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Abstract 
This study uses an empirical analysis to quantify the downstream analysis ef-
fects of data pre-processing choices. Bootstrap data simulation is used to 
measure the bias-variance decomposition of an empirical risk function, mean 
square error (MSE). Results of the risk function decomposition are used to 
measure the effects of model development choices on model bias, variance, 
and irreducible error. Measurements of bias and variance are then applied as 
diagnostic procedures for model pre-processing and development. Best per-
forming model-normalization-data structure combinations were found to il-
lustrate the downstream analysis effects of these model development choices. 
In additions, results found from simulations were verified and expanded to 
include additional data characteristics (imbalanced, sparse) by testing on 
benchmark datasets available from the UCI Machine Learning Library. Nor-
malization results on benchmark data were consistent with those found using 
simulations, while also illustrating that more complex and/or non-linear 
models provide better performance on datasets with additional complexities. 
Finally, applying the findings from simulation experiments to previously 
tested applications led to equivalent or improved results with less model de-
velopment overhead and processing time. 
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1. Introduction 

Introduction Popularized in the work by David Holpert and William Macready, 
the No Free Lunch (NFL) Theorem states that no single machine learning algo-
rithm is better than all the others on all problems [1]. Other researchers have 
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tried multiple models to find one that works best for a problem. In fact, studies 
by Carp [2] [3] illustrate effects on research findings in functional MRI (fMRI) 
studies due to variations in analytic strategy, with increased model flexibility 
leading to higher rates of false positive results. Wagenmakers, et al. [4] point 
out that many studies in psychology do not commit to an analysis method be-
fore seeing the data, with some researchers fine-tuning their analysis to the 
data, proposing that researchers “preregister their studies and indicate in ad-
vance the analyses they intend to conduct” in order to be considered as “con-
firmatory” research, rather than as “exploratory”. A study published in May 
2020 expands on Carp’s findings, noting that fMRI analyses conducted on the 
same data by seventy different laboratories produced a wide range of results 
[5]. This particular study highlighted the fact that fMRI analysis requires several 
stages of pre-processing and analysis to determine which areas of the brain show 
activity. They found that the choice of pre-processing pipeline led to widely va-
ried results. Among the seventy study teams, no two teams selected the same 
pipeline. Figure 1 illustrates the potential implications of varying pipeline 
choices in neuroimaging.  

Perhaps the most illustrative lack of research consistency is the study by Sil-
berzahn, et al. [6] which recruited 29 independent research teams with 61 ana-
lysts to address the question, “Are soccer referees more likely to give red cards 
to dark-skin-toned players than to light-skin-toned players?” The research 
teams represented 13 countries, a variety of disciplines, and a range of exper-
tise and academic degrees. Using the same dataset and research question, the 
29 teams utilized 29 unique analytical modeling approaches resulting in 21 
unique combinations of covariates, 20 teams with significant positive results, 
and odds ratios ranging from 0.89 to 2.93, as in Table 1. To say the least, analyt-
ic choices, even if justifiable and statistically valid, have a downstream effect on 
model results. 

The statistical model development framework can be generally divided into  
 

 
Figure 1. Researchers process neuroimaging data using a wide variety of pipelines, which 
can produce varying results. Making different choices for each step leads to a different 
end point—the red dots represent how activation moves throughout the brain depending 
on which pipeline is used [5]. 
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Table 1. From “Many Analysts, One Data Set: Making Transparent How Variations in Analytic Choices Affect Results” [6]. 

Team Distribution 
Treatment of  

nonindependence 
Number of 
covariates 

Analytics Approach OR 

1 Linear Clustered standard errors 7 
Ordinary least squares regression with robust standard errors, 

logistic regression 
1.18 [0.95, 1.41] 

6 Linear Clustered standard errors 6 Linear probability model 1.28 [0.77, 2.13] 

14 Linear Clustered standard errors 6 Weighted least squares regression with clustered standard errors 1.21 [0.97, 1.46] 

4 Linear None 3 Spearman correlation 1.21 [1.20, 1.21] 

11 Linear None 4 Multiple linear regression 1.25 [1.05, 1.49] 

10 Linear Variance component 3 Multilevel regression and logistic regression 1.03 [1.01. 1.05] 

2 Logistic Clustered standard errors 6 Linear probability model, logistic regression 1.34 [1.10, 1.63] 

30 Logistic Clustered standard errors 3 Clustered robust binomial logistic regression 1.28 [1.04, 1.57] 

31 Logistic Clustered standard errors 6 Logistic regression 1.12 [0.88, 1.43] 

32 Logistic Clustered standard errors 1 Generalized linear models for binary data 1.39 [1.10, 1.75] 

8 Logistic None 0 Negative binomial regression with a log link 1.39 [1.17, 1.65] 

15 Logistic None 1 Hierarchical log-linear modeling 1.02 [1.00, 1.03] 

3 Logistic Variance component 2 Multilevel logistic regression using Bayesian inference 1.31 [1.09, 1.57] 

5 Logistic Variance component 0 Generalized linear mixed models 1.38 [1.10, 1.75] 

9 Logistic Variance component 2 Generalized linear mixed-effects models with logit link 1.48 [1.20, 1.84] 

17 Logistic Variance component 2 Bayesian logistic regression 0.96 [0.77, 1.18] 

18 Logistic Variance component 2 Hierarchical Bayes model 1.10 [0.98, 1.27] 

23 Logistic Variance component 2 Mixed-model logistic regression 1.31 [1.10, 1.56] 

24 Logistic Variance component 3 Multilevel logistic regression 1.38 [1.11, 1.72] 

25 Logistic Variance component 4 Multilevel logistic binomial regression 1.42 [1.19, 1,71] 

28 Logistic Variance component 2 Mixed-effects logistic regression 1.38 [1.12, 1.71] 

21 Miscellaneous Clustered standard errors 3 Tobit regression 2.88 [1.03, 11.47] 

7 Miscellaneous None 0 Dirichlet-process Bayesian clustering 1.71 [1.70, 1.72] 

12 Poisson Fixed effect 2 Zero-inflated Poisson regression 0.89 [0.49, 1.60] 

27 Poisson None 1 Poisson regression 2.93 [0.11, 78.66] 

13 Poisson Variance component 1 Poisson multilevel modeling 1.41 [1.13, 1.75] 

16 Poisson Variance component 2 Hierarchical Poisson regression 1.32 [1.06, 1.63] 

20 Poisson Variance component 1 Cross-classified multilevel negative binomial model 1.40 [1.15, 1.71] 

26 Poisson Variance component 6 Hierarchical generalized linear modeling with Poisson samping 1.30 [1.08, 1.56] 

 
three phases: data discovery, variable preparation, and modeling. Within each of 
these phases there are steps in the model development that encompass a wide 
range of data management, data mining, and data analysis techniques, including 
data ingestion, sample selection, data cleaning and imputation, feature reduction, 
feature engineering, normalization, model development, and model validation. 
Analyzing the downstream effects of modeling approaches within each of these 
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steps will allow for statistically motivated modeling choices in the future. Quan-
tifying the analysis effects of these strategies provides a diagnostic illustration of 
where researchers can expect to find improvements in their model results. 

This study quantifies the downstream analysis effects of data pre-processing 
choices by utilizing a decomposition of the loss functions, measuring effects on 
model bias, variance, and irreducible error/random noise. In this way, mea-
surements of bias and variance can be efficiently applied as diagnostic proce-
dures for model pre-processing and development. Applying bias-variance de-
composition to a variety of data distributions and model types can lead towards 
an improved understanding of quantitative variations within model develop-
ment methods as well as comparing results consistently between methods. Un-
derstanding of statistical bias and variance can be used to diagnose problems 
with machine learning bias and develop methods for reducing bias and variance 
in algorithms. For example, this bias-variance trade-off does not always behave 
as expected under distributional assumptions. Even with the availability of more 
advanced models, such as neural networks, simple models still often perform 
well, or even better than more complex models, in experiments [7]. Generally, 
while more complex models result in decreased bias, they tend to increase va-
riance and, therefore, do not generalize well to new data [8]. However, it has 
been found that ensemble models, although complex, often outperform single 
models and this seems contradictory to the trade-off between simplicity and ac-
curacy. In this case, decomposition of bias-variance for ensembles led to the un-
derstanding that while increased complexity for a single model often increases 
variance, averaging multiple models will often (but not always) lead to decreased 
variance [9]. The goal, therefore, of understanding the effects on bias-variance 
decomposition is to quantify the downstream analysis effects of a selection of 
model development choices. Using these results as diagnostic procedures can 
lead to improved model development performance and consistent, reproducible 
results across data types and domains. 

2. Methods  
2.1. Quantifying Bias-Variance Trade-Off  

We measure the effects of various normalization methods on the bias-variance 
decomposition of the risk function by directly simulating the definition of the 
decomposition under varying conditions. We use information found from these 
simulations to quantify the downstream analysis implications for the predictive 
models of interest. Since “an important goal in algorithm design is to minimize 
statistical bias and variance and thereby minimize error [10],” we use our find-
ings to propose pre-processing and algorithm design choices that best minimize 
common design effects on bias and variance. For example, “any change that in-
creases the representational power of an algorithm can reduce its statistical bias. 
Any change that expands the set of available alternatives for an algorithm or 
makes them depend on a smaller fraction of the training data can increase the 
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variance of the algorithm [10].” The result of such a study is to formulate a 
theory of bias and variance reduction and predict when either or both will suc-
ceed in practice. 

2.2. Data Normalization  

In this context we consider normalization to include data scaling techniques 
such as normalization and standardization. Data can be scaled so that features 
measured on different scales can be compared. Probability distributions of fea-
tures can also be adjusted to be in alignment with each other. Another method is 
to shift and scale the features (standardization), which removes the units of 
measure. The primary goal of normalization is to scale each data point in a way 
that gives equal weight to the features to be used in developing a model. We 
consider four within-feature normalization methods including standardization, 
min-max, max absolute value (maxAbs), and quantile transformation, and one 
between-feature normalization, quantile normalization. 

2.2.1. Z-Score, “Standardization” 
Standardization is a method that shifts and scales the data to be centered around 
0 with a standard deviation of 1:  

 
( )

( )
mean

stdev
ix x

x
−

                        (1) 

Characteristics of this method include:  
 Assumes data is normally distributed within each feature.  
 Centers distribution around 0, with standard deviation 1.  
 If data has outliers, scales most of the data to a small interval.  
 Does not produce normalized features with the exact same scale.  

Even if the data has outliers, Z-score normalization will scale most of the 
non-outlier data to be in a similar range between all features, assuming the data 
is normally distributed, as in Figure 2.  

2.2.2. Min-Max Normalization 
For each feature, the minimum value of that feature is transformed to a 0, the 
maximum value is transformed to a 1, and every other value lies between 0 and 
1:  

 
( )

( ) ( )
min

max min
ix x

x x
−

−
                       (2) 

Advantages of this method include:  
 Scales data between 0 and 1; guarantees all features have exact same scale.  
 Preserves shape of original distribution.  
 Preserves 0 entries in sparse data.  
 Least disruptive to information in original data.  

However, this method does not reduce the importance of outliers, so skewed 
results can still exist after normalizing if outliers exist, as in Figure 3.  
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Figure 2. The data is squished due to outlier but most of the data lies within similar range 
for both features ([11]). 
 

 
Figure 3. Min-Max Normalization fixes the distribution on the Y-axis but is still proble-
matic on the X-axis due to the outlier ([11]). 

