after drop-out are representa-
tive of everyone who would have remained in the study had drop-out not oc-
curred. Hence, the subject who drops out does not need to be removed from the 
analysis [3]. Additionally, it is not needed to impute missing event status with 
dropout because the analysis of event history data in the person period format 
allows each subject having an unequal number of records. Of course, drop-out 
decreases efficiency and statistical power and it is best to avoid drop-out when-
ever possible. 

Intermittent missing data (i.e. a non-monotone missing data pattern) occur 
when a subject is absent in a certain time period or periods but returns in one of 
the next periods, for instance, because he or she was ill when measurements 
were taken or was allowed to skip some sessions in psychotherapy. Such a pat-
tern of missing data does not cause problems in the analysis of longitudinal data 
if the outcome is quantitative or qualitative. Multilevel models for longitudinal 
data [3] [10] and latent growth curve models [11] [12] [13] [14] can easily han-
dle intermittent missing data by ignoring the time period(s) in which a missing 
value occurs. Hence, all observed data from a subject are used, even though there 
may be missing data during intermediate periods. In discrete-time event history 
analysis, on the contrary, observations are conditional meaning that a subject is 
not further measured after event occurrence. This implies intermittent missing 
observations do cause a problem: if the event status is not observed in a certain 
time period, it is unknown if the event occurred within that time period and 
whether the subject’s event status should be measured in subsequent time pe-
riods. Therefore, intermittent missing event status data cannot be ignored (dis-
similar to the other types of longitudinal data) and should be dealt with in an 
appropriate way. To our best knowledge there are no recommendations on how 
to handle the missing event status in discrete-time event history. 

It should be noted that if a missing event status is followed by a non-event 
occurrence (i.e., zero), it does not necessarily imply that the status of missing 
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event was a non-event occurrence. This is because the event could have already 
occurred, but was not reported. This is particularly relevant in behavioral studies 
like relapse to alcohol or smoking cessation, when a subject might not be willing 
to report his/her status in a particular visit and therefore misses that visit. On the 
other hand, a missing event status followed by an event occurrence (i.e., one) 
does not also mean the event has not occurred yet. Hence, a deterministic re-
placement of a missing event occurrence is naïve and ah-hoc. 

The contributions of this paper include evaluation and comparison of differ-
ent strategies to deal with intermittent missing observations in discrete-time 
event history data through a simulation study as well as providing guidelines for 
selecting the best strategy in practice. We are particularly interested in the fol-
lowing strategies: deletion, imputation, recall of the missing event status in the 
subsequent time period and assuming event (non-)occurrence by default and 
focus on a randomized controlled trial with a between-subject treatment factor.  

The research organization of this paper is as follows. Section 2 describes the 
methodology of our research. In Section 2.1 we describe the two main functions 
in discrete-time survival analysis: survival and hazard probability function, and 
the generalized linear model that relates hazard probability to predictor variables, 
such as treatment condition. Section 2.2 describes the strategies to deal with in-
termittent missing data in more detail. Section 2.3 describes the design of the 
simulation study, where the design factors and a rationale for their chosen levels 
are discussed, along with the criteria for evaluation and acceptable values. The 
simulation results are presented in Section 3. Section 4 shows an empirical ex-
ample on relapse to drug use and the final two sections give our conclusions and 
a discussion of our study. 

2. Methods 

2.1. Statistical Model 

In this section a short summary of the most important functions in a dis-
crete-time survival model is given. For a more extensive introduction, the reader 
is referred to Singer & Willett (2003). 

Discrete time survival analysis describes the risk of event occurrence using 
two functions: the survival probability function ( )jS t  and the hazard proba-
bility function ( )jh t . The survival probability function is an accumulation of 
event occurrence. It represents the proportion of participants who did not yet 
experience the event as a function of time. At the start of the study ( 0jt = ), no 
events have yet occurred and thus the survival probability has a value of 1 
( ( )0 1S t = ). From there on the function can only decrease or remain constant. 
The survival probability ( )ijS t  is formally written as  

( ) ( )Prij jS t T j= > ,                      (1) 

which is the probability that subject i does not experience the event until after 
time period j. This probability is estimated by calculating the proportion of sub-
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jects who have not yet experienced the event until time period j, that is,  

( ) number of subjects who have not experienced the event by the end of time period ˆ
total number of subjects in the data setj

jS t = (2) 

The hazard probability is the probability of event occurrence during specific 
time periods. Because of this specificity, it often varies over time. Since survival 
analysis only follows subjects until event occurrence, the hazard probability is 
defined as a conditional probability: it is the risk that an event occurs, given that 
it has not yet occurred in any previous time period. It is this condition that 
causes problems when event status is not recorded in each time period. The ha-
zard probability is more formally written as 

( ) ( )Pr |ij i ih t T j T j= = ≥ ,                    (3) 

where ( )ijh t  is the probability that the event occurs for subject i during time 
period iT j= , given the condition that the event has not yet occurred.  

The hazard probability is calculated by dividing the number of events that 
occurred during time period j (number of eventsj) by the number of subjects in 
the study that were still at risk during time period j (number at riskj). The fol-
lowing equation can be used to estimate the hazard during time period j: 

( ) number of events in time period  ˆ
number of subjects at risk in time period i

jh t
j

=           (4) 

This equation calculates the proportion of the risk set (number of subjects at 
risk during time period j) that experiences the event during time period j. The 
set of hazard probabilities as a function of time is called the hazard function. 
This function can be used to identify hazardous periods with highest risk and to 
find out whether the probability of event occurrence changes over time.  

The aim of a survival analysis is to study how subjects vary with respect to 
their hazard probabilities. The hazard function may be written as a function of 
one or more predictors by using a generalized linear model. In this contribution 
we use the logit link to relate hazard probability to predictor variables ijkZ : 

( )( ) 1 1logit J K
ij j j k ijkj kh t D Zα β

= =
= +∑ ∑ ,               (5) 

where 1, , jD D
 are dummies for the J time periods and 1, , jα α

 are the lo-
git hazard probabilities in the baseline group (i.e., the group with 0ijkZ =  for 
all k). The regression coefficients βk are the logit effects of the predictors ijkZ , 
which quantify how strong a predictor is related to the probability of event oc-
currence. Note that a positive βk results in a larger hazard, thus subjects are more 
likely to experience the event when they have a higher value on their predictor 

ijkZ .  
Model (5) can be fitted using standard software for binary logistic regression, 

provided the data are in the person-period format as discussed in the introduc-
tion. Event occurrence is the dependent variable, and it should be recorded in 
each of the time periods until and including the period of event occurrence. In 
the next section strategies to deal with missing event status are discussed. 
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2.2. Missing Data Methods 

Seven strategies to deal with missing event status were evaluated (see Table 1 for 
an overview). In the first strategy, subjects are asked to remember whether an 
event occurred in a particular period after the event status of that period was not 
recorded. We call this strategy the (next period) recall strategy. It should be 
noted that a correct answer may only be provided with a certain probability (due 
to e.g. memory failure). In our simulation study, we therefore used the following 
probabilities of a correct answer: 0.25, 0.4 and 0.75. 

The next two strategies rely on the deletion principle. The first one deletes all 
participants for whom at least one event status was not recorded. We refer to 
this strategy as case deletion. It is easy to implement and valid if the missing data 
mechanism is missing completely at random (MCAR) in the sense that missing 
data happen totally by chance. This method essentially reduces the sample size 
and hence can be expected to affect statistical power. Even more importantly¸ it 
can introduce large biases when the missing data mechanism is not MCAR. The 
next deletion-based approach, to which we refer with period deletion, makes use 
of the available information in the data set. Because the person period data can 
contain multiple records per subject, it then makes sense to use the observed 
event status until the period for which the event status was not recorded. This 
implies, for a subject with a missing event status in a particular period, all in-
formation before that period is retained while other possible information from 
that period and all subsequent periods is ignored. 

The fourth strategy is referred to as event non-occurrence. In this strategy it is 
assumed that the event has not occurred in case event status is missing. Reverse-
ly, the event occurrence strategy assumes the event has occurred in case event 
status is missing. Note that after assuming an event occurrence for a subject, all 
subsequent time periods of that person are not included in the person-period 
data set. 

 
Table 1. Evaluated strategies. 