2.2.3. Max Absolute Value Normalization 
This method scales feature by its maximum absolute value so that the maximum 
absolute value of each feature will be 1. This sets the distribution of each feature 
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between −1 and 1.  

 
( )

( )( )( )
mean

max abs mean
i

i

x x
x x

−

−
                     (3) 

Characteristics of this method include:  
 Good for data with positive and negative values.  
 Preserves 0 entries in sparse data.  
 Similar sensitivity to outliers as in min-max normalization.  

2.2.4. Quantile Transformation 
Quantile transformation transforms each feature independently to follow a uni-
form or normal distribution. This is a non-linear transformation that uses the 
estimated value of the cumulative distribution function (CDF) to map a feature 
original values to a uniform or normal distribution:  

1) Calculate empirical ranks, using percentile function.  
2) Modify the ranking through interpolation.  
3) Map to a Normal distribution by inverting the CDF, and clipping bounds at 

the extreme values so they don’t go to infinity.  
Characteristics of this method include:  

 Tends to spread out the most frequent values of a given feature.  
 Smooths out unusual distributions.  
 Less sensitive to outliers as other scaling methods.  
 Distorts the linear correlations between variables measured at the same scale, 

but variables measured at different scales are more directly comparable.  
 For a Normal transformation, the median of the feature becomes the mean, 

centered at 0.  

2.2.5. Quantile Normalization 
Quantile normalization is a method most notably used in genetics to normalize 
within samples, rather than within features as in the previously described me-
thods. In genetic sequencing, data is often normalized based on the assumption 
of consistent within and between sample distributions, with observed variation 
around these distributions assumed to be the result of technical noise. Samples 
are normalized to the same distribution as each other or to a reference gene 
sample ([12]).  

1) Given n arrays of length p, form X of dimension p n×  where each array is 
a column;  

2) Sort each column of X to give sortX ;  
3) Take the means across rows of sortX  and assign this mean to each element 

in the row to get sortX ′ ;  
4) Get normalizedX  by rearranging each column of sortX ′  to have the same or-

dering as original X.  
Characteristics of this method include:  

 Makes 2 or more distributions identical in statistical properties.  
 Does not preserve original data distributions.  
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2.3. Model Characteristics  

In order to test the effects of various pre-processing methods on select data 
structures, the data structures and normalizations are considered under a selec-
tion of commonly used modeling techniques. The considered models include 
generalized linear models (GLM), decision tree, random forest, support vector 
machine (SVM), gradient boosting, and neural network. The selected models 
represent a range of simple to complex, parametric and non-parametric, global 
and local, stochastic methods. Each method has characteristics that may require 
normalization for optimal results or lead to unintended effects if incorrect nor-
malization is used. For example, while GLM are fit using maximum likelihood 
estimation (MLE) which provides statistically optimal properties of the estima-
tors, scaling data by normalization and standardization is still important because 
variables with a large difference in ranges can result in an ill-conditioned design 
matrix and difficulty reaching model convergence, resulting in slower processing 
times and unstable parameter estimates. 

2.3.1. Generalized Linear Models 
Historically, Generalized Linear Models (GLM) are an extension of simple linear 
regression models with continuous targets and continuous and/or categorical 
features. The form of such a model is expressed as  

 ( )T 2~ , ,i iy N x β σ                          (4) 

where ix  is the data in feature i, and β  are the coefficent parameters to be es-
timated as part of the linear function. In simple linear regression the assumption 
is that y is normally distributed, and the errors are normally distributed as 

( )2~ 0,ie N σ  and independent, the data is fixed, and there is constant variance 
2σ . The GLM extends this simple linear model concept by assuming the target 

variable, iy , follows a distribution within the exponential family (i.e. normal, 
binomial, poisson, etc.) with mean iµ . The target then follows some linear or 
nonlinear function of T

ix β , the linear combination of data and estimated coef-
ficient parameters [13]. A summary of common GLM is found in Table 2. 

Generalized Linear Models are comprised of three main components: Random,  
 
Table 2. Summary of common generalized linear models from Agresti. 

Model Random Link Systematic 

Linear Regression Normal Identity Continuous 

ANOVA Normal Identity Categorical 

ANCOVA Normal Identity Mixed 

Logistic Regression Binomial Logit Mixed 

Loglinear Poisson Log Categorical 

Poisson Regression Poisson Log Mixed 

Multinomial response Multinomial Generalized Logit Mixed 
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Systematic, and Link Function. The random component refers to the distribu-
tion of the target variable (Y), e.g. normal distribution in linear regression, or 
binomial distribution in logistic regression. The systematic component specifies 
the explanatory features ( 1 2, , , kX X X ) and their linear combination. The Link 
Function specifies the link between the random distribution of the target varia-
ble and the systematic features. Assumptions of GLMs include:  
 Data are independently distributed.  
 Errors are independent, but do not need to be normally distributed (i.e. Lo-

gistic Regression).  
 Dependent variable does not need to be normally distributed (expect in li-

near regression) but are distributed within the exponential family.  
 Assumes a linear relationship between the link function transformed target 

and the explanatory features.  
 Uses Maximum Likelihood Estimation (MLE) to estimate the parameters, so 

it relies on large sample properties and regularity conditions (1st and 2nd de-
rivatives must exist).  

GLMs use Maximum Likelihood Estimation (MLE) to estimate the model pa-
rameters. In each of the distributions considered above (i.e. Linear, Logistic, 
Poisson, etc.), the distribution depends on one or more unknown parameters, 
θ . The value of these parameters, θ , is estimated using observed data x. The 
function of θ  that results from plugging in observed data x is known as the 
Likelihood Function:  

 ( ) ( )
1

; ;
n

i
i

L x f Xθ θ
=

=∏                        (5) 

This function is the product of the values of the parameters, given each sample 
of data, and is denoted simply as ( )L θ . The log-likelihood is often used for 
computational convenience. The goal in GLMs is to maximize the likelihood of a 
parameter estimate given the observed data. The value of θ  that maximizes 
this function is known as θ̂ , the maximum-likelihood estimate (MLE). The 
maximum of the function is found by taking the derivatives with respects to the 
parameter(s) θ . 

In this work, three generalized linear models are considered for three distinct 
target data types: linear regression, logistic regression, and Poisson regression. 

2.3.2. Linear Regression 
Linear regression is used for data with a continuous target which is a linear 
combination of the explanatory features, as in   

 0i i iY xβ β= + +                            (6) 

where index i represents each data point. This models the mean expected value 
of Y. The random component of linear regression, Y, has a normal distribution 
and normally distributed errors, ( )2~ 0,ie N σ . The systematic component, the 
explanatory features X, can be continuous, categorical, or a combination of both, 
and is linear in the parameters 0 iβ β+ . In multiple linear regression with mul-
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tiple explanatory features, there is still a linear combination of the features in 
terms of their coefficient parameters β ’s but the features themselves can have 
transformations, i.e. 2X  or ( )log X . The link function is the identity link, 

( )iE Yη =  since linear regression is modeling the mean response directly. 

2.3.3. Logistic Regression 
When there is a binary target (i.e. 0 and 1) binary logistic regression models the 
log odds of probability of “success” (target = 1). The random component, Y, has 
a binomial distribution, ( )Binomial ,n π , where π  is the probability of success. 
The systematic component, X, can be continuous, categorical, or a combination 
of both, and is also linear in the parameters as in linear regression. However, in  

this case, the link function is the Logit link, ( )logit log
1
πη π
π

 = =  − 
. Specifi-

cally, the logit link models the log odds of the mean response, π . 

2.3.4. Poisson Regression 
When the target of interest is an expected count (i.e. counts of disease, number 
of homes sold in a day, etc.), we extend the generalized linear model to use a 
log-linear or Poisson regression model. This models the expected count as a 
function of the explanatory predictors, ( )1 2, , , kX X X X=  , where the pre-
dictors can be continuous, categorical, or a combination of both. When all the 
predictors are categorical this is known as a log-linear model. The random 
component of the Poisson model is the response Y with Poisson distribution, 

( )~ Poissoni iy µ  for 1, ,i N=   where expected count of iy  is ( )E Y µ= . 
The systematic component is, as in the other GLM models, the linear combina-
tion of explanatory features X. Finally, the link function for the Poisson regres-
sion model is the natural log link, ( ) 0 1 1log xµ β β= + . 

Advantages of GLM  
 Do not need to transform target variable to have normal distribution.  
 Models fit using MLE which provides statistically optimal properties of the 

estimators.  
 Model can be easily explained and parameters can be interpreted in the con-

text of the prediction problem.  
 Easily implemented in most software.  

Disadvantages of GLM  
 Still has to be a linear function of the parameters; the link function serves 

only to connect the nonlinear target distribution to a linear function.  
 Target responses must be independent.  

2.3.5. Decision Tree 
A decision tree is a non-parametric classification technique that learns decision 
rules from features, using locally optimized, recursive partitioning. The algo-
rithm assigns each sample in a dataset into a predicted class based on each sam-
ples’ feature attributes. The algorithm uses information gain (7) to find the best 
features for classifying the data, where p and n are the proportion of 0 and 1 

https://doi.org/10.4236/ojs.2020.105046


J. M. Rudd, H. G. Ray 
 

 

DOI: 10.4236/ojs.2020.105046 745 Open Journal of Statistics 
 

values of a binary outcomes for the i-th target class. Then, for each value defined 
for the decision values of the best feature (the feature and splitting value that 
best splits the predicted 0 and 1 outcomes), the algorithm repeats the process 
with additional, next-best predictive features. This process continues until the 
leaves of the tree are pure (samples at each node belong to the same class) or a 
pre-defined stopping criteria is reached [14]. In this way, decision tree is also a 
feature importance algorithm, where the data will be split on the most important, 
predictive features first. 

( ) ( ) ( )
1

, ,
v

i i
i i

i

p n
G A I p n I p n

p n=

+
= −

+∑                 (7) 

where 

( ) 2 2, log logp p n nI p n
p n p n p n p n

= − −
+ + + +

 

Advantages  
 Since the decision tree algorithm is based on ordering and splitting the values 

within each feature, rather than a scale-dependent maximum likelihood op-
timization, scaling and normalizing features is not required.  

 Robust to missing data.  
 This model provides visual splits of the data and ordered feature importance 

that is easy to understand and interpret.  
 Implicit variable screening and selection, the top nodes of the tree are the 

most important variables in the dataset.  
 Non-parametric model does not assume linearity or any other distribution of 

the data. Model is built only based on observed data.  
Disadvantages  

 Since this is a locally optimized, greedy algorithm, it is not guaranteed that a 
global optimum will be reached.  

 Decision tree is very sensitive to changes in data. Small changes in data (i.e. 
adding samples) can lead to large structural changes in the tree, i.e. high va-
riance.  

 This is a more complex model and often requires more training time.  
 Without regularization (early stopping, pruning, max nodes, etc.), there is 

high risk of overfitting.  

2.3.6. Random Forest 
Random forest is a method that uses ensemble learning to address some of the 
disadvantages of the decision tree model. Ensemble learning combines results 
from multiple models to make more accurate predictions than any one single 
model, by reducing variance. Random forest uses an ensemble learning tech-
nique known as bootstrap aggregation, aka bagging. Bagging uses random sam-
pling with replacement to build individual models on subsets of the available 
data and then aggregate the results into one prediction. The repeated sampling 
leads to an algorithm that is known to reduce variance, as in one of the main 
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disadvantages of the decision tree model. Random forest combines many deci-
sion trees into one model by running the individual decision tree models in pa-
rallel and then outputting the prediction that is the mode of target classes for a 
classification problem or the mean prediction for a regression problem [15]. The 
structure of a random forest model is shown in Figure 4. 

Advantages  
 Much like decision tree, gives estimates of most important features.  
 Known for high accuracy, low bias.  
 Decreased variance in comparison to decision tree.  
 Can handle large datasets with high dimensionality.  
 Since it identifies most important features, can be used as a feature reduction 

method.  
 Robust to missing data.  
 Use of bootstrap sampling allows for successful application when data is li-

mited. 
Disadvantages  

 When classifying categorical data, biased in favor of features with more levels.  
 Will overfit data if regularization not used, such as limiting number of fea-

tures that can be split at each node.  
 More difficult to interpret than single decision tree model.  

2.3.7. Support Vector Machines (SVM) 
SVM with Gaussian kernel is a parametric model that represents instances of 
data as points in space and then builds a model to assign new instances to one 
category or another. Each data point is represented as an n-dimensional vector, 
then SVM constructs an n-1-dimensional separating hyperplane to discriminate 
2 classes, with maximized distance between the hyperplane and data points on 
each side. SVM aims to find the best hyperplane for separation of both classes 
[16]. Data are represented as:  

 ( ) ( ), , , ,i i n ny yx x 

                         (8) 

where iy  is either 1 or −1, indicating to which class ix  belongs. Each ix  is 
p-dimensional vector representing all of the characteristic values (features) of 

ix . The hyperplane that best separates the group of ix  vectors where 1iy =  
from the group of vectors where 1iy = −  is:  

 0b⋅ − =x ω                            (9) 

where ω  is the normal vector to the hyperplane and b is the offset of the 
hyperplane from the origin. If the data points are linearly separable, the hard 
margin can be represented as  

 1b⋅ − =x ω                           (10) 

and  
 1b⋅ − = −x ω                          (11) 

Figure 5 shows a maximum margin separation for linearly separable data. The 
samples that fall on the margin are known as the support vectors.  
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Figure 4. Random forest structure [15]. 
 

 
Figure 5. Maximum margin hyperplane [17]. 

 
The SVM algorithm assumes that data is in a standard range (usually between 

0 to 1, or −1 to 1), so it is recommended to scale features before using the algo-
rithm. In fact, when using the Gaussian kernel, if data is normalized between 0 
and 1, then the dot product between the feature vectors and the separating 
hyperplane is the cosine similarity [18]. 

Advantages  
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 If there is clear separation of the data classes, SVM works very well.  
 Effective in high-dimensional data, especially when the number of features is 

similar or greater than the number of samples.  
 Since the samples that make up the support vectors are the only training data 

used to define the model, SVM is memory efficient.  
Disadvantages  

 Since this model has to calculate the distance between every training point to 
create a separating hyperplane, it is computationally expensive as the size of 
the data set increases.  

 Noisy data with overlapping target classes are difficult to separate; Kernel 
functions can be added to transform the data into higher level feature space 
for improved separation but this adds model complexity.  

 Does not directly provide parameter coefficients so it is difficult to interpret.  

2.3.8. Gradient Boosting 
Gradient boosting is another form of ensemble learning, this time utilizing a 
technique known as boosting. In a boosting algorithm, predictions are not made 
in parallel as in the bagging method of random forest. In this case, subsequent 
prediction models learn from the mistakes of previous models. Observations 
have an unequal probability of appearing in the subsequent models, with high 
error observations appearing in the most models. This is contrary to the random 
forest model where observations are selected for each model via bootstrapping 
(random selection with replacement) and have equal probability of appearing in 
each model. Visual comparison of single, bagging, and boosting models is show 
in Figure 6.  

In gradient boosting, an ensemble of weak models, often decision trees, are 
used to improve the model based off of hard to predict samples. The algorithm 
leverages patterns in model residuals, such as those from using MSE loss, to 
build subsequent models from the weak predictions. For example, in a simple 
linear regression there is the assumption that the sum of the residuals is 0, i.e. 
spread randomly with no pattern around zero. However, assuming there is some 
pattern in the residuals for a base model, such as a decision tree, gradient boost-
ing builds sequential models off of these residual patterns until there is no longer 
a pattern, i.e. average residual is zero or constant. The sequential model predic-
tions are then weighted into a combined prediction. The intuitive idea behind 
gradient boosting is to combine several weak models, with each additional weak 
model improving the MSE of the overall model. Advantages of bagging and 
boosting ensemble techniques are illustrated in Figure 7. 

Advantages  
 Focus on difficult to classify cases makes it robust to imbalanced datasets.  
 MSE is commonly used loss function, but gradient boosting can be optimized 

on many objective functions so it can be extended to many different problem 
spaces.  

Disadvantages  
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Figure 6. Bagging (independent models) and boosting (sequential models) [19]. 
 

 
Figure 7. Ensembling [19]. 

 
 Requires more hyperparameter tuning, and training time to avoid overfitting 

compared with random forest.  
 Sensitive to overfitting if data is noisy, i.e. many hard to classify cases to use 

in the sequential models.  
 Longer training requirements due to sequential nature of algorithm (as op-

posed to parallel model development in random forest).  

2.3.9. Neural Network 
In this study, the effects of normalization on various data types are also tested 
using a multi-layer perception (MLP), also known as the simple form of a neural 
network. Neural networks are models that learn non-linear function approxima-
tions by feeding a set of input features into an output. Although the input and 
output layers are similar to the linear approximations of generalized linear mod-
els, neural networks differ in that there is one or more non-linear hidden layers, 
as in Figure 8 with one hidden layer. 

The first layer, the input layer, contains a set of neurons 1 2| , , ,i mx x x x  
representing the m input features. The inputs are fed into the hidden layer first 
with a weighted linear combination, similar to the linear combination of features  
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Figure 8. One hidden layer neural network. 

 
and βs in a GLM. The combined inputs are then transformed by a non-linear ac-
tivation, such as a tan function. From the last hidden layer, the input layer then 
applies an activation function to transform the values into outputs, such as the 
sigmoid function for a binary classification problem. The weights within each 
layer of the neural network are learned through a process of backpropagation 
and gradient descent. This process uses derivatives with respect to each parame-
ter to find the optimal value of the selected loss function. Even though neural 
network uses non-linear transformations in the hidden layers, the network still 
uses linear combinations of the features and weights to learn the optimal para-
meters, as in the GLM, linear-based methods. 

Advantages  
 Can learn complex, non-linear models.  
 Works well with “big data”; feeding neural networks more data leads to im-

proved training and results.  
 Ability to detect all possible interactions between predictor variable.  

Disadvantages  
 MLP with hidden layers have a non-convex loss function where there exists 

more than one local minimum; different random weight initializations can 
lead to different validation accuracy.  

 Sensitive to feature scaling, due to above disadvantage.  
 Requires a lot of tuning (number of hidden neurons, layers, iterations), and 

regularization to prevent overfitting.  
 Requires a lot of data for best training and results.  
 Difficult, computationally expensive to train.  
 “Black box” algorithm is difficult or not possible to interpret.  
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2.4. Model Summary 

A global model is one in which there is a single predictive formula for the entire 
data space. It is expected that a linear transformation of data in a linear-based 
global model (linear regression, logistic regression, Poisson regression, linear 
SVM) will result in the model parameters (i.e. weights in a neural network, coef-
ficients in regression) adjusting to reach the optimal value of the risk function, 
such as using the MLE in the GLM class of models. As a result, we expect that 
choice of normalization method should not affect the risk function value as long 
as the feature space is a convex function, but it can affect the values and stability 
of the feature coefficients. In this case, even though normalization may not affect 
the estimated total average error, it may have effects on the estimated average 
bias and variance due to model instability. 

For non-linear, locally recursive models such as decision tree, random forest, 
and gradient boosting regression, it is also expected that within-feature global 
normalization will have little effect on risk function value. These tree-based 
models optimize by finding the best split-point within each individual feature by 
the percentage of labels correctly classified using that feature. Since these models 
are local, recursive models, as long as the ordering within the features is pre-
served, normalization of the data should not affect the loss function value. 
However, although we’re using a decision tree-based learning model for the gra-
dient boosting regression, this type of sequential boosting model relies on mini-
mizing the MSE for the global model through subsequent predictions on the in-
dividual model residuals. Because of this, it is suspected that the gradient boost-
ing model will exhibit patterns in bias-variance decomposition similar to the li-
near models. However, since we are using the default hyper-parameters in the 
gradient boosting model for consistent simulation conditions, it is possible that 
the bias-variance decomposition results will suffer from over-fitting and have a 
longer training time. 

2.5. Simulation Methods  

In order to approximate the bias-variance decomposition we need to approx-
imate the expected value ( )f̂ Xτ τ

 
   by simulating many variants of the train-

ing data sets. We can do this via bootstrap sampling. We take a synthetic input 
dataset D and create variants of D from 1, , TD D  of size n (Algorithm 1). 

Now for each ( ),x y  example we have many predictions  
( ) ( ) ( )1 2

ˆ ˆ ˆ, , , Bf x f x f x  and can estimate:  
 variance: variance of ( ) ( ) ( )1 2

ˆ ˆ ˆ, , , nf x f x f x   
 bias: ( ) ( ) ( )( )1 2

ˆ ˆaverag ˆ, , ,e nf x f x f x y−
  

1000B =  bootstrap replicate datasets with 70% training samples and 30% 
out-of-bag testing samples were selected from simulated bivariate normal data 
with 1000n =  samples. The simulated features have different means and stan-
dard deviations, and an identity covariance matrix. The true target value, Y, was 
created as a simple linear function of the simulated features plus a random error 
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Algorithm 1. Bootstrap Sampling. 

 
 
term. In addition, datasets with binary (logistic) target and continuous target 
were created for each simulated data distribution. The models described pre-
viously, representing varying complexity, were applied using the training data 
and the bias-variance decomposition of the MSE risk computed on the test set, 
with total average risk, bias, and variance calculated over all 1000 bootstrap rep-
licates. This process was repeated on the simulated data using the previously de-
scribed normalization techniques. Initial dataset simulations were completed in 
R and risk function decompositions with bootstrapping completed in Python. 
This process was then repeated on additional simulated datasets including 
rank-based data, categorical data, mixed data, and Poisson data. Default hyper-
parameters were used for all tested models and data structures, with no addi-
tional hyperparameter tuning to allow for consistent comparison between me-
thods. MSE risk decomposition was then performed on several benchmark da-
tasets to assess results on various data characteristics including sparse data, wide 
data (more features than samples), and imbalanced data. These benchmark da-
tasets were from the UCI Machine Learning Library [20] and are listed in Table 
3. The results of bias-variance decomposition are then used to inform model 
develop on several existing study applications. Selected applications include the 
historical data from the NCAA Men’s Basketball Tournament (historical data 
used due to cancellation of NCAA tournament in 2020; comparing to model re-
sults from last years competition), and a credit risk model [21]. 

3. Simulation Results  

Results are divided into three sections describing results from 1) bias-variance 
decomposition simulation, 2) bias-variance decomposition on benchmark data-
sets, and 3) application of findings from Sections 1 and 2 to existing NCAA data 
and credit risk data. The first section on simulation results is divided by target 
data type (binary, continuous, Poisson). Results across data structures and mod-
els is relatively consistent so summaries were provided to avoid repetition. 
Complete results of bias-variance decomposition under various data structures,  

https://doi.org/10.4236/ojs.2020.105046


J. M. Rudd, H. G. Ray 
 

 

DOI: 10.4236/ojs.2020.105046 753 Open Journal of Statistics 
 

Table 3. Benchmark datasets and charactertics. 