Evaluated Strategy Explanation 

1. Recall 
During the next period, the participant is asked to recall 
event status. 

2. Case deletion Entire data from participants with missing data are deleted. 

3. Period deletion Only the data from the missing period onwards are deleted. 

4. Assume event non-occurrence 
In the case of a missing outcome, event non-occurrence is 
assumed 

5. Assume event occurrence 
In the case of a missing outcome, event occurrence is  
assumed 

6. Single imputation Using single imputation, event status is imputed 

7. Multiple imputation Using multiple imputation, event status is imputed 
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The next strategy is single imputation, which replaces the missing event status 
with a random, but plausible value, drawn from a Bernoulli distribution with a 
probability that is estimated from the observed event status of the subjects in the 
dataset. More specifically, the proportion of event occurrence within each treat-
ment arm and time period is estimated from the data (i.e., from the observed 
event status), and this estimate is then used to impute missing event status 
within the same treatment arm and time period. It should be noted that if the 
imputed event status of a subject turns to be one (i.e., event occurrence), all of 
his/her subsequent measurements are removed from the person-period data set. 
The most important downside to single imputation is that it understates the un-
certainty with respect to the imputed values because it ignores the fact that the 
imputed values are not real [7].  

The last strategy we investigate here is multiple imputation (MI). It is becom-
ing increasingly popular in recent decades and can be considered the gold stan-
dard in managing missing data [15]. In short, MI creates m completed datasets 
(m > 1) by imputing m values for each missing event status from its posterior 
predictive distribution. Each imputed dataset is then analyzed separately and the 
corresponding results are combined to form a single inference [16]. For dis-
crete-time event history data, model (5) is used as an imputation model to draw 
imputations for missing event statuses. 

2.3. Design of Simulation Study 

We studied the performance of the seven strategies to deal with intermittent 
missing observations by means of a simulation study. In this section we describe 
the factors used in the simulation study and give a rationale for their chosen le-
vels. We also describe the criteria for evaluation and their acceptable values. The 
focus is on a randomized controlled trial with two treatment conditions: an in-
tervention and a control. Both treatment groups are of equal size at baseline but 
since hazard probabilities vary across treatment conditions the group sizes will 
become different over time. Missing observations will also have an effect on the 
number of observed subjects per condition per time period. 

2.3.1. Factors in Simulation Study 
Five factors were used in the simulation study: total sample size (N), number of 
time periods (J), treatment effect size on the logit scale (β), proportion of event 
occurrence in the control condition (ω) and timing of event occurrence (τ). The 
latter two are parameters of the underlying Weibull survival function, which will 
be explained later in this subsection. 

The total sample size N at baseline was fixed at 200, with 100 per treatment 
group. We used just one sample size since we expected the relative performance 
of the seven strategies would not depend on sample size. The number of time 
periods J took the values 4, 6 and 12. Assuming the duration of the trial is a year, 
measurements are then taken once each quarter, once every two months or once 
a month, respectively. As such we used various realistic frequencies of observa-
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tion. It should also be mentioned that the probability of event occurrence within 
a time interval decreases when the number of time intervals increases (provided 
the duration of the study remains unchanged). The effect size β represents the 
logit-difference between the two treatment groups and took the values 0.25, 0.5 
and 1. As such we studied small, medium and large effect sizes. As the effect size 
is larger than zero, the probability of event occurrence is larger in the interven-
tion than in the control group. Hence, the study focuses on events that one 
would like to occur, such as smoking termination or graduation from college. 

We considered the situation where the underlying survival process is conti-
nuous in time but event status is only measured at the end of a fixed number of J 
equidistant time points. There exist many continuous-time survival functions; in 
our simulation study we used the Weibull survival function in the control condi-
tion and the survival function in the intervention condition follows from the lo-
git-treatment difference β. The Weibull survival function is very flexible since it 
allows for constant, increasing or decreasing hazard over time. The conti-
nuous-time Weibull survival function is given by ( ) e tS t

τλ−=  with corres-
ponding hazard probability function ( ) 1h t tτλτ −= , where t is a continuous va-
riable for time. This time variable is scaled between 0 and 1 such that t = 0 is the 
beginning of the study and t = 1 is the end. Furthermore, the parameter λ is re-
placed by ( )log 1λ ω= − −  where [ ]0,1ω∈  is the proportion of subjects in 
the control condition who experience the event during the course of the study. 
In our simulation we used values ω = 0.25, 0.5 and 0.75 to represent small, me-
dium and large proportions of event occurrence. Using ω, the survival and ha-
zard probability functions can be rewritten as ( ) ( )1 tS t

τ

ω= −  and  
( ) ( )1 log 1h t tττ ω−= − − , respectively. The parameter [ ]0,τ ∈ ∞  determines the 

shape of the hazard probability function. For τ > 1 the hazard probability in-
creases over time, for τ < 1 it decreases over time and for τ = 1 it is constant over 
time (i.e. exponential survival). Figure 1 shows different survival probability 
functions and their corresponding hazard probability functions for different 
values of τ when ω = 0.5.  

 

 
Figure 1. Continuous-time survival and hazard functions for different values of τ and for ω 
= 0.5. 
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In total there were 1 × 3 × 3 × 3 × 3 = 81 combinations of factors’ levels in the 
simulation study. Henceforward, such combinations are called scenarios, and for 
each of them 1000 data sets were generated in R version 3.5.0 [17]. Missing out-
come data were then generated as described in the next subsection and the seven 
strategies to deal with missing data were applied. For multiple imputation, the R 
package mice (version 3.3) was used [18]. The discrete-time survival model (5) 
was then fitted and the model parameters and their standard errors were esti-
mated by the function glm in the same software. The complete datasets were also 
used to fit the model and the results were used as a benchmark in the compari-
son of the seven strategies to deal with missing data. 

2.3.2. Generation of Missing Outcome Data 
We generated missing outcome data such that each subject could have at most 
one missing event status. Here we mimic a trial in which subjects are required to 
attend a number of therapy sessions and may skip only one session. At the end 
of each session measurements are taken on various aspects and the event of in-
terest is clinical recovery from some type of disorder. We also assume the sub-
jects do not terminate therapy once the event has occurred in order to prevent 
relapse. 

For each subject, we therefore selected randomly a session from the total 
number of sessions using a multinomial distribution with equal probabilities, 
and the event status of the selected session was set to missing. Although the 
probability that the event status of a session is missing does not depend on event 
status itself or treatment condition, it implicitly depends on the probability of 
event occurrence in previous time periods because the subject could only have a 
missing value in a particular time period if he/she was still in the study in that 
period. Hence, the missing data mechanism can be regarded as missing at ran-
dom instead of missing completely at random [8] [9]. It is worth mentioning 
that some subjects did not have any missing event status because the event had 
already occurred to them before they could skip a therapy session. This is likely 
to occur when the probability of event occurrence is large (i.e. large ω) and/or 
when the probability of event occurrence is highest at the beginning of the study 
(i.e. small τ). 

2.3.3. Criteria for Evaluation 
For the treatment effect estimate, we used the following criteria for evaluation: 
convergence rate of the estimation process, parameter relative bias (in percent), 
average of the estimated standard error, standard error bias, coverage rate of 
95% confidence interval and empirical power for the test on treatment effect. 
Below, we briefly elaborate on these evaluation criteria.  

For each of the 81 scenarios it was recorded how often the estimation process 
converged within the default of 25 iterations of the function glm. 

The relative bias (in percent) is the difference between the average estimate of 
treatment effect over the 1000 generated data sets, β̂ , and the true value β that 
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is used to generate the data:  

ˆ
parameter bias 100% β β

β
−

= ∗                     (6) 

A positive parameter bias implies the treatment effect is overestimated on av-
erage. Following Muthén and Muthén [19] we consider acceptable parameter 
biases to be less than 10% in absolute value.  

The estimated standard error of the treatment effect estimate, ( )ˆse β , is a 
measure of precision. The smaller it is, the more precisely the treatment effect is 
estimated. We reported the average of the estimated standard error over the 
1000 generated data sets ( )ˆse β .  

Another measure for precision is the standard deviation of the 1000 estimates 
of the treatment effect, ( )ˆsd β . This is also called the empirical standard error. 
The average of the 1000 estimated standard errors, ( )ˆse β  should not deviate 
too much from the empirical standard error. The standard error bias is therefore 
the percentage difference between these two: 

( ) ( )
( )

ˆ ˆ
standard error bias 100%

ˆ

se sd

sd

β β

β

−
= ∗              (7) 

A positive standard error bias implies the standard error is overestimated on 
average. According to Muthén and Muthén [19] acceptable standard error biases 
are less than 5% in absolute value. 

For each generated data set a 95% confidence interval for the treatment effect 
was constructed using normal approximation (i.e., 95% CI: ( ) ( )ˆ ˆ1.96se seβ β± ∗ ), 
and it was verified if it contained the true value β. The coverage rate is the pro-
portion of the 1000 confidence intervals that included the true value. This pro-
portion should be close to the nominal level 0.95. Given 1000 generated datasets 
per scenario, one would expect 95% of the coverage rates to lie in the interval 

( ) [ ]ˆ 1.96 0.95 0.05 1000 0.936,0.964se β ± ∗ ∗ = . 
For each generated data set the treatment effect was tested with the test statis-

tic 

 ( )
ˆ
ˆ

z
se
β
β

=                           (8) 

which approximately follows the standard normal distribution under the null 
hypothesis of no treatment effect. The empirical power is the percentage of 1000 
generated data sets for which the null hypothesis was rejected (at 5% significant 
level). 