Benchmark Datasets 

Dataset Target Type Attribute Type Dataset Characteristics # Features # Instances 

Wine Quality Binary Numeric Imbalanced 10 4898 

Breast Cancer Wisconsin Binary Numeric 
features have very dissimilar ranges, with half of 

the features near unary at 0 
30 569 

Congressional Voting Records Binary Categorical Missing data 16 435 

Abalone Binary Mixed Imbalanced 8 4177 

Arrhythmia Binary Mixed 
Imbalanced; small dataset; # features more than 

1/2 # of instances 
279 452 

Forest Fires Continuous Numeric No missings 13 517 

Solar Flare Continuous Categorical 
# of common solar flares within 24 h;  

distribution of target is highly skewed towards 1 
10 1066 

Auto MPG Continuous Mixed No missings 8 398 

 
normalization strategies, and models are shown in Appendices A and B. Perfor-
mance measures for simulated model results are found in Table 4.     

3.1. Binary Target  

Over all models applied to bivariate normal data with binary target, SVM using 
within-feature normalization methods (risk = 0.290), and logistic regression 
with raw data or quantile normalization (risk = 0.290) have best, similar risk 
function results (Table A1). While SVM has the consistently best results and is 
normalization-agnostic (Figure B1(d)), logistic regression (Figure B1(a)) with 
raw data or quantile normalization has similar performance with a faster run 
time (approximately 5 seconds vs 18 seconds as in Table 4). If an analyst would 
like to use decision tree, random forest, or neural network models instead, it is 
recommended to use raw data or quantile normalization for best risk function 
results. 

For models applied to rank-based data with binary target, logistic regression 
using raw data or quantile normalization (risk = 0.444), and SVM with raw data 
or quantile normalization (risk = 0.437) have best, similar risk function results 
(Table A4). While SVM has the consistently best results (14d), logistic regres-
sion with raw data or quantile normalization (Figure B4(a)) has similar perfor-
mance with a faster run time (approximately 6 seconds vs 39 seconds as in Table 
4). If an analyst would like to use decision tree (best risk = 0.489), random forest 
(best risk = 0.445), gradient boosting (best risk = 0.465), or neural network (best 
risk = 0.475) models instead, it is recommended to use raw data or quantile 
normalization for best risk function results. 

Over all normalization methods and models applied to categorical data with 
binary target, risk function estimates ranged from 0.473 to 0.502, indicating that 
this data is somewhat model- and normalization-agnostic (Table A7). SVM  
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Table 4. Average model performance (in seconds of processing time) for bias-variance 
decomposition of simulated data structures. 

 Features Bivariate Normal Ranked Categorical Mixed 

Target      

Binary Model     

 Logistic Regression 5 6 7 14.2 

 Decision Tree 2 3 15 3.3 

 Random Forest 139 209 183 208.6 

 SVM 18 39 21 37.3 

 Gradient Boosting 14 25 14 22.7 

 Neural Network 223 356 262 287 

Continuous Model     

 Linear Regression 1.2 0.8 8.8 1.6 

 Decision Tree 3 2.3 1 2.8 

 Random Forest 206 167 156.9 170.9 

 SVM 30 42 10 30.4 

 Gradient Boosting 17 13 8.7 10.2 

 Neural Network 26 14 6.8 66.4 

Poisson Model     

 Poisson Regression 0.8 6 2.4 8 

 Decision Tree 2.3 2.7 1 8 

 Random Forest 167 173.7 158.4 3.4 

 SVM 42 36.6 22.2 176.5 

 Gradient Boosting 13 12.9 7.5 9.5 

 Neural Network 14 24 6.6 43.1 

 
using z-standardized data, and logistic regression with all methods except 
z-standardization resulted in best risk function value of 0.473 (Figure B7(d)). 
However, while SVM and logistic regression have similar results, logistic regres-
sion (Figure B7(a)) is more than 3 times faster (7 seconds vs. 21 seconds average 
processing time as in Table 4). Since the simulated dataset consists of all cate-
gorical data, the features are first converted to [0, 1] coded dummy features, ef-
fectively “normalizing” the data between 0 and 1, so additional normalization 
methods are not expected to have an effect on the downstream analysis. 

For mixed data types with a binary target, although there are slight deviations 
between normalization and model performance, risk function values do not vary 
much between all methods, with a range between 0.479 and 0.507 (Table A10). 
A decision tree model using raw data leads to the best results (Figure B10(b)), 
and gradient boosting using raw or quantile normalized data leads to the worst 
results (Figure B10(e)). However, considering the consistency of performance 
across normalization methods and models, it is recommended to make selections 
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based on additional criteria, such as processing resources, model interpretation, 
or another performance measure such as specificity and sensitivity. 

3.2. Continuous Target  

Over all models applied to bivariate normal data with continuous target, neural 
network using raw data (risk = 0.342), and linear regression with raw data (risk 
= 0.338) have best, similar risk function results (Table A2). Quantile normaliza-
tion method for both models has similar results with MSE risk of 0.344 for linear 
regression (Figure B2(a)) and 0.356 for neural network (Figure B2(f)). Howev-
er, while neural network and linear regression have similar results, linear regres-
sion is approximately 20 times faster (1.2 seconds vs. 26 seconds average 
processing time as in Table 4). SVM has the most consistent results; even 
though the within-feature normalization methods all perform worse than raw or 
quantile normalized data, SVM within-feature normalization results perform 
better than the same normalization in all other tested models. If normalization 
and scaling of data is required, as with features measured on highly divergent 
scales, it is recommended for an analyst to test the SVM model, keeping in mind 
increased processing requirements. 

When applied to rank-based data with continuous target, neural network us-
ing raw and quantile normalized data (risk = 0.175), and linear regression with 
raw and quantile normalized data (risk = 0.174) have best, similar risk function 
results (Table A5). However, while neural network and linear regression have 
similar results, linear regression is more than 17 times faster (0.8 seconds vs. 14 
seconds average processing time as in Table 4). SVM has the most consistent 
results (Figure B5(d)); even though the within-feature normalization methods 
all perform worse than raw or quantile normalized data, SVM within-feature 
normalization results perform better than the same normalization in all other 
tested models. If normalization and scaling of data is required, as with features 
measured on highly divergent scales, it is recommended for an analyst to test the 
SVM model, keeping in mind increased processing requirements. Note, however, 
that outside of the best-performing linear regression and neural network models, 
all other methods and models perform significantly worse due to exploding es-
timates of average bias. 

While normalization generally does not improve or worsen results as com-
pared with raw data, it is not recommended to use z-standardization for cate-
gorical data with a continuous target, as the simulation results indicate increased 
risk function values (Table A8). In particular, if using linear regression (Figure 
B8(a)), z-standardization and quantile transformation should be avoided as 
these methods used with this model lead to significant explosion in the risk 
function value. Outside of z-standardization for any tested model, and quantile 
transformation for linear regression, simulation results indicate that this type of 
data is both normalization- and model-agnostic. In this case, normalization and 
model selection can be based off of additional criteria, such as processing re-
quirements or model transparency. 
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Over all models applied to mixed data with continuous target, neural network 
using raw data (risk = 0.366) and quantile normalized data (risk = 0.425), and 
linear regression using raw data (risk = 0.367) and quantile normalized data 
(risk = 0.363) have best, similar risk function results (Table A11). However, 
while neural network (Figure B11(f)) and linear regression (Figure B11(a)) 
have similar results, linear regression is approximately 41 times faster (1.6 
seconds vs. 66 seconds average processing time as in Table 4). SVM has the 
most consistent results; even though the within-feature normalization methods 
all perform worse than raw or quantile normalized data, SVM within-feature 
normalization results perform better than the same normalization in all other 
tested models. If normalization and scaling of data is required, as with features 
measured on highly divergent scales, it is recommended for an analyst to test the 
SVM model, keeping in mind increased processing requirements and potential 
for increased bias. 

3.3. Poisson Target  

Over all models applied to bivariate normal data with Poisson target, random 
forest using within-feature normalization methods (risk = 1.125), and gradient 
boosting using within-feature normalization methods (risk = 1.167) have best, 
similar risk function results (Table A3). Poisson regression using raw or quan-
tile normalized data also has strong results with risk function value of 1.5. Al-
though Poisson regression (Figure B3(a)) results are not as strong as those 
found using random forest (Figure B3(c)) and gradient boosting (Figure B3(e)), 
Poisson regression has processing time more than 200 times faster than random 
forest (0.8 seconds vs. 167 seconds average processing time) and 13 times faster 
than gradient boosting (0.8 vs. 167 seconds average processing time) as seen in 
Table 4. 

For rank-based data with Poisson target, SVM using raw and quantile norma-
lized data (risk = 1.281), and Poisson regression with raw and quantile norma-
lized data (risk = 1.280) have best, similar risk function results (Table A6). 
However, while SVM and Poisson regression have similar results, Poisson re-
gression is more than 6 times faster (6 seconds vs. 36.6 seconds average 
processing time), as seen in Table 4. Although Poisson regression has the best 
results for this data, use of the within-feature normalization methods result in 
unstable, exploding risk function values and should be avoided (Figure B6(a)). 
Within-feature normalizations should also be avoided if using a neural network 
on this data for the same reason. If normalization and scaling of data is required, 
random forest model has the best results for the within-feature methods, al-
though it has the longest processing time. 

Although there are slight deviations between normalization and model per-
formance, risk function values do not vary much between all methods when 
considering categorical data with Poisson target, with a range between 1.499 and 
1.783 (Table A9). A decision tree model using min-max, maxAbs, quantile 
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transformation, or quantile normalization lead to the best results (Figure B9(b)), 
and SVM using z-standardization leads to the worst result (Figure B9(d)). 
However, considering the consistency of performance across normalization me-
thods and models, it is recommended to make selections based on additional 
criteria, such as client requested models. 

Over all models applied to mixed data with Poisson target, gradient boosting 
(Figure B12(e)) using raw and quantile normalized data (risk = 1.746), and 
random forest (Figure B12(c)) using raw data (risk = 1.820) have best results 
(Table A12). Generally, the best performing risk function values do not vary 
much between all tested models, with a range between 1.476 for the gradient 
boosting model and 2.087 for the decision tree model (Table 4). The similarity 
in best performing model results indicates that this data type is somewhat mod-
el-agnostic, although normalization methods should be selected carefully if re-
quired for analysis. For example, it is not recommended to use any of the tested 
within-feature normalizations if a neural network is used due to significant in-
creases in bias and variance found in the simulation results. 

4. Benchmark Data Results  

Benchmark datasets were selected from the UCI Machine Learning Library to 
cover data types similar to those covered in the simulations. Complete tables of 
risk function decomposition results are found in Appendix Section A.2, and fig-
ures are found in Appendix Section B.2. Binary target datasets with numeric 
features (wine quality, breast cancer), and categorical features (congressional 
voting records), have bootstrapped bias-variance decomposition results consis-
tent with those found in the simulated datasets with the same data structure 
characteristics (see Figures B13-B15). The traditional within-feature normaliza-
tion methods (z-standardization, min-max, maxAbs, quantile transformation) 
result in risk function values that are the same or worse than using raw data or 
quantile normalization. For the wine quality data, using raw or quantile norma-
lized data in logistic regression, linear SVM, or neural network results in best 
risk function performance, while quantile normalization with logistic regression 
was best for the breast cancer data. For the congressional voting records data, 
logistic regression and neural network with raw and quantile normalized data 
were also found to be the best method-model combinations, consistent with si-
mulated data results. However, it is interesting to note that z-standardization in 
both of these models resulted in the worst risk function performance among all 
other method-model combinations applied to this dataset, due to both increased 
bias and variance. 