2.3.4. Analysis Plan 
A series of mixed design analyses of variance were conducted to examine differ-
ences between the strategies to deal with missing event status. The criteria for 
evaluation are used as outcomes in the mixed analysis. These strategies were in-
cluded in the model as within factors and the two parameters of the Weibull 
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survival function (τ and ω) and the number of time periods (J) as between fac-
tors. Separate analyses were performed for each value of the logit-effect size β 
because this design factor has a large impact on power levels.  

Next, the proportion of variation in each criterion that was accounted for by each 
of the design factors and their interactions was calculated: 2

effect totalSS SSη = . 
The mixed design analysis of variance model includes repeated measures (i.e. 
strategies), hence a between- and within-scenario variance is estimated. For that 
reason, η2 were calculated at both the between and within level. 

η2 is a common effect size indicator for analysis of variance models and values 
η2 = 0.01, 0.06 and 0.14 are considered of small, medium and large size [20]. In 
the discussion of the results, we only focused on effect sizes that were of at least 
medium size. We did not study p-values since our focus was on the relevance of 
effects, rather than on their significance. Furthermore, the large number of main 
and interaction effects to be tested implied an inflated risk of conducting a type I 
error. It also should be noted that we used the effect size η2, rather than the par-
tial effect size ( )2

effect effect errorp SS SS SSη = + , since we were interested in the 
proportion of variance accounted for by each of the strategies and designs fac-
tors and their interactions. All analyses of variance models were fitted in IBM® 
SPSS statistics, version 24 [21]. 

3. Results 

3.1. Convergence of Estimation Process 

For all 81 × 1000 = 81000 generated data sets and all strategies the estimation 
process from the R function glm converged within the default number of 25 ite-
rations. 

3.2. Influential Cases 

In nine out of the 81,000 simulated data sets the estimated standard errors for 
the period deletion strategy were so large that they had a huge impact on the av-
erage standard error. These nine datasets were spread over six scenarios, all with 
ω = 0.25 and τ = 1 or 2. For these levels of the design factors the proportion 
event occurrence was relatively small and the probability of event occurrence 
was either constant or increasing over time. These problems could occur for any 
number of time intervals. Through chance, these nine datasets were generated 
such that there was at least one time period without any events. The probability 
of event occurrence is then zero, and consequently its logit is −∞. For these data 
sets the estimation process converged to a solution with a huge standard error. 
These nine datasets were therefore removed from further analyses because they 
had a large impact on the results. In addition, one would never be willing to trust 
results with an extremely large standard error in analysis of real data. 

Figures 2-6 display the five criteria for evaluation as a function of the two pa-
rameters of the Weibull survival function (τ in the columns and ω in the rows) 
and the number of time periods (J on the horizontal axes) when the logit-effect 
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size β = 0.5. Results for other values of β were very similar and can be found in 
the supplementary material. These results are further discussed later in this sec-
tion. The reported results for the recall strategy in the figures are based on 40% 
probability of correctly remembering the missing event status, and other proba-
bilities are evaluated later in this section. 

3.3. Bias for β = 0.5 

An analysis of variance showed that the main effect of strategy explains over 90 
percent of the within-scenario variance (η2 = 0.908), while only 7 percent of this 
variance was explained by the interaction effect between strategy and proportion 
of event occurrence in the control, i.e., ω (η2 = 0.068). Proportion of event oc-
currence in the control, i.e., ω (η2 = 0.616) and the shape parameter τ (η2 = 0.283) 
explained about 90 percent of the variance at the between level. The number of 
time periods hardly explained any variance; neither did any of the interaction 
terms of which it was a part. The effects of the design factors are visualized in 
Figure 2. The two horizontal dashed lines represent a deviation of 10%. The dif-
ference between the strategies was largest when fewer subjects experienced the 
event (small ω) and/or when the probability of event occurrence rose to a peak 
at the end of the study (large τ).  
 

 
Figure 2. Percentage Parameter bias. Results shown as a function of proportion event occur-
rence in the control condition ω (rows), shape parameter τ (columns) and number of periods 
J (horizontal line within each graph). 
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Figure 3. Average standard error. Results shown as a function of proportion event oc-
currence in the control condition ω (rows), shape parameter τ (columns) and number of 
periods J (horizontal line within each graph). 

 

 
Figure 4. Percentage standard error bias. Results shown as a function of proportion event 
occurrence in the control condition ω (rows), shape parameter τ (columns) and number 
of periods J (horizontal line within each graph). 
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Figure 5. Coverage of confidence intervals. Results shown as a function of proportion 
event occurrence in the control condition ω (rows), shape parameter τ (columns) and 
number of periods J (horizontal line within each graph). 

 

 
Figure 6. Empirical power. Results shown as a function of proportion event occurrence 
in the control condition ω (rows), shape parameter τ (columns) and number of periods J 
(horizontal line within each graph). 
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The percentage bias based on the analysis of complete data was slightly posi-
tive for all scenarios. It was equal to 2.4 on the average, with a maximum value of 
6.4, which are acceptable values. 

Three strategies showed a dramatically underestimated treatment effect. The 
first of these strategies with huge bias was the event-occurrence strategy. Biases 
ranged from −23% to −88% and the treatment effect was severely underesti-
mated when fewer subjects experienced the event (smaller ω). This is obvious 
because the probability of an event within each time interval is small and as-
suming event occurrence in case of a missing value is a bad strategy. Further-
more, the underestimate became more severe when the probability of event oc-
currence increased over time (larger τ). In that case the probability of event oc-
currence is small in the first few time periods and it is likely subjects have a 
missing outcome before they experience the event.  

The second strategy is the non-occurrence strategy, for which biases ranged 
from −17.4% to 4.8%. A large bias was observed for 4 or 6 time periods while it 
was less than 4% for 12 time periods. The bias was smaller than for the opposite 
strategy, which assumes event occurrence in case of a missing. This is obvious 
since, in our simulations, the probabilities of event occurrence in each time in-
terval were rather small. In fact, they were hardly ever larger than 0.5, hence as-
suming event non-occurrence was better than assuming event occurrence in 
most scenarios. The bias became more severe when more subjects experienced 
the event (larger ω), which is obvious since the probability of event occurrence 
within a time interval is larger and assuming event non-occurrence in case of a 
missing event status is not a good strategy. Furthermore, the bias became more 
severe when the probability of event occurrence decreased over time (smaller τ). 
In such cases it is likely a time period with event occurrence precedes the time 
period with a missing event status, hence assuming event non-occurrence is not 
the best strategy.  

The third strategy that shows a huge bias for the treatment effect relies on re-
call of the event status. Here, biases were always negative and ranged from −22% 
to −78%. The underestimate became more severe when fewer subjects expe-
rienced the event during the course of the study (smaller ω) and/or when the 
probability of event occurrence was largest at the end of the study (larger τ).  

We reason that this occurs because all three strategies have a given probability 
of providing the correct event status. For the strategy that assumes event occur-
rence, this probability is equal to the probability of the event occurring during 
the specific missing period. This in turn depends on ω and τ and will generally 
be low. For the strategy that assumed non-event occurrence, the probability of 
being correct is equal to one minus the probability of event occurrence. There-
fore, where the former strategy performs worse for smaller ω and larger τ, in-
versely, the latter will perform worse for larger ω and smaller τ. The recall strat-
egy has a probability of being correct of 40%. Since this probability is closer to 
the strategy that assumes event occurrence, the recall strategy will also perform 
worse for smaller ω and larger τ.  
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The remaining strategies (i.e., case deletion, period deletion, single imputation 
and multiple imputation) performed equally well with negligible biases for the 
treatment effect. 

3.4. Average Standard Error for β = 0.5 

Analysis of variance showed that the main effect of strategy explains almost 70 
percent of the within-scenario variance (η2 = 0.697). The interaction effect be-
tween strategy and proportion of event occurrence in the control, i.e., ω (η2 = 
0.186) and the interaction effect between strategy and the shape parameter τ (η2 
= 0.085) both explained a lower amount of the within-scenario variance (about 
27 percent). The proportion of event occurrence in the control, i.e., ω (η2 = 0.770) 
and the number of periods J (η2 = 0.186) explained more than 90 percent of the 
variance between scenarios. The results are further visualized in Figure 3. As 
with bias, the difference between the strategies was largest when fewer subjects 
experienced the event (small ω) and/or when the probability of event occurrence 
was largest at the end of the study (large τ). 

The largest average standard error was found for the strategy that deletes a 
subject’s data from the time period with missing event status onwards (i.e., pe-
riod deletion strategy). For this strategy the average standard error was at most 
112% higher than that of the analysis based on complete data. It increased when 
the probability of event occurrence became higher at the end of the study (in-
creasing τ) when the number of time points J decreased and when fewer subjects 
experienced the event (decreasing ω). Multiple imputation also had marginally 
larger average standard errors than the analysis based on complete data, (in the 
most extreme case it was 27% higher). For this strategy the average standard er-
ror was larger with fewer time periods J. 

For the strategy that relies on recall of event status and the strategy that as-
sumes event occurrence, the average standard error was much smaller than the 
one based on complete data when ω = 0.25 or ω = 0.5. It was up to 33% and 39% 
smaller than the one based on complete data for the recall and the event occur-
rence strategy, respectively. The difference between the standard error of these 
strategies and the standard error of the complete data analysis increased when 
the number of time periods J increased. When ω = 0.75 the average standard er-
ror for these two strategies was mainly larger than the one based on complete 
data, and the relative difference increased when the number of time periods de-
creased and when the probability event occurrence was largest at the beginning 
of the trial. 

For the other three strategies (i.e., case deletion, non-event occurrence and 
single imputation) the average standard error deviated by at most 15 percent 
from the one based on an analysis of complete data. 

3.5. Standard Error Bias for β = 0.5 

Most variation at the within-scenario level was explained by strategy (η2 = 0.844), 
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while the interaction between strategy and the number of periods explained a 
much lower amount of variation (η2 = 0.110). In addition, the following effects 
explained more than six percent of variance at the between level: proportion of 
event occurrence in the control, i.e., ω (η2 = 0.079), shape parameter τ (η2 = 
0.079), number of periods J (η2 = 0.308), and the interaction τ * J (η2 = 0.191). 
Figure 4 shows the standard error biases as a function of the design factors ω, τ 
and J. The two horizontal dashed lines represent a deviation of 5%. 

The standard error bias based on complete data was always between −5 and 
+5 percent. This, however, was not the case for some of the strategies to deal 
with missing data. For all scenarios, single imputation and case deletion showed 
negative standard error biases which were as large as −23% and −22%, respec-
tively. For both strategies the standard error biases decreased when the number 
of time periods increased. For multiple imputation, in contract, there were a few 
positive standard error biases over 10%, and there was no clear relation with the 
number of time periods. The standard error bias of the remaining methods was 
not noticeable. 

3.6. Coverage Rate of Confidence Intervals for β = 0.5 

Most of the variance at the within-scenario level was explained by strategy (η2 = 
0.744); a lower amount was explained by the interaction between strategy and 
the proportion event occurrence in the control condition ω (η2 = 0.169). The 
highest amount of variance at the between level was explained by ω (η2 = 0.734); 
the shape parameter τ explained a lower amount (η2 = 0.203). Figure 5 shows an 
increasing difference between the strategies with increasing τ and decreasing ω.  

All confidence intervals based on an analysis of complete data had a coverage 
rate within the range [0.936, 0.964]. The recall strategy as well as the event oc-
currence strategy showed a large degree of undercoverage of the confidence in-
terval. For both strategies, all of the 27 confidence intervals had a coverage rate 
below 0.936. The degree of undercoverage increased with increasing τ, decreas-
ing ω and increasing J. Given that the parameter bias for these two strategies was 
large, it was not surprising they resulted in a large degree of undercoverage. 

Single imputation and case deletion strategies had also a lower degree of un-
dercoverage. For both strategies, hardly any of the confidence intervals reached 
the nominal level of 95% (25 out of 27 confidence intervals had a coverage rate 
below 0.936). In contrast, multiple imputation performed better and most of the 
confidence intervals reached the nominal level 95%. We observed a slight 
over-coverage in some scenarios when the number of periods was small (10 out 
of 27 confidence intervals had a coverage rate above 0.964). 

The last two strategies event non-occurrence and period deletion had an ac-
ceptable coverage rate as, respectively, 23 and 25 out of 27 confidence intervals 
were within the range [0.936, 0.964].  

3.7. Power for β = 0.5 

Almost all of the variance at the within-scenario level was explained by strategy 
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(η2 = 0.929). Design factors that explained more than 6 percent of the variance at 
the between level were the number of periods J (η2 = 0.154) and the proportion 
of event occurrence in the control condition, i.e., ω (η2 = 0.78). The effects of 
other design factors and interactions were less than medium size. Figure 6 
shows that the difference between the power levels of the strategies increased 
when more subjects experienced the event (increasing ω). In general power in-
creased with increasing number of time periods J and increasing proportion of 
subjects in the control who experienced the event (ω). In almost all scenarios the 
highest power was observed for an analysis based on complete data. Power was 
somewhat lower for single imputation and case deletion.  

The lowest power levels were observed for the following strategies: recall, 
event occurrence and period deletion. For the first two strategies, the low power 
followed from the underestimate of the treatment effect; for the last strategy it 
followed from an overestimate of the standard error. 

A smaller loss of power was observed for multiple imputation and the event 
non-occurrence strategy. For the former the loss of power was a result of an 
overestimate of the standard error, while, for the latter, it was a result of an un-
derestimate of the treatment effect. 

3.8. Main Findings for Other Values of β 

The supplementary material shows mixed design analysis of variance results for 
other values of the logit effect size β, with all η2 > 0.06 highlighted in yellow, and 
figures similar to Figures 2-6. 

A visual inspection of the graphs shows that the bias, average standard error 
and standard error bias were hardly affected by the treatment effect β. However, 
the coverage and power where somehow affected by different values of β. More 
specifically, the strategies provided higher coverage rates (closer to the nominal 
level 0.95) when β was small. Moreover, the larger the treatment effect β was, the 
larger the differences between the coverage rates became. Furthermore, empiri-
cal power increased with increasing effect size (i.e., a larger value of β), which is 
obvious since larger effects have a higher probability to be detected by a statistic-
al test. Also, the difference in power between the strategies increased with in-
creasing effect size. In general, we can conclude that those strategies that did not 
perform well for a given criterion for evaluation for β = 0.5 also did not perform 
well for the same criterion and other values β. 

The mixed design analysis of variance tables show that most variance at the 
within-scenario level was explained by strategy while the proportion of event 
occurrence in the control condition, i.e., ω explained in most cases the highest 
amount of variance at the between level. 

3.9. The Effect of the Probability of Correctly Remembering Event  
Status in the Recall Strategy 

The results for the recall strategy in Figures 2-6 were based on a 40% probability 
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of correctly remembering the missing event status. Figure 7 presents results for 
this and two other probabilities as a function of the number of time periods J 
and for β = 0.5, ω = 0.5 and τ = 1. In general, better results were obtained when 
the probability of a correct recall increased.  

The left panel at the top row shows that the treatment effect size was underes-
timated. Even when the correct recall probability was as high as 75%, the bias 
was at least 20%. An even larger bias was observed when this probability de-
creased. The bias decreased when the number of time periods increased. The 
right panel at the top shows the standard error decreased with increasing num-
ber of time periods. The standard error became smaller when the correct recall 
probability decreased, especially so when J = 6 or 12. The left panel in the middle 
row shows the standard error bias was less than 5% in all cases and there did not 
appear to be a relation with the probability of correctly remembering the even 
status. The right panel in the middle rows shows that in all cases the coverage of 
the confidence intervals was too low, even when the probability of correctly re-
membering the even status was as high as 75%. The panel in the lower row 
shows empirical power decreased when the correct recall probability decreased, 
and it increased with the number of time periods. 

4. Empirical Example 

The IMPACT study at the University of Massachusetts AIDS Unit, abbreviated 
to UIS, was a 5-year (1989-1994) collaborative research project comprised of two 
concurrent randomized trials of residential treatment for drug abuse. A group of 
residents was randomized to either a short or long residential treatment pro-
gram. The purpose of the study was to compare treatment programs of different 
planned durations designed to reduce drug abuse and to prevent high-risk HIV 
behavior. Here, we use a subset of 629 participants of the UIS data [22] for a 
purely methodological exercise to illustrate the performance of various imputa-
tion strategies in handling missing event status in a survival endpoint analysis.  