For the binary target data with mixed data type features (arrhythmia, abalone), 
raw data and quantile normalization also lead to the best risk function perfor-
mance. However, the arrhythmia dataset is a relatively more complex dataset in 
comparison to the others tested. It has missing data, many features in compari-
son to few instances (i.e. 279 features vs. 452 instances), and imbalanced target 
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data. As a result, logistic regression is not well suited for describing these com-
plex relationships, and has worse risk function performance; decision tree and 
gradient boosting regression with raw data or quantile normalization have best 
results (Figure B17). In contrast, while the abalone dataset is also an imbalanced 
dataset, it has less complex data structures with only 8 features and over 4000 in-
stances. In this case, logistic regression, linear support vector machine, and 
neural network are well-suited for the less complex data, and result in improved 
risk function values due to decreased variance in comparison to the more com-
plex models (Figure B16). 

For assessing results on continuous target data, the forest fires dataset (nu-
meric features), solar flare dataset (categorical features), and auto MPG dataset 
(mixed type features) were considered. Once again, in all cases, the with-
in-feature normalization performed the same or worse than using raw data, with 
the between-feature quantile normalization process being the only method that 
resulted in same or some improvement to risk function values. For both numeric 
and categorical only datasets (forest fires and solar flare, respectively), the li-
near-based logistic regression and neural network models with raw data or 
quantile normalization resulted in best performance (see Figure B18 and Figure 
B19), with all other normalization-model combinations resulting in both in-
creased bias and variance. In the case of the more complex mixed feature type 
auto MPG dataset, gradient boosting regression also has improved performance, 
but logistic regression has similar performance and is a faster algorithm (Figure 
B20). 

5. Applications  

Findings of the empirical study and benchmark data were applied to existing 
studies, using best-performing normalization-model combinations in the model 
development process. 

5.1. NCAA Tournament Data  

For the 2019 NCAA Men’s Basketball Tournament Bracket prediction problem, 
data was used from over 100,000 NCAA regular season games, with the goal to 
take information about two teams as input, and output a probability of team 1 
winning a game. Motivated by the popular Kaggle competition, models were 
developed to minimize log-loss between predicted win probabilities and actual 
game outcomes, as in:  

 ( ) ( ) ( )ˆ ˆ10 10
1

1log Loss log 1 log 1
n

i ii i
i

y y y y
n =

 = − + − − ∑         (12) 

This loss function has high penalty for models that are both confident and 
wrong ([7]). Model development involved:  
 Readily available game statistics, provided by Kaggle.  
 Commonly used external ratings systems (Massey Ratings).  
 No additional feature engineering.  
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 No domain knowledge.  
The analysis value-added in comparison to previous research and public 

models found on Kaggle was to focus on the comparison of various normaliza-
tion techniques for model development. In particular, the use of outside domain 
knowledge (public health, genetics) to apply a technique from one domain (ge-
netic research) to an unrelated domain (sports data) proved advantageous but 
was not, initially, statistically motivated. However, through simulation of bi-
as-variance decomposition and findings from application to benchmark data, it 
is expected that improved loss function performance for this type of data 
(ranked data, balanced target, non-missing data) can be achieved by using a li-
near-based model with raw or quantile normalized data. Rather than iterating 
through many normalization-model combinations (which took over 12 hours of 
computation time when building the model for the 2019 tournament), logistic 
and linear SVM models with raw and quantile normalized data were trained on 
NCAA regular season data from 2014-2017 and tested on the 2018 tournament. 
The same features were used as in the 2019 model, with only the model and 
normalization selection process updated based on the model development 
framework findings. From the simulation results, logistic regression and SVM 
for both raw and quantile normalization provided similar results, although SVM 
outperformed logistic somewhat due to decreased variance, although it has in-
creased bias. In the updated NCAA application on 2018 data, logistic regression 
with raw data outperformed the other tested models, with a log-loss score of 
0.569 (Figure 9). This log-loss score, in comparison to other Kaggle submissions 
in the 2018 tournament, would have ranked 23rd out of 933 teams (98 percentile) 
and required only the original data supplied by Kaggle and no additional feature 
engineering or model tuning. In addition, the entire model development process 
and testing took less than 30 minutes. Three out of the four models developed 
correctly predicted the Final Four including the tournament Champion, Villa-
nova. This is compared with a 2019 bracket that, while it correctly predicted the 
tournament winner, only predicted two of the Final Four teams, and scored in 
the 90th percentile of Kaggle Log-loss scores. 

5.2. Credit Risk Data  

Previous research by Rudd and Priestley (rudd2017comparison) compare the 
use of logistic regression and decision trees for prediction of commercial credit 
risk. The dataset, provided by Equifax, included over 11 million records and over 
300 features, and involved extensive data preprocesing including imputation, 
feature reduction, and transformation. The effects of normalization were not 
considered at the time. Based on findings from simulations and benchmark re-
sults, it was found that gradient boosting regression with raw and quantile nor-
malization should also be considered for this type of data. Running the analysis 
again, this time including gradient boosting regression, found best results for 
gradient boosting with raw data (AUC = 0.96). A drawback, however, of this re-
sult in the context of credit risk analysis is that gradient boosting is much more  

https://doi.org/10.4236/ojs.2020.105046


J. M. Rudd, H. G. Ray 
 

 

DOI: 10.4236/ojs.2020.105046 760 Open Journal of Statistics 
 

 
Figure 9. 2018 men’s basketball march madness bracket developed using winning model, 
logistic regression with raw data. 
 
difficult to explain than the logistic regression and decision tree models, and can 
be problematic in a heavily regulated industry where model interpretability is 
required (Figure 10). 

6. Conclusions and Suggestions  

In this study, simulation was used to investigate the effects of normalization on 
downstream analysis results. Normalization methods were investigated by uti-
lizing a decomposition of the empirical risk functions, measuring effects on 
model bias, variance, and irreducible error. Estimates of bias and variance were 
then used as diagnostic procedures for data pre-processing and model develop-
ment. We used our findings to propose model development and algorithm de-
sign choices that best minimize common design effects on bias and variance.  
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Figure 10. AUC curves for selected model-normalization combinations tested based on model framework results. 

 
Mean square error (MSE) was considered as the evaluation metric, and the ef-
fects of a selection of normalization methods were measured on the empirical 
risk function. Normalization techniques were selected that represent both data 
invariant as well as data variant normalization strategies. For example, tech-
niques such as z-score standardization (transforms data to have a mean of zero 
and a standard deviation of 1) and feature scaling (rescaling data to have values 
between 0 and 1) change the spread and position of data points (all by consistent 
factors) but do not change the distribution shape of the data, whereas techniques 
such as quantile normalization, commonly used in genetic differential expres-
sion analysis, affect the measures of spread, position, and shape. Through simu-
lation of various data structures and bootstrap sampling of the bias-variance de-
composition, best performing model-normalization-data structure combinations 
were found to illustrate the downstream analysis effects of these model devel-
opment choices. For example, it was found that for rank-based data with binary 
target, quantile normalization performed better than the data invariant methods 
with similar or improved performance over raw data due to decreased variance 
in the loss function value. In addition, results found from simulations were veri-
fied and expanded to include additional data characteristics (imbalanced, sparse) 
by testing on benchmark datasets available from the UCI Machine Learning Li-
brary. Normalization results on benchmark data were consistent with those 
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found using simulations, while also illustrating that more complex and/or 
non-linear models provide better performance on datasets with additional com-
plexities, such as wide data (large feature to instance ratio) as in the arrhythmia 
dataset. Finally, applying the findings from simulation experiments to previous 
applications led to equivalent or improved results with less model development 
overhead and processing time. Applying the model framework to the 2018 
NCAA Men’s Basketball data resulted in a log-loss score that would have been 
ranked 23 out of 933 teams (98th percentile) and only required 30 minutes of 
model overhead, as opposed to a 2019 model that required over 12 hours of 
processing and resulted in a 90th percentile log-loss score. 

6.1. Limitations  

While this work provides a statistical illustration of the downstream effects of 
model development choices, it represents a baseline for further research in this 
area. For example, while the bias-variance decomposition simulations described 
in this study illustrate that model and normalization method selection do affect 
downstream results, they are only suggestive of theoretical properties of these 
specific methods that should be further explored. Also, a researcher’s primary 
modeling goal (i.e. predictive accuracy vs. explanatory model) will determine 
both appropriate model and pre-processing technique selection. In addition, the 
main goal of normalization is to put features on comparable scale for improved 
model fitting, performance, and interpretability. Considering normalization as a 
model selection procedure and selecting based on minimized risk function value 
can potentially lead to overfitting. Finally, this study considers a limited selection 
of models and model performance measures, while assuming all other proposed 
aspects of the model development framework are held constant. A more exhaus-
tive study of performance assessments should be considered to better establish 
the downstream analysis effects of statistical procedures, including coverage 
probabilities, misclassification rates, sensitivity/specificity, etc. In this study, we 
selected MSE due to the ability to generalize the risk functions across multiple 
data types and model applications. In addition, these assessments need to in-
clude additional consideration on various combinations of model development 
strategies within the model development process, i.e. sample selection, feature 
engineering, model validation, etc. 

6.2. Future Research  

In this research, an empirical study was used to illustrate the downstream analy-
sis effects of model development choices. Further theoretical work is recom-
mended to connect the empirical findings theoretical properties. For example, 
since the generalized linear models were most often found to have best risk 
function results regardless of data structure or selected normalization, additional 
theoretical study can enhance the explanation of these results. If we assume that 
MLE is unbiased in GLM then estimates of bias should resolve towards zero. In 
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this case, bias-variance decomposition of the loss will be completely defined by 
variance. As an extension, the Cramer-Rao lower bound property of MLE (the 
lower bound of the variance of the estimator) suggests that no other model will 
achieve a better result of the bias-variance loss decomposition. This potential ex-
planation requires theoretical understanding of at least two questions: 1) Are 
generalized linear models, in fact, unbiased? and 2) Does the Cramer-Rao lower 
bound theorem apply to variance of the prediction and not just the parameters? 
In addition, estimates of predictive risk are only one way to assess performance 
of a statistical procedure and downstream analysis effects. In order to provide 
further justification connecting the empirical evidence with the proposed 
framework, it is recommended to consider additional measures of performance 
such as coverage of predictive intervals, class probabilities cutoff points, gain and 
lift charts, etc. The diversity of analytic choices and resulting modeling pipelines 
leads to a wide range of potential future research required to truly quantify the 
complete effects of a unified model development framework. 
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Appendix A 
A.1. Simulations 

A.1.1. Bivariate Normal Data with Binary Target 

Table A1. Bias-variance decomposition results for bivariate normal data with binary target. 

Data Model Normalization None Z-standard Min-Max MaxAbs (−1, 1) 
Quantile 

Transform 
Quantile 

Normalize 

Bivariate Normal 
- Binary Target 

Logistic Total Risk 0.290 0.462 0.474 0.485 0.482 0.290 

  
Bias 0.290 0.220 0.228 0.237 0.234 0.290 

  
Variance 0.000 0.242 0.246 0.438 0.248 0.000 

  
Noise 0.000 0.000 0.000 0.190 0.000 0.000 

  
Variance-Bias Ratio 0.000 1.098 1.080 1.850 1.061 0.000 

  
Percent Change from 

Raw 
~ 159.319 163.488 167.408 166.279 100.007 

 
Decision Tree 

       

  
Total Risk 0.408 0.564 0.564 0.564 0.564 0.393 

  
Bias 0.250 0.337 0.337 0.337 0.337 0.225 

  
Variance 0.158 0.227 0.227 0.348 0.227 0.168 

  
Noise 0.000 0.000 0.000 0.121 0.000 0.000 

  
Variance-Bias Ratio 0.631 0.673 0.673 1.033 0.673 0.748 

  
Percent Change from 

Raw 
~ 138.303 138.303 138.303 138.303 96.434 

 
Random Forest Total Risk 0.295 0.396 0.396 0.396 0.396 0.295 

  
Bias 0.286 0.207 0.207 0.207 0.207 0.286 

  
Variance 0.009 0.188 0.188 0.252 0.188 0.009 

  
Noise 0.000 0.000 0.000 0.064 0.000 0.000 

  
Variance-Bias Ratio 0.032 0.909 0.909 1.215 0.909 0.033 

  
Percent Change from 

Raw 
~ 134.241 134.241 134.241 134.241 100.002 

 
SVM Total Risk 0.292 0.290 0.290 0.290 0.290 0.292 

  
Bias 0.287 0.290 0.290 0.290 0.290 0.288 

  
Variance 0.005 0.000 0.000 0.000 0.000 0.005 

  
Noise 0.000 0.000 0.000 0.000 0.000 0.000 

  
Variance-Bias Ratio 0.016 0.000 0.000 0.000 0.000 0.016 

  
Percent Change from 

Raw 
~ 99.440 99.440 99.440 99.440 100.218 

 
Gradient Boosting Total Risk 0.332 0.655 0.655 0.655 0.655 0.332 

  
Bias 0.249 0.540 0.540 0.541 0.540 0.249 

  
Variance 0.082 0.115 0.115 0.132 0.115 0.083 

  
Noise 0.000 0.000 0.000 0.018 0.000 0.000 
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Continued 

  
Variance-Bias Ratio 0.331 0.212 0.212 0.244 0.212 0.331 

  
Percent Change from 

Raw 
~ 197.402 197.402 197.529 197.402 100.040 

 
Neural Network Total Risk 0.403 0.427 0.410 0.401 0.401 0.387 

  
Bias 0.206 0.207 0.206 0.207 0.206 0.211 

  
Variance 0.197 0.219 0.204 0.288 0.195 0.176 

  
Noise 0.000 0.000 0.000 0.093 0.000 0.000 

  
Variance-Bias Ratio 0.954 1.059 0.993 1.392 0.943 0.835 

  
Percent Change from 

Raw 
~ 105.818 101.766 99.415 99.543 95.891 

A.1.2. Bivariate Normal Data with Continuous Target 

Table A2. Bias-Variance decomposition results for bivariate normal data with continuous target. 

Data Model Normalization None Z-standard Min-Max MaxAbs (−1, 1) 
Quantile 

Transform 
Quantile 

Normalize 

Bivariate Normal - 
Continuous Target 

Linear Type of Loss MSE MSE MSE MSE MSE MSE 

  
Total Loss 0.338 200,151.804 8,999,347.482 2,146,481,764.484 2,247,609.346 0.344 

  
Bias 0.335 200,151.449 8,999,335.213 2,146,478,729.725 2,247,069.765 0.338 

  
Variance 0.003 0.355 12.269 12.269 539.581 0.006 

  
Noise 0.000 0.000 0.000 3022.490 0.000 0.000 

  
Variance-Bias 

Ratio 
0.008 0.000 0.000 0.000 0.000 0.019 

  
Percent Change 

from Raw 
~ 59,281,297.280 2,665,441,848.182 635,748,573,177.009 665,700,710.123 101.929 

 
Decision Tree 

       

  
Total Loss 0.748 114.588 114.588 114.588 114.588 0.589 

  
Bias 0.444 111.856 111.856 111.856 111.856 0.338 

  
Variance 0.304 2.731 2.731 2.731 2.731 0.251 

  
Noise 0.000 0.000 0.000 0.000 0.000 0.000 

  
Variance-Bias 

Ratio 
0.685 0.024 0.024 0.024 0.024 0.742 

  
Percent Change 

from Raw 
~ 15,311.228 15,311.228 15,311.228 15,311.228 78.694 

 
Random  

Forest 
Total Loss 2.809 22.970 22.970 22.970 22.970 2.812 

  
Bias 2.425 22.501 22.501 22.501 22.501 2.427 

  
Variance 0.385 0.469 0.469 0.469 0.469 0.385 

  
Noise 0.000 0.000 0.000 0.000 0.000 0.000 

  
Variance-Bias 

Ratio 
0.159 0.021 0.021 0.021 0.021 0.158 
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Percent Change 

from Raw 
~ 817.686 817.686 817.686 817.686 100.088 

 
SVM Total Loss 0.652 8.712 8.884 8.840 8.878 0.662 

  
Bias 0.623 8.632 8.771 8.747 8.768 0.629 

  
Variance 0.029 0.080 0.112 0.112 0.110 0.033 

  
Noise 0.000 0.000 0.000 0.019 0.000 0.000 

  
Variance-Bias 

Ratio 
0.047 0.009 0.013 0.013 0.013 0.052 

  
Percent Change 

from Raw 
~ 1336.235 1362.522 1355.909 1361.662 101.476 

 
Gradient 
Boosting 

Total Loss 0.550 151.982 151.982 152.078 151.982 0.552 

  
Bias 0.289 150.938 150.938 151.034 150.938 0.290 

  
Variance 0.261 1.043 1.043 1.043 1.043 0.262 

  
Noise 0.000 0.000 0.000 0.001 0.000 0.000 

  
Variance-Bias 

Ratio 
0.904 0.007 0.007 0.007 0.007 0.901 

  
Percent Change 

from Raw 
~ 27,615.537 27,615.537 27,633.076 27,615.537 100.363 

 
Neural  

Network 
Total Loss 0.341 200,151.851 8,999,382.281 2,145,420,994.195 2,247,611.004 0.356 

  
Bias 0.335 200,151.497 8,999,370.017 2,145,297,375.914 2,247,071.518 0.315 

  
Variance 0.007 0.355 12.264 12.264 539.487 0.041 

  
Noise 0.000 0.000 0.000 123606.017 0.000 0.000 

  
Variance-Bias 

Ratio 
0.020 0.000 0.000 0.000 0.000 0.132 

  
Percent Change 

from Raw 
~ 58,619,129.637 2,635,678,625.092 628,336,487,970.484 658,265,211.621 104.238 

A.1.3. Bivariate Normal Data with Poisson Target 

Table A3. Bias-variance decomposition results for bivariate normal data with poisson target. 

Data Model Normalization None Z-standard Min-Max MaxAbs (−1, 1) 
Quantile 

Transform 
Quantile 

Normalize 

Bivariate Normal - 
Poisson Target 

Poisson Regression Type of Loss MSE MSE MSE MSE MSE MSE 

  
Total Loss 1.502 191.901 1.874 1.764 3.004 1.502 

  
Bias 1.280 1.561 1.609 1.600 1.459 1.275 

  
Variance 0.222 190.340 0.264 0.264 1.546 0.227 

  
Noise 0.000 0.000 0.000 0.101 0.000 0.000 

  
Variance-Bias Ratio 0.173 121.919 0.164 0.165 1.060 0.178 

  
Percent Change from 

Raw 
~ 12776.852 124.753 117.429 200.027 100.023 

https://doi.org/10.4236/ojs.2020.105046


J. M. Rudd, H. G. Ray 
 

 

DOI: 10.4236/ojs.2020.105046 768 Open Journal of Statistics 
 

Continued 

 
Decision Tree 

       

  
Total Loss 1.869 1.801 1.801 1.802 1.801 2.065 

  
Bias 1.126 1.428 1.428 1.429 1.428 1.173 

  
Variance 0.743 0.373 0.373 0.373 0.373 0.892 

  
Noise 0.000 0.000 0.000 0.000 0.000 0.000 

  
Variance-Bias Ratio 0.660 0.261 0.261 0.261 0.261 0.760 

  
Percent Change from 

Raw 
~ 96.319 96.319 96.371 96.319 110.450 

 
Random Forest Total Loss 1.564 1.125 1.125 1.125 1.125 1.564 

  
Bias 1.369 0.980 0.980 0.980 0.980 1.370 

  
Variance 0.195 0.145 0.145 0.145 0.145 0.194 

  
Noise 0.000 0.000 0.000 0.000 0.000 0.000 

  
Variance-Bias Ratio 0.142 0.148 0.148 0.148 0.148 0.142 

  
Percent Change from 

Raw 
~ 71.964 71.964 71.964 71.964 100.059 

 
SVM Total Loss 1.676 1.324 1.443 1.886 1.341 1.700 

  
Bias 1.528 1.091 1.192 1.805 1.104 1.556 

  
Variance 0.148 0.233 0.252 0.252 0.237 0.143 

  
Noise 0.000 0.000 0.000 0.171 0.000 0.000 

  
Variance-Bias Ratio 0.097 0.213 0.211 0.139 0.214 0.092 

  
Percent Change from 

Raw 
~ 78.974 86.122 112.515 80.023 101.403 

 
Gradient Boosting Total Loss 1.561 1.167 1.167 1.167 1.167 1.550 

  
Bias 1.325 0.943 0.943 0.943 0.943 1.319 

  
Variance 0.235 0.224 0.224 0.224 0.224 0.231 

  
Noise 0.000 0.000 0.000 0.000 0.000 0.000 

  
Variance-Bias Ratio 0.178 0.237 0.237 0.237 0.237 0.175 

  
Percent Change from 

Raw 
~ 74.795 74.795 74.791 74.795 99.310 

 
Neural Network Total Loss 1.501 50.236 2611.864 553,224.671 740.072 1.496 

  
Bias 1.253 25.275 1286.970 257,374.377 412.057 1.267 

  
Variance 0.248 24.961 1324.894 1324.894 328.015 0.229 

  
Noise 0.000 0.000 0.000 294,525.400 0.000 0.000 

  
Variance-Bias Ratio 0.198 0.988 1.029 0.005 0.796 0.181 

  
Percent Change from 

Raw 
~ 3346.523 173,990.881 36,853,390.488 49,300.337 99.642 

 

 

 

https://doi.org/10.4236/ojs.2020.105046


J. M. Rudd, H. G. Ray 
 

 

DOI: 10.4236/ojs.2020.105046 769 Open Journal of Statistics 
 

A.1.4. Ranked Data with Binary Target 

Table A4. Bias-variance decomposition results for ranked data with binary target. 