In the IMPACT study, the event of interest was defined as whether the partic-
ipants relapsed to drugs or were lost to follow-up. The time to event was meas-
ured continuously (in days). We have therefore converted the time to event to 
discrete points in time in order to accommodate a discrete-time survival analysis. 
We initially assumed a study with a maximum observation time of 2 years (i.e., 
730 days) where event occurrence was taken at the end of each quarter (i.e., 
whether the participants returned to drugs or lost to follow-up was recorded at 
each of 8 time periods). There were 5 participants who had a survival of more 
than 2 years and therefore their survival time was censored. In addition to the 
treatment indicator, the data set contained measurements recorded at baseline. 
These baseline variables, however, were not fully observed causing to remove 53 
participants from the study. This leads to a total of 575 participants of which 289 
participants were in the short treatment program and 286 in the long treatment 
program.  
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Figure 7. Results for the recall strategy. Results are shown for the various values of the probability to correctly remem-
ber the missing event status. Legend: □ = 25% probability, △ = 40% probability, ○ = 75% probability. 

 
The original data did not have any missing values in the event status. There-

fore, we created missing data artificially for the event status in the same manner 
as we did in our simulation study. More specifically, each participant had at 
most one missing value in the event status. For instance, if the second time point 
was set to missing for a particular participant, the event status was observed in 
the other time periods for that participant. This procedure resulted in approx-
imately 40% of participants who had one missing value in the event status. For 
the remaining 60%, the missing came after event occurrence.  

The incomplete data set was further imputed by different methods summa-
rized in Table 1. The resulting completed data set was afterwards analyzed using 
the discrete-time survival model presented in Equation (5). The following base-
line measurements were also included in the analysis model: age, Beck depres-
sion score, the number of prior drug treatments and race. For multiple imputa-
tion, we generated 100 completed datasets using the R package mice (version 
3.3.0) and fitted the discrete-time survival model in Equation (5) to each im-
puted dataset. The estimates from multiply imputed datasets were then com-
bined using Rubin’s rule to make a single estimate of the parameters. Table 2 
gives point estimates of the treatment effect from the different strategies. 
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Table 2. Results for the empirical example for different strategies. 

Evaluated Strategy Estimate (SE) 95% Confidence Interval 

Complete data −0.25 (0.111) (−0.466, −0.029) 

Recall −0.19 (0.112) (−0.410, 0.029) 

Case deletion −0.18 (0.154) (−0.468, 0.118) 

Period deletion −0.33 (0.134) (−0.593, −0.066) 

Assume event non-occurrence −0.28 (0.117) (−0.512, −0.054) 

Assume event occurrence −0.13 (0.110) (−0.348, 0.085) 

Single imputation −0.28 (0.115) (−0.502, −0.051) 

Multiple imputation −0.26 (0.118) (−0.493, −0.031) 

 
The first row of Table 2 shows the estimate of the treatment effect before in-

troducing missing event status (i.e., complete data). It therefore can be consi-
dered as a benchmark for the strategies to deal with missing data. The case dele-
tion method, where participants with missing event status are removed, showed 
a negatively biased estimate of the treatment effect while the same effect was po-
sitively biasedly estimated by the period deletion method. Both versions of the 
deletion methods had an increased standard error (due to a reduced sample size), 
which, in turn, resulted in a wider confidence interval for both methods (see 
rows 3 and 4 of Table 2). 

The naive imputation methods including single imputation also resulted in a 
biased estimate of the treatment effect. In particular, the method that assumes 
the event had occurred had the worst performance (the estimate of the treatment 
effect was two times smaller than that of the complete data). The recall method, 
when each participant was asked to recall the event status of the previous period, 
also underestimated the treatment effect. Moreover, the standard error of these 
methods differed marginally compared to the standard error from the complete 
data. 

Multiple imputation, as opposed to the other methods, showed a negligible 
bias in the estimate of the treatment effect (its estimate was −0.26 as compared 
to the estimated value of −0.25 from the complete data). However, its standard 
error was somewhat larger than that of the complete data, resulting in a slightly 
wider confidence interval. This is expected because multiple imputation always 
considers the uncertainty about which value to impute.  

In sum, we can conclude that multiple imputation outperforms the other sim-
ple methods, and the findings from the empirical example are in line with what 
we have found in the simulation study. 

5. Discussion 

Missing data poses a particular problem in discrete-time survival analysis since 
subjects are only followed until event occurrence. If a subject’s event occurrence 
is unknown during intermittent time periods, it is unclear whether it needs to be 
measured at subsequent time periods. The goal of this study was to compare 
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several strategies (Table 1), which can be used to manage this difficult problem, 
in order to facilitate future research on survival analysis. These strategies were 
evaluated using six criteria (convergence rate, parameter bias, average standard 
error, standard error bias, coverage rate of confidence intervals and empirical 
power) in a simulation study based on a Weibull survival function. A series of 
mixed design analyses of variance indicated that most of the within-variance was 
explained by strategy. 

Table 3 shows a summary of results for each of the criteria for evaluation. The 
strategies assuming event occurrence and event non-occurrence together with 
the recall strategy had the worst performance because of a substantial parameter 
bias and a sharp decrease in coverage rate. In particular, the event occurrence 
strategy and the recall strategy failed in four out of five criteria. Period deletion 
showed a huge increase of standard error (as compared to complete data) re-
sulted from removing a large amount of information, which, in turn, caused an 
unacceptable loss of power. Case deletion also had a negative standard error bias 
followed by an undercoverage rate. The latter can be particularly problematic 
because it inflates the type I error. Single imputation suffered from the underco-
verage issue too as a result of a negative standard error bias. This is expected be-
cause single imputation is known to underestimate the standard error. Multiple 
imputation, in contrast, showed a reasonable performance, with only a negligible, 
positive standard error bias. Comparing to single imputation, the empirical 
standard error for multiple imputation is larger, since the latter takes two 
sources of variation (both within and between imputation) into account while 
the former only has the within variance. This was also shown in our results, as 
multiple imputation overestimated the standard error. This overestimation of 
the standard error leads to a gradual decrease in power with multiple imputation, 
which was also shown in our results.  

 
Table 3. Summary of conclusions based on our simulation results. 

Strategy Symbol Parameter bias 
Average SE 

(as compared to  
complete data) 

Standard  
error bias 

Coverage rate of 
confidence intervals 

Power 
(as compared to  
complete data) 

Complete data □      

Recall  
Negative bias  

up to 78% 
Up to 33% smaller  

Can be as  
small as 0.025 

Loss of power 

Case deletion    
Negative bias  

up to 22% 
Can be as  

small as 0.87 
 

Period deletion   Up to 110% larger   Loss of power 

Assume event 
non-occurrence 

 
Negative bias  

up to 22% 
   Loss of power 

Assume event  
occurrence 

 
Negative bias  

up to 90% 
Up to 39% smaller  

Can be as  
small as 0 

Loss of power 

Single imputation +   
Negative bias  

up to 23% 
Can be as  

small as 0.87 
 

Multiple imputation    
Positive bias  
up to 11% 

 Loss of power 
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This paper was restricted in a three ways. Firstly, although the period in which 
a subject might have a missing outcome is generated randomly (from p = 1 to 
12), the subject could only have a missing value if that subject was still in the 
study. Therefore, the process, which created missing data implicitly depended on 
whether the subject had been observed until that period. Consequently, the 
missing data mechanism can be classified as missing at random (MAR) instead 
of missing completely at random (MCAR). Future research could focus on 
whether these results also hold when the data are MCAR, or even under missing 
not at random (MNAR) when the missingness is nonignorable. Secondly, sub-
jects were limited to a maximum of one missing period. However, in real life, 
subjects are likely to miss more than just one period. Although more missing-
ness will likely worsen the results, it is unlikely to affect which strategy is best 
suited for the management of missing data. A third limitation was that only a 
Weibull survival function was used. Although the Weibull survival function al-
lows for the hazard to increase or decrease over time, it does not allow the ha-
zard to have one or more peaks or troughs throughout the study. However, giv-
en the variety of scenarios in which the strategies were tested, we do not believe 
another function would have yielded different results. Similarly, we do not ex-
pect other results for other values of the sample size, treatment effect size and 
number of time periods. 

A recent, similar study by Jolani and Safarkhani [23] also investigated strate-
gies to manage missing data in survival analyses. However, that study focused on 
missing data in the baseline covariates. Baseline covariates are often used in sta-
tistical models in experimental studies to take the heterogeneity between indi-
viduals into account, which increases the power of these models. However, often 
the baseline covariates have some missing data. Strategies that handle those 
missing data were studied and it was found that single and multiple imputation 
methods outperformed other strategies, among which was complete case analy-
sis. 

6. Conclusion 

In the present study, as opposed to Jolani and Safarkhani [23], it was found that 
single imputation could underestimate the standard error, which leads to an 
overstatement of significant effects (type I error) and to an undercoverage of the 
confidence interval, while multiple imputation performed satisfactorily. It would 
be interesting to further evaluate and compare different strategies when both the 
event occurrence and baseline covariates have missing data. Also, future work 
could focus on more extensive simulation studies that overcome the three restric-
tions of the simulation study in this paper: it should focus on MCAR or even 
MNAR missing data structures, it should focus on more than one missing per 
person and it should focus on survival functions other than the Weibull function. 
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Bias 
Bias for beta = 0.25 

 
Within Subjects Effects 

 
Sum of  
Squares 

df Mean Square F p η2 

Strategy 147,604.97 a 7 a 21,086.424 a 4737.411 a <0.001 a 0.915 

Strategy * Omega 10217.10 a 14 a 729.793 a 163.960 a <0.001 a 0.063 

Strategy * Tau 2268.27 a 14 a 162.019 a 36.400 a <0.001 a 0.014 

Strategy * Nr.Period 410.43 a 14 a 29.316 a 6.586 a <0.001 a 0.003 

Strategy * Omega * Tau 326.07 a 28 a 11.646 a 2.616 a 0.001 a 0.002 

Strategy * Omega * Nr.Period 148.33 a 28 a 5.298 a 1.190 a 0.284 a 0.001 

Strategy * Tau * Nr.Period 94.06 a 28 a 3.359 a 0.755 a 0.789 a 0.001 

Residual 249.26  56  4.451       

Note. Type III Sum of Squares. aMauchly’s test of sphericity indicates that the assumption of sphericity is 
violated (p < 0.05). 

 
Between Subjects Effects 

 
Sum of 
Squares 

df 
Mean 

Square 
F p η2 

Omega 1808.78 2 904.391 13.488 0.003 0.549 

Tau 469.97 2 234.987 3.505 0.081 0.143 

Nr.Period 19.94 2 9.968 0.149 0.864 0.006 

Omega * Tau 229.67 4 57.418 0.856 0.529 0.070 

Omega * Nr.Period 74.07 4 18.517 0.276 0.885 0.022 

Tau * Nr.Period 156.98 4 39.245 0.585 0.683 0.048 

Residual 536.42 8 67.052    

Note. Type III Sum of Squares. 
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Bias for beta = 0.5 
 

Within Subjects Effects 

 
Sum of 
Squares 

df Mean Square F p η2 

Strategy 139,017.79 a 7 a 19,859.684 a 18,117.199 a <0.001 a 0.908 

Strategy * Omega 10,481.65 a 14 a 748.689 a 682.999 a <0.001 a 0.068 

Strategy * Tau 2456.04 a 14 a 175.431 a 160.039 a <0.001 a 0.016 

Strategy * Nr.Period 557.54 a 14 a 39.825 a 36.330 a <0.001 a 0.004 

Strategy * Omega * Tau 279.52 a 28 a 9.983 a 9.107 a <0.001 a 0.002 

Strategy * Omega * Nr.Period 113.83 a 28 a 4.065 a 3.709 a <0.001 a 0.001 

Strategy * Tau * Nr.Period 55.09 a 28 a 1.967 a 1.795 a 0.031 a 0.000 

Residual 61.39  56  1.096       

Note. Type III Sum of Squares. aMauchly’s test of sphericity indicates that the assumption of spheric-
ity is violated (p < 0.05). 

 
Between Subjects Effects 

 
Sum of 
Squares 

df 
Mean 

Square 
F p η2 

Omega 2015.25 2 1007.623 65.003 <0.001 0.616 

Tau 925.72 2 462.861 29.860 <0.001 0.283 

Nr.Period 18.13 2 9.064 0.585 0.579 0.006 

Omega * Tau 27.22 4 6.804 0.439 0.778 0.008 

Omega * Nr.Period 104.71 4 26.178 1.689 0.245 0.032 

Tau * Nr.Period 56.40 4 14.101 0.910 0.502 0.017 

Residual 124.01 8 15.501    

Note. Type III Sum of Squares. 
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Bias for beta = 1 
 

Within Subjects Effects 

 Sum of Squares df Mean Square F p η2 

Strategy 111,095.16 a 7 a 15,870.738 a 38,466.120 a <0.001 a 0.890 

Strategy * Omega 9743.74 a 14 a 695.981 a 1686.859 a <0.001 a 0.078 

Strategy * Tau 2980.89 a 14 a 212.921 a 516.058 a <0.001 a 0.024 

Strategy * Nr.Period 663.30 a 14 a 47.378 a 114.831 a <0.001 a 0.005 

Strategy * Omega * Tau 192.55 a 28 a 6.877 a 16.667 a <0.001 a 0.002 

Strategy * Omega * 
Nr.Period 

128.89 a 28 a 4.603 a 11.157 a <0.001 a 0.001 

Strategy * Tau * Nr.Period 25.84 a 28 a 0.923 a 2.237 a 0.005 a 0.000 

Residual 23.11  56  0.413       

Note. Type III Sum of Squares. aMauchly’s test of sphericity indicates that the assumption of sphericity is 
violated (p < 0.05). 

 
Between Subjects Effects 

 Sum of Squares df Mean Square F p η2 

Omega 2888.81 2 1444.403 864.165 <0.001 0.739 

Tau 781.81 2 390.907 233.874 <0.001 0.200 

Nr.Period 87.37 2 43.684 26.136 <0.001 0.022 

Omega * Tau 52.79 4 13.197 7.895 0.007 0.014 

Omega * Nr.Period 64.03 4 16.007 9.577 0.004 0.016 

Tau * Nr.Period 18.38 4 4.596 2.750 0.104 0.005 

Residual 13.37 8 1.671    

Note. Type III Sum of Squares. 
 

 

https://doi.org/10.4236/ojs.2021.111003


S. Jolani et al. 
 

 

DOI: 10.4236/ojs.2021.111003 65 Open Journal of Statistics 
 

Average standard error 
Average standard error for beta = 0.25 

 
Within Subjects Effects 

 
Sum of  
Squares 

df 
Mean 

Square 
F p η2 

Strategy 0.489 a 7 a 0.070 a 12,831.680 a <0.001 a 0.697 

Strategy * Omega 0.133 a 14 a 0.009 a 1739.634 a <0.001 a 0.189 

Strategy * Tau 0.060 a 14 a 0.004 a 788.259 a <0.001 a 0.086 

Strategy * Nr.Period 0.008 a 14 a 5.927e−4 a 108.770 a <0.001 a 0.012 

Strategy * Omega * Tau 0.011 a 28 a 3.795e−4 a 69.643 a <0.001 a 0.015 

Strategy * Omega * Nr.Period 5.716e−4 a 28 a 2.042e−5 a 3.747 a <0.001 a 0.001 

Strategy * Tau * Nr.Period 4.416e−4 a 28 a 1.577e−5 a 2.895 a <0.001 a 0.001 

Residual 3.051e−4  56  5.449e−6       

Note. Type III Sum of Squares. aMauchly’s test of sphericity indicates that the assumption of sphericity is 
violated (p < 0.05). 

 
Between Subjects Effects 

 Sum of Squares df Mean Square F p η2 

Omega 0.269 2 0.134 3589.724 <0.001 0.824 

Tau 0.005 2 0.003 68.011 <0.001 0.016 

Nr.Period 0.046 2 0.023 613.326 <0.001 0.141 

Omega * Tau 0.005 4 0.001 34.531 <0.001 0.016 

Omega * Nr.Period 9.496e−4 4 2.374e−4 6.338 0.013 0.003 

Tau * Nr.Period 9.887e−5 4 2.472e−5 0.660 0.637 0.000 

Residual 2.996e−4 8 3.746e−5    

Note. Type III Sum of Squares. 
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Average standard error for beta = 0.5 
 

Within Subjects Effects 

 
Sum of 
Squares 

df Mean Square F p η2 

Strategy 0.428 a 7 a 0.061 a 10,252.915 a <0.001 a 0.697 

Strategy * Omega 0.114 a 14 a 0.008 a 1369.466 a <0.001 a 0.186 

Strategy * Tau 0.052 a 14 a 0.004 a 625.765 a <0.001 a 0.085 

Strategy * Nr.Period 0.008 a 14 a 5.932e−4 a 99.538 a <0.001 a 0.014 

Strategy * Omega * Tau 0.010 a 28 a 3.431e−4 a 57.580 a <0.001 a 0.016 

Strategy * Omega * Nr.Period 5.894e−4 a 28 a 2.105e−5 a 3.532 a <0.001 a 0.001 

Strategy * Tau * Nr.Period 4.269e−4 a 28 a 1.525e−5 a 2.558 a 0.001 a 0.001 

Residual 3.337e−4  56  5.959e−6       

Note. Type III Sum of Squares. aMauchly’s test of sphericity indicates that the assumption of sphericity is 
violated (p < 0.05). 