Data Model Normalization None Z-standard Min-Max MaxAbs (−1, 1) 
Quantile 

Transform 
Quantile 

Normalize 

Ranked -  
Binary Target 

Logistic Total Loss 0.444 0.505 0.506 0.506 0.506 0.444 

  
Bias 0.369 0.343 0.344 0.344 0.343 0.369 

  
Variance 0.075 0.163 0.162 0.240 0.163 0.075 

  
Noise 0.000 0.000 0.000 0.078 0.000 0.000 

  
Variance-Bias Ratio 0.202 0.474 0.473 0.698 0.476 0.202 

  
Percent Change from 

Raw 
~ 113.941 114.128 114.127 114.080 100.000 

 
Decision Tree 

       

  
Total Loss 0.489 0.494 0.494 0.494 0.494 0.493 

  
Bias 0.292 0.246 0.246 0.246 0.246 0.291 

  
Variance 0.197 0.248 0.248 0.454 0.248 0.202 

  
Noise 0.000 0.000 0.000 0.206 0.000 0.000 

  
Variance-Bias Ratio 0.672 1.009 1.006 1.843 1.006 0.692 

  
Percent Change from 

Raw 
~ 100.905 101.041 101.041 101.041 100.767 

 
Random Forest Total Loss 0.445 0.488 0.487 0.487 0.487 0.445 

  
Bias 0.354 0.248 0.247 0.247 0.247 0.354 

  
Variance 0.091 0.240 0.240 0.399 0.240 0.091 

  
Noise 0.000 0.000 0.000 0.159 0.000 0.000 

  
Variance-Bias Ratio 0.257 0.965 0.969 1.613 0.969 0.257 

  
Percent Change from 

Raw 
~ 109.658 109.524 109.524 109.524 100.000 

 
SVM Total Loss 0.437 0.441 0.460 0.460 0.459 0.437 

  
Bias 0.437 0.407 0.308 0.309 0.313 0.437 

  
Variance 0.000 0.034 0.152 0.187 0.146 0.000 

  
Noise 0.000 0.000 0.000 0.036 0.000 0.000 

  
Variance-Bias Ratio 0.000 0.083 0.493 0.606 0.468 0.000 

  
Percent Change from 

Raw 
~ 101.023 105.432 105.403 105.171 100.000 

 
Gradient Boosting Total Loss 0.465 0.521 0.521 0.521 0.521 0.465 

  
Bias 0.303 0.298 0.299 0.299 0.299 0.303 

  
Variance 0.162 0.222 0.222 0.334 0.222 0.162 

  
Noise 0.000 0.000 0.000 0.112 0.000 0.000 

  
Variance-Bias Ratio 0.535 0.745 0.745 1.119 0.745 0.535 

  
Percent Change from 

Raw 
~ 112.059 112.123 112.123 112.123 100.000 
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Continued 

 
Neural Network Total Loss 0.478 0.492 0.487 0.486 0.484 0.476 

  
Bias 0.253 0.248 0.249 0.247 0.250 0.258 

  
Variance 0.225 0.245 0.238 0.383 0.234 0.218 

  
Noise 0.000 0.000 0.000 0.144 0.000 0.000 

  
Variance-Bias Ratio 0.889 0.988 0.955 1.547 0.937 0.844 

  
Percent Change from 

Raw 
~ 103.006 101.848 101.619 101.338 99.489 

A.1.5. Ranked Data with Continuous Target 

Table A5. Bias-variance decomposition results for ranked data with continuous target. 

Data Model 
Normali-

zation 
None Z-standard Min-Max MaxAbs (−1, 1) Quantile Transform 

Quantile 
Normalize 

Ranked -  
Continuous 

Target 
Linear 

Type of 
Loss 

MSE MSE MSE MSE MSE MSE 

  
Total Loss 0.174 304,375,397,009.301 3,627,820,620,136.140 3,635,081,968,755.210 3,635,123,035,407.580 0.174 

  
Bias 0.174 304,375,397,000.036 3,627,820,620,026.510 3,635,081,968,645.360 3,635,121,515,273.040 0.174 

  
Variance 0.000 9.265 109.624 109.624 1,520,134.541 0.000 

  
Noise 0.000 0.000 0.006 0.226 0.001 0.000 

  
Variance- 
Bias Ratio 

0.000 0.000 0.000 0.000 0.000 0.000 

  

Percent 
Change 

from Raw 
~ 175,139,389,533,788.000 

2,087,469,273,113,810.0
00 

2,091,647,495,719,290.0
00 

2,091,671,125,712,040.0
00 

100.000 

 
Decision 

Tree        

  
Total Loss 6464.023 3,058,180.695 3,058,180.695 3,058,180.695 3,058,180.695 6421.793 

  
Bias 959.928 3,055,675.410 3,055,675.410 3,055,675.410 3,055,675.410 1113.417 

  
Variance 5504.094 2505.285 2505.285 2505.285 2505.285 5308.376 

  
Noise 0.000 0.000 0.000 0.000 0.000 0.000 

  
Variance- 
Bias Ratio 

5.734 0.001 0.001 0.001 0.001 4.768 

  

Percent 
Change 

from Raw 
~ 47,310.799 47,310.799 47,310.799 47,310.799 99.347 

 
Random 

Forest 
Total Loss 102,252.318 1,283,608.530 1,283,608.530 1,283,608.530 1,283,608.530 102,252.318 

  
Bias 84,950.814 1,277,680.008 1,277,680.008 1,277,680.008 1,277,680.008 84,950.814 

  
Variance 17,301.504 5928.522 5928.522 5928.522 5928.522 17,301.504 

  
Noise 0.000 0.000 0.000 0.000 0.000 0.000 

  
Variance- 
Bias Ratio 

0.204 0.005 0.005 0.005 0.005 0.204 
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Percent 
Change 

from Raw 
~ 1255.334 1255.334 1255.334 1255.334 100.000 

 
SVM Total Loss 468,652.034 468,824.111 468,659.254 468,659.354 468,687.960 468,652.034 

  
Bias 467,902.232 468,167.990 467,974.616 467,974.484 467,999.280 467,902.232 

  
Variance 749.803 656.121 684.638 684.638 688.680 749.803 

  
Noise 0.000 0.000 0.000 0.232 0.000 0.000 

  
Variance- 
Bias Ratio 

0.002 0.001 0.001 0.001 0.001 0.002 

  

Percent 
Change 

from Raw 
~ 100.037 100.002 100.002 100.008 100.000 

 
Gradient 
Boosting 

Total Loss 10,562.614 3,087,157.051 3,087,157.051 3,087,157.051 3,087,157.051 10,562.614 

  
Bias 3,197.090 3,083,591.900 3,083,591.900 3,083,591.900 3,083,591.900 3197.090 

  
Variance 7365.524 3565.151 3565.151 3565.151 3565.151 7365.524 

  
Noise 0.000 0.000 0.000 0.000 0.000 0.000 

  
Variance- 
Bias Ratio 

2.304 0.001 0.001 0.001 0.001 2.304 

  

Percent 
Change 

from Raw 
~ 29227.208 29227.208 29227.208 29227.208 100.000 

 
Neural 

Network 
Total Loss 0.175 304,375,382,136.401 3,627,820,444,148.760 3,635,081,654,196.280 3,635,123,003,365.700 0.175 

  
Bias 0.174 304,375,382,127.117 3,627,820,444,038.680 3,635,081,654,084.160 3,635,121,483,216.140 0.174 

  
Variance 0.001 9.284 110.079 110.079 1520149.555 0.001 

  
Noise 0.000 0.000 0.000 2.041 0.005 0.000 

  
Variance- 
Bias Ratio 

0.007 0.000 0.000 0.000 0.000 0.007 

  

Percent 
Change 

from Raw 
~ 173,769,104,867,507.000 

2,071,136,984,781,720.0
00 

2,075,282,438,206,230.0
00 

2,075,306,044,609,960.0
00 

99.994 

A.1.6. Ranked Data with Poisson Target 

Table A6. Bias-variance decomposition results for ranked data with poisson target. 

Data Model Normalization None Z-standard Min-Max MaxAbs (−1, 1) 
Quantile 

Transform 
Quantile 

Normalize 

Ranked - 
Poisson Target 

Poisson Regression Type of Loss MSE MSE MSE MSE MSE MSE 

  
Total Loss 1.280 2.000E+18 8.871E+17 8.850E+17 9.325E+17 1.280 

  
Bias 1.280 1.009E+18 2.303E+17 2.294E+17 2.537E+17 1.280 

  
Variance 0.000 9.907E+17 6.568E+17 6.568E+17 6.788E+17 0.000 

  
Noise 0.000 4.096E+03 0.000E+00 1.261E+15 1.024E+03 0.000 
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Variance-Bias Ratio 0.000 9.816E-01 2.852E+00 2.863E+00 2.675E+00 0.000 

  
Percent Change from 

Raw 
~ 1.562E+20 6.929E+19 6.913E+19 7.284E+19 100.000 

 
Decision Tree 

       

  
Total Loss 2.418 2.276 2.270 2.270 2.270 2.305 

  
Bias 1.318 1.325 1.320 1.320 1.320 1.320 

  
Variance 1.100 0.950 0.950 0.950 0.950 0.985 

  
Noise 0.000 0.000 0.000 0.000 0.000 0.000 

  
Variance-Bias Ratio 0.834 0.717 0.719 0.719 0.719 0.746 

  
Percent Change from 

Raw 
~ 94.094 93.868 93.868 93.868 95.304 

 
Random Forest Total Loss 1.505 1.307 1.307 1.307 1.307 1.505 

  
Bias 1.396 1.279 1.279 1.279 1.279 1.396 

  
Variance 0.108 0.028 0.028 0.028 0.028 0.108 

  
Noise 0.000 0.000 0.000 0.000 0.000 0.000 

  
Variance-Bias Ratio 0.077 0.022 0.022 0.022 0.022 0.077 

  
Percent Change from 

Raw 
~ 86.878 86.880 86.880 86.880 100.000 

 
SVM Total Loss 1.281 1.434 1.553 1.553 1.559 1.281 

  
Bias 1.280 1.339 1.398 1.398 1.401 1.280 

  
Variance 0.001 0.096 0.155 0.155 0.159 0.001 

  
Noise 0.000 0.000 0.000 0.000 0.000 0.000 

  
Variance-Bias Ratio 0.001 0.071 0.111 0.111 0.113 0.001 

  
Percent Change from 

Raw 
~ 111.913 121.171 121.171 121.664 100.000 

 
Gradient Boosting Total Loss 1.804 1.999 2.000 2.000 2.000 1.804 

  
Bias 1.594 1.330 1.330 1.330 1.330 1.594 

  
Variance 0.210 0.670 0.670 0.670 0.670 0.210 

  
Noise 0.000 0.000 0.000 0.000 0.000 0.000 

  
Variance-Bias Ratio 0.132 0.504 0.504 0.504 0.504 0.132 

  
Percent Change from 

Raw 
~ 110.831 110.855 110.855 110.855 100.000 

 
Neural Network Total Loss 1.345 3224.484 39,115.685 39,219.860 40,455.088 1.346 

  
Bias 1.302 2119.686 25,869.107 25,937.281 27,183.789 1.302 

  
Variance 0.043 1104.797 13,246.578 13,246.578 13,271.299 0.043 

  
Noise 0.000 0.000 0.000 36.002 0.000 0.000 

  
Variance-Bias Ratio 0.033 0.521 0.512 0.511 0.488 0.033 

  
Percent Change from 

Raw 
~ 239,694.606 2,907,696.079 2,915,440.041 3,007,261.712 100.030 
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A.1.7. Categorical Data with Binary Target 

Table A7. Bias-variance decomposition results for categorical data with binary target. 