 
Between Subjects Effects 

 
Sum of 
Squares 

df 
Mean 

Square 
F p η2 

Omega 0.209 2 0.104 2298.162 <0.001 0.770 

Tau 0.004 2 0.002 46.465 <0.001 0.016 

Nr.Period 0.050 2 0.025 555.239 <0.001 0.186 

Omega * Tau 0.006 4 0.002 33.613 <0.001 0.023 

Omega * Nr.Period 0.001 4 3.000e−4 6.601 0.012 0.004 

Tau * Nr.Period 1.374e−4 4 3.434e−5 0.756 0.582 0.001 

Residual 3.635e−4 8 4.544e−5    

Note. Type III Sum of Squares. 
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Average standard error for beta = 1 
 

Within Subjects Effects 

 
Sum of 
Squares 

df 
Mean 

Square 
F p η2 

Strategy 0.346 7 0.049 9161.222 <0.001 0.699 

Strategy * Omega 0.088 14 0.006 1165.389 <0.001 0.178 

Strategy * Tau 0.043 14 0.003 569.744 <0.001 0.087 

Strategy * Nr.Period 0.008 14 5.764e−4 106.990 <0.001 0.016 

Strategy * Omega * Tau 0.009 28 3.115e−4 57.819 <0.001 0.018 

Strategy * Omega * Nr.Period 5.664e−4 28 2.023e−5 3.755 <0.001 0.001 

Strategy * Tau * Nr.Period 2.891e−4 28 1.032e−5 1.916 0.019 0.001 

Residual 3.017e−4 56 5.388e−6    

Note. Type III Sum of Squares. 
 

Between Subjects Effects 

 
Sum of 
Squares 

df 
Mean 

Square 
F p η2 

Omega 0.110 2 0.055 881.615 <0.001 0.600 

Tau 0.003 2 0.002 27.930 <0.001 0.019 

Nr.Period 0.059 2 0.029 467.569 <0.001 0.318 

Omega * Tau 0.009 4 0.002 35.243 <0.001 0.048 

Omega * Nr.Period 0.002 4 5.199e−4 8.306 0.006 0.011 

Tau * Nr.Period 2.373e−4 4 5.932e−5 0.948 0.484 0.001 

Residual 5.008e−4 8 6.259e−5    

Note. Type III Sum of Squares. 
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Standard error bias 
Standard error bias for beta = 0.25 

 
Within Subjects Effects 

 
Sum of  
Squares 

df 
Mean  

Square 
F p η2 

Strategy 9187.56 a 7 a 1312.509 a 437.649 a <0.001 a 0.838 

Strategy * Omega 53.60 a 14 a 3.828 a 1.277 a 0.251 a 0.005 

Strategy * Tau 51.57 a 14 a 3.684 a 1.228 a 0.282 a 0.005 

Strategy * Nr.Period 1275.08 a 14 a 91.077 a 30.369 a <0.001 a 0.116 

Strategy * Omega * Tau 79.16 a 28 a 2.827 a 0.943 a 0.556 a 0.007 

Strategy * Omega * Nr.Period 31.17 a 28 a 1.113 a 0.371 a 0.997 a 0.003 

Strategy * Tau * Nr.Period 120.48 a 28 a 4.303 a 1.435 a 0.125 a 0.011 

Residual 167.94  56  2.999       

Note. Type III Sum of Squares. aMauchly’s test of sphericity indicates that the assumption of sphericity is 
violated (p < 0.05). 

 
Between Subjects Effects 

 Sum of Squares df Mean Square F p η2 

Omega 7.770 2 3.885 0.750 0.503 0.013 

Tau 81.660 2 40.830 7.877 0.013 0.141 

Nr.Period 129.238 2 64.619 12.466 0.003 0.224 

Omega * Tau 132.619 4 33.155 6.396 0.013 0.230 

Omega * Nr.Period 103.263 4 25.816 4.980 0.026 0.179 

Tau * Nr.Period 81.090 4 20.273 3.911 0.048 0.141 

Residual 41.469 8 5.184    

Note. Type III Sum of Squares. 
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Standard error bias for beta = 0.5 
 

Within Subjects Effects 

 
Sum of  
Squares 

df 
Mean  

Square 
F p η2 

Strategy 9375.63 a 7 a 1339.376 a 540.780 a <0.001 a 0.844 

Strategy * Omega 116.27 a 14 a 8.305 a 3.353 a <0.001 a 0.010 

Strategy * Tau 42.48 a 14 a 3.034 a 1.225 a 0.284 a 0.004 

Strategy * Nr.Period 1221.72 a 14 a 87.266 a 35.234 a <0.001 a 0.110 

Strategy * Omega * Tau 35.46 a 28 a 1.266 a 0.511 a 0.972 a 0.003 

Strategy * Omega * Nr.Period 114.53 a 28 a 4.090 a 1.651 a 0.055 a 0.010 

Strategy * Tau * Nr.Period 64.27 a 28 a 2.295 a 0.927 a 0.577 a 0.006 

Residual 138.70  56  2.477       

Note. Type III Sum of Squares. aMauchly’s test of sphericity indicates that the assumption of sphericity is 
violated (p < 0.05). 

 
Between Subjects Effects 

 
Sum of 
Squares 

df 
Mean 

Square 
F p η2 

Omega 58.95 2 29.475 1.286 0.328 0.079 

Tau 58.38 2 29.191 1.274 0.331 0.079 

Nr.Period 228.95 2 114.473 4.995 0.039 0.308 

Omega * Tau 43.10 4 10.775 0.470 0.757 0.058 

Omega * Nr.Period 28.98 4 7.244 0.316 0.860 0.039 

Tau * Nr.Period 141.77 4 35.443 1.547 0.278 0.191 

Residual 183.34 8 22.918    

Note. Type III Sum of Squares. 
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Standard error bias for beta = 1 
 

Within Subjects Effects 

 Sum of Squares df Mean Square F p η2 

Strategy 9718.16 a 7 a 1388.309 a 548.930 a <0.001 a 0.847 

Strategy * Omega 153.01 a 14 a 10.929 a 4.321 a <0.001 a 0.013 

Strategy * Tau 87.61 a 14 a 6.258 a 2.474 a 0.008 a 0.008 

Strategy * Nr.Period 1192.68 a 14 a 85.192 a 33.684 a <0.001 a 0.104 

Strategy * Omega * Tau 62.16 a 28 a 2.220 a 0.878 a 0.639 a 0.005 

Strategy * Omega * 
Nr.Period 

45.39 a 28 a 1.621 a 0.641 a 0.899 a 0.004 

Strategy * Tau * Nr.Period 77.00 a 28 a 2.750 a 1.087 a 0.385 a 0.007 

Residual 141.63  56  2.529       

Note. Type III Sum of Squares. aMauchly’s test of sphericity indicates that the assumption of sphericity is 
violated (p < 0.05). 

 
Between Subjects Effects 

 
Sum of 
Squares 

df 
Mean 

Square 
F p η2 

Omega 75.610 2 37.805 3.337 0.088 0.110 

Tau 0.957 2 0.479 0.042 0.959 0.001 

Nr.Period 144.912 2 72.456 6.396 0.022 0.212 

Omega * Tau 142.729 4 35.682 3.150 0.078 0.208 

Omega * Nr.Period 148.929 4 37.232 3.286 0.071 0.218 

Tau * Nr.Period 80.871 4 20.218 1.785 0.225 0.118 

Residual 90.631 8 11.329    

Note. Type III Sum of Squares. 
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Coverage 
Coverage for beta = 0.25 

 
Within Subjects Effects 

 
Sum of 
Squares 

df 
Mean  

Square 
F p η2 

Strategy 0.308 7 0.044 1058.083 <0.001 0.706 

Strategy * Omega 0.068 14 0.005 117.383 <0.001 0.157 

Strategy * Tau 0.014 14 9.724e−4 23.381 <0.001 0.031 

Strategy * Nr.Period 0.036 14 0.003 61.233 <0.001 0.082 

Strategy * Omega * Tau 0.002 28 8.274e−5 1.990 0.014 0.005 

Strategy * Omega * Nr.Period 0.003 28 1.177e−4 2.830 <0.001 0.008 

Strategy * Tau * Nr.Period 0.003 28 9.028e−5 2.171 0.007 0.006 

Residual 0.002 56 4.159e−5    

Note. Type III Sum of Squares. 
 

Between Subjects Effects 

 
Sum of 
Squares 

df 
Mean 

Square 
F p η2 

Omega 0.013 2 0.007 37.084 <0.001 0.488 

Tau 0.007 2 0.004 19.568 <0.001 0.257 

Nr.Period 1.278e−4 2 6.389e−5 0.356 0.711 0.005 

Omega * Tau 0.002 4 4.297e−4 2.393 0.137 0.063 

Omega * Nr.Period 0.003 4 6.600e−4 3.676 0.055 0.097 

Tau * Nr.Period 0.001 4 2.568e−4 1.431 0.308 0.038 

Residual 0.001 8 1.795e−4    

Note. Type III Sum of Squares. 
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Coverage for beta = 0.5 
 

Within Subjects Effects 

 
Sum of  
Squares 

df 
Mean  

Square 
F p η2 

Strategy 3.448 a 7 a 0.493 a 4434.836 a <0.001 a 0.744 

Strategy * Omega 0.784 a 14 a 0.056 a 504.446 a <0.001 a 0.169 

Strategy * Tau 0.204 a 14 a 0.015 a 131.330 a <0.001 a 0.044 

Strategy * Nr.Period 0.161 a 14 a 0.012 a 103.598 a <0.001 a 0.035 

Strategy * Omega * Tau 0.012 a 28 a 4.371e−4 a 3.935 a <0.001 a 0.003 

Strategy * Omega * Nr.Period 0.014 a 28 a 4.825e−4 a 4.344 a <0.001 a 0.003 

Strategy * Tau * Nr.Period 0.002 a 28 a 8.839e−5 a 0.796 a 0.741 a 0.001 

Residual 0.006  56  1.111e−4       

Note. Type III Sum of Squares. aMauchly’s test of sphericity indicates that the assumption of sphericity is 
violated (p < 0.05). 

 
Between Subjects Effects 

 
Sum of 
Squares 

df 
Mean 

Square 
F p η2 

Omega 0.225 2 0.113 243.992 <0.001 0.734 

Tau 0.062 2 0.031 67.504 <0.001 0.203 

Nr.Period 0.007 2 0.003 7.188 0.016 0.022 

Omega * Tau 0.002 4 5.756e−4 1.247 0.365 0.007 

Omega * Nr.Period 0.006 4 0.001 3.163 0.078 0.019 

Tau * Nr.Period 0.001 4 2.518e−4 0.546 0.708 0.003 

Residual 0.004 8 4.616e−4    

Note. Type III Sum of Squares 
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Coverage for beta = 1 
 

Within Subjects Effects 

 
Sum of 
Squares 

df Mean Square F p η2 

Strategy 16.047 a 7 a 2.292 a 8458.591 a <0.001 a 0.843 

Strategy * Omega 1.947 a 14 a 0.139 a 513.123 a <0.001 a 0.102 

Strategy * Tau 0.596 a 14 a 0.043 a 157.188 a <0.001 a 0.031 

Strategy * Nr.Period 0.141 a 14 a 0.010 a 37.228 a <0.001 a 0.007 

Strategy * Omega * Tau 0.251 a 28 a 0.009 a 33.045 a <0.001 a 0.013 

Strategy * Omega * Nr.Period 0.034 a 28 a 0.001 a 4.439 a <0.001 a 0.002 

Strategy * Tau * Nr.Period 0.009 a 28 a 3.379e−4 a 1.247 a 0.238 a 0.000 

Residual 0.015  56  2.710e−4       

Note. Type III Sum of Squares. aMauchly’s test of sphericity indicates that the assumption of sphericity is 
violated (p < 0.05). 

 
Between Subjects Effects 

 
Sum of 
Squares 

df 
Mean 

Square 
F p η2 

Omega 0.596 2 0.298 501.080 <0.001 0.701 

Tau 0.185 2 0.092 155.210 <0.001 0.217 

Nr.Period 0.001 2 5.814e−4 0.978 0.417 0.001 

Omega * Tau 0.058 4 0.015 24.460 <0.001 0.068 

Omega * Nr.Period 0.004 4 0.001 1.715 0.239 0.005 

Tau * Nr.Period 0.001 4 2.747e−4 0.462 0.762 0.001 

Residual 0.005 8 5.944e−4    

Note. Type III Sum of Squares. 
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Power 
Power for beta = 0.25 

 
Within Subjects Effects 

 
Sum of 
Squares 

df 
Mean 

Square 
F p η2 

Strategy 0.706 7 0.101 1002.942 <0.001 0.898 

Strategy * Omega 0.022 14 0.002 15.372 <0.001 0.028 

Strategy * Tau 0.019 14 0.001 13.489 <0.001 0.024 

Strategy * Nr.Period 0.023 14 0.002 16.178 <0.001 0.029 

Strategy * Omega * Tau 0.005 28 1.856e−4 1.846 0.026 0.007 

Strategy * Omega * Nr.Period 0.004 28 1.368e−4 1.360 0.162 0.005 

Strategy * Tau * Nr.Period 0.002 28 8.117e−5 0.807 0.728 0.003 

Residual 0.006 56 1.006e−4    

Note. Type III Sum of Squares. 
 

Between Subjects Effects 

 
Sum of 
Squares 

df 
Mean 

Square 
F p η2 

Omega 0.301 2 0.150 299.010 <0.001 0.850 

Tau 0.006 2 0.003 5.472 0.032 0.016 

Nr.Period 0.023 2 0.012 22.873 <0.001 0.065 

Omega * Tau 0.003 4 8.477e−4 1.685 0.245 0.010 

Omega * Nr.Period 0.016 4 0.004 8.115 0.006 0.046 

Tau * Nr.Period 8.596e−4 4 2.149e−4 0.427 0.785 0.002 

Residual 0.004 8 5.030e−4    

Note. Type III Sum of Squares. 
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Power for beta = 0.5 
 

Within Subjects Effects 

 
Sum of 
Squares 

df 
Mean 

Square 
F p η2 

Strategy 5.605 7 0.801 8442.520 <0.001 0.929 

Strategy * Omega 0.074 14 0.005 55.773 <0.001 0.012 

Strategy * Tau 0.216 14 0.015 162.615 <0.001 0.036 

Strategy * Nr.Period 0.079 14 0.006 59.544 <0.001 0.013 

Strategy * Omega * Tau 0.037 28 0.001 13.819 <0.001 0.006 

Strategy * Omega * Nr.Period 0.009 28 3.234e−4 3.409 <0.001 0.002 

Strategy * Tau * Nr.Period 0.008 28 2.758e−4 2.908 <0.001 0.001 

Residual 0.005 56 9.485e−5    

Note. Type III Sum of Squares. 
 

Between Subjects Effects 

 
Sum of 
Squares 

df 
Mean 

Square 
F p η2 

Omega 2.529 2 1.264 646.016 <0.001 0.780 

Tau 0.049 2 0.025 12.579 0.003 0.015 

Nr.Period 0.498 2 0.249 127.124 <0.001 0.154 

Omega * Tau 0.017 4 0.004 2.186 0.161 0.005 

Omega * Nr.Period 0.128 4 0.032 16.341 <0.001 0.039 

Tau * Nr.Period 0.005 4 0.001 0.642 0.648 0.002 

Residual 0.016 8 0.002    

Note. Type III Sum of Squares. 
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Power for beta = 1 
 

Within Subjects Effects 

 
Sum of  
Squares 

df 
Mean  

Square 
F p η2 

Strategy 4.322 a 7 a 0.617 a 6858.239 a <0.001 a 0.652 

Strategy * Omega 1.590 a 14 a 0.114 a 1261.234 a <0.001 a 0.240 

Strategy * Tau 0.459 a 14 a 0.033 a 364.354 a <0.001 a 0.069 

Strategy * Nr.Period 0.124 a 14 a 0.009 a 98.310 a <0.001 a 0.019 

Strategy * Omega * Tau 0.100 a 28 a 0.004 a 39.755 a <0.001 a 0.015 

Strategy * Omega * Nr.Period 0.020 a 28 a 7.043e−4 a 7.823 a <0.001 a 0.003 

Strategy * Tau * Nr.Period 0.004 a 28 a 1.469e−4 a 1.632 a 0.060 a 0.001 

Residual 0.005  56  9.003e−5       

Note. Type III Sum of Squares. a Mauchly’s test of sphericity indicates that the assumption of sphericity is 
violated (p < 0.05). 

 
Between Subjects Effects 

 
Sum of 
Squares 

df 
Mean 

Square 
F p η2 

Omega 1.233 2 0.617 4805.817 <0.001 0.759 

Tau 0.203 2 0.102 791.100 <0.001 0.125 

Nr.Period 0.147 2 0.074 573.504 <0.001 0.091 

Omega * Tau 0.036 4 0.009 70.881 <0.001 0.022 

Omega * Nr.Period 7.087e−4 4 1.772e−4 1.381 0.323 0.000 

Tau * Nr.Period 0.003 4 8.458e−4 6.590 0.012 0.002 

Residual 0.001 8 1.283e−4    

Note. Type III Sum of Squares. 
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