Data Model Normalization None Z-standard Min-Max MaxAbs (−1, 1) 
Quantile 

Transform 
Quantile 

Normalize 

Categorical - 
Binary Target 

Logistic Total Loss 0.473 0.476 0.473 0.473 0.473 0.473 

  
Bias 0.281 0.266 0.281 0.281 0.281 0.281 

  
Variance 0.192 0.209 0.192 0.282 0.192 0.192 

  
Noise 0.000 0.000 0.000 0.090 0.000 0.000 

  
Variance-Bias Ratio 0.683 0.786 0.683 1.004 0.683 0.683 

  
Percent Change from 

Raw 
~ 100.573 100.000 100.000 100.000 100.000 

 
Decision Tree 

       

  
Total Loss 0.502 0.480 0.485 0.485 0.485 0.485 

  
Bias 0.338 0.281 0.306 0.306 0.306 0.306 

  
Variance 0.164 0.200 0.178 0.284 0.178 0.178 

  
Noise 0.000 0.000 0.000 0.105 0.000 0.000 

  
Variance-Bias Ratio 0.484 0.710 0.582 0.926 0.582 0.582 

  
Percent Change from 

Raw 
~ 95.636 96.508 96.508 96.508 96.508 

 
Random Forest Total Loss 0.476 0.484 0.476 0.476 0.476 0.476 

  
Bias 0.288 0.282 0.288 0.288 0.288 0.288 

  
Variance 0.187 0.201 0.187 0.272 0.187 0.187 

  
Noise 0.000 0.000 0.000 0.085 0.000 0.000 

  
Variance-Bias Ratio 0.649 0.714 0.649 0.944 0.649 0.649 

  
Percent Change from 

Raw 
~ 101.709 100.000 100.000 100.000 100.000 

 
SVM Total Loss 0.476 0.473 0.476 0.476 0.476 0.476 

  
Bias 0.288 0.285 0.288 0.288 0.288 0.288 

  
Variance 0.188 0.187 0.188 0.275 0.188 0.188 

  
Noise 0.000 0.000 0.000 0.087 0.000 0.000 

  
Variance-Bias Ratio 0.653 0.656 0.653 0.957 0.653 0.653 

  
Percent Change from 

Raw 
~ 99.398 100.000 100.000 100.000 100.000 

 
Gradient Boosting Total Loss 0.483 0.496 0.483 0.483 0.483 0.483 

  
Bias 0.305 0.326 0.305 0.305 0.305 0.305 

  
Variance 0.178 0.170 0.178 0.284 0.178 0.178 

  
Noise 0.000 0.000 0.000 0.106 0.000 0.000 

  
Variance-Bias Ratio 0.585 0.521 0.585 0.932 0.585 0.585 

  
Percent Change from 

Raw 
~ 102.711 100.000 100.000 100.000 100.000 

 
Neural Network Total Loss 0.491 0.496 0.491 0.491 0.491 0.490 
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Bias 0.248 0.248 0.249 0.249 0.249 0.249 

  
Variance 0.242 0.249 0.242 0.418 0.242 0.241 

  
Noise 0.000 0.000 0.000 0.177 0.000 0.000 

  
Variance-Bias Ratio 0.975 1.005 0.973 1.676 0.974 0.970 

  
Percent Change from 

Raw 
~ 101.214 100.004 100.041 100.097 99.941 

A.1.8. Categorical Data with Continuous Target 

Table A8. Bias-variance decomposition results for categorical data with continuous target. 

Data Model Normalization None Z-standard Min-Max 
MaxAbs 
(−1, 1) 

Quantile  
Transform 

Quantile 
Normalize 

Categorical - 
Continuous 

Target 
Linear Type of Loss MSE MSE MSE MSE MSE MSE 

  
Total Loss 0.243 3,414,987,786,139,060,000.000 0.243 0.243 12,972,148,828.537 0.243 

  
Bias 0.241 2,518,113,273,062,070,000.000 0.241 0.241 27,556,466.022 0.241 

  
Variance 0.003 896,874,513,076,987,000.000 0.003 0.003 12,944,592,362.515 0.003 

  
Noise 0.000 3584.000 0.000 0.000 0.000 0.000 

  
Variance-Bias Ratio 0.011 0.356 0.011 0.011 469.748 0.011 

  
Percent Change from 

Raw 
~ 1,403,381,296,822,710,000,000.000 100.000 100.000 5,330,874,423,463.480 100.020 

 
Decision 

Tree        

  
Total Loss 0.245 1.325 0.243 0.243 0.243 0.243 

  
Bias 0.239 1.198 0.240 0.240 0.240 0.240 

  
Variance 0.006 0.126 0.003 0.003 0.003 0.003 

  
Noise 0.000 0.000 0.000 0.000 0.000 0.000 

  
Variance-Bias Ratio 0.025 0.105 0.013 0.013 0.013 0.013 

  
Percent Change from 

Raw 
~ 540.783 99.133 99.133 99.133 99.133 

 
Random 

Forest 
Total Loss 0.364 1.605 0.364 0.364 0.364 0.364 

  
Bias 0.350 1.489 0.350 0.350 0.350 0.350 

  
Variance 0.013 0.116 0.013 0.013 0.013 0.013 

  
Noise 0.000 0.000 0.000 0.000 0.000 0.000 

  
Variance-Bias Ratio 0.038 0.078 0.038 0.038 0.038 0.038 

  
Percent Change from 

Raw 
~ 441.086 100.000 100.000 100.000 100.000 

 
SVM Total Loss 0.242 0.689 0.242 0.242 0.242 0.242 

  
Bias 0.238 0.689 0.238 0.238 0.238 0.238 

  
Variance 0.004 0.000 0.004 0.004 0.004 0.004 

  
Noise 0.000 0.000 0.000 0.000 0.000 0.000 

https://doi.org/10.4236/ojs.2020.105046


J. M. Rudd, H. G. Ray 
 

 

DOI: 10.4236/ojs.2020.105046 775 Open Journal of Statistics 
 

Continued 

  
Variance-Bias Ratio 0.016 0.000 0.016 0.016 0.016 0.017 

  
Percent Change from 

Raw 
~ 284.707 100.000 100.000 100.000 99.918 

 
Gradient 
Boosting 

Total Loss 0.243 2.096 0.243 0.243 0.243 0.243 

  
Bias 0.240 2.096 0.240 0.240 0.240 0.240 

  
Variance 0.003 0.000 0.003 0.003 0.003 0.003 

  
Noise 0.000 0.000 0.000 0.000 0.000 0.000 

  
Variance-Bias Ratio 0.012 0.000 0.012 0.012 0.012 0.012 

  
Percent Change from 

Raw 
~ 862.207 100.000 100.000 100.000 100.000 

 
Neural 

Network 
Total Loss 0.244 0.792 0.244 0.244 0.244 0.244 

  
Bias 0.241 0.623 0.241 0.241 0.241 0.241 

  
Variance 0.002 0.169 0.002 0.002 0.002 0.002 

  
Noise 0.000 0.000 0.000 0.000 0.000 0.000 

  
Variance-Bias Ratio 0.010 0.271 0.010 0.010 0.010 0.010 

  
Percent Change from 

Raw 
~ 325.239 100.000 100.041 100.020 99.980 

A.1.9. Categorical Data with Poisson Target 

Table A9. Bias-variance decomposition results for categorical data with poisson target. 

Data Model Normalization None Z-standard Min-Max MaxAbs (−1, 1) 
Quantile 

Transform 
Quantile  

Normalize 

Categorical - 
Poisson Target 

Poisson Regression Type of Loss MSE MSE MSE MSE MSE MSE 

  
Total Loss 1.753 1.748 1.753 1.753 1.753 1.753 

  
Bias 1.682 1.673 1.682 1.682 1.682 1.682 

  
Variance 0.071 0.074 0.071 0.071 0.071 0.071 

  
Noise 0.000 0.000 0.000 0.000 0.000 0.000 

  
Variance-Bias Ratio 0.042 0.044 0.042 0.042 0.042 0.042 

  
Percent Change from 

Raw 
~ 99.698 100.000 100.000 100.000 100.000 

 
Decision Tree 

       

  
Total Loss 1.559 1.591 1.499 1.499 1.499 1.499 

  
Bias 1.351 1.435 1.314 1.314 1.314 1.314 

  
Variance 0.208 0.157 0.185 0.185 0.185 0.185 

  
Noise 0.000 0.000 0.000 0.000 0.000 0.000 

  
Variance-Bias Ratio 0.154 0.109 0.141 0.141 0.141 0.141 

  
Percent Change from 

Raw 
~ 102.089 96.164 96.164 96.164 96.164 

 
Random Forest Total Loss 1.581 1.661 1.581 1.581 1.581 1.581 

  
Bias 1.434 1.559 1.434 1.434 1.434 1.434 
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Variance 0.147 0.102 0.147 0.147 0.147 0.147 

  
Noise 0.000 0.000 0.000 0.000 0.000 0.000 

  
Variance-Bias Ratio 0.103 0.066 0.103 0.103 0.103 0.103 

  
Percent Change from 

Raw 
~ 105.064 100.000 100.000 100.000 100.000 

 
SVM Total Loss 1.754 1.783 1.754 1.754 1.754 1.754 

  
Bias 1.685 1.740 1.685 1.685 1.685 1.685 

  
Variance 0.069 0.043 0.069 0.069 0.069 0.069 

  
Noise 0.000 0.000 0.000 0.000 0.000 0.000 

  
Variance-Bias Ratio 0.041 0.025 0.041 0.041 0.041 0.041 

  
Percent Change from 

Raw 
~ 101.675 100.000 100.000 100.000 100.000 

 
Gradient Boosting Total Loss 1.521 1.544 1.521 1.521 1.521 1.521 

  
Bias 1.343 1.378 1.343 1.343 1.343 1.343 

  
Variance 0.178 0.166 0.178 0.178 0.178 0.178 

  
Noise 0.000 0.000 0.000 0.000 0.000 0.000 

  
Variance-Bias Ratio 0.133 0.121 0.133 0.133 0.133 0.133 

  
Percent Change from 

Raw 
~ 101.547 100.000 100.000 100.000 100.000 

 
Neural Network Total Loss 1.554 1.525 1.554 1.554 1.553 1.554 

  
Bias 1.405 1.301 1.405 1.405 1.404 1.405 

  
Variance 0.149 0.224 0.149 0.149 0.149 0.149 

  
Noise 0.000 0.000 0.000 0.000 0.000 0.000 

  
Variance-Bias Ratio 0.106 0.172 0.106 0.106 0.106 0.106 

  
Percent Change from 

Raw 
~ 98.134 100.007 99.993 99.947 99.980 

A.1.10. Mixed Data with Binary Target 

Table A10. Bias-variance decomposition results for mixed data with binary target. 

None Z-standard Min-Max MaxAbs (−1, 1) Quantile Transform Quantile Normalize 

0.499 0.499 0.499 0.497 0.499 0.496 

0.311 0.250 0.250 0.253 0.250 0.303 

0.188 0.249 0.250 0.479 0.249 0.193 

0.000 0.000 0.000 0.235 0.000 0.000 

0.605 0.999 1.000 1.891 0.998 0.638 

~ 99.962 99.988 99.521 99.931 99.254 

0.479 0.504 0.503 0.503 0.503 0.492 

0.267 0.268 0.267 0.267 0.267 0.287 

0.212 0.236 0.236 0.389 0.236 0.204 

0.000 0.000 0.000 0.153 0.000 0.000 
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0.793 0.879 0.884 1.455 0.884 0.710 

~ 105.113 104.978 104.978 104.978 102.570 

0.503 0.487 0.490 0.490 0.490 0.503 

0.294 0.357 0.353 0.353 0.353 0.295 

0.209 0.129 0.136 0.165 0.136 0.209 

0.000 0.000 0.000 0.028 0.000 0.000 

0.709 0.362 0.386 0.466 0.386 0.709 

~ 96.736 97.287 97.287 97.287 100.023 

0.504 0.484 0.484 0.489 0.482 0.505 

0.309 0.387 0.396 0.316 0.441 0.311 

0.194 0.097 0.088 0.097 0.041 0.194 

0.000 0.000 0.000 0.076 0.000 0.000 

0.628 0.251 0.221 0.307 0.093 0.624 

~ 96.131 96.036 97.036 95.607 100.269 

0.507 0.503 0.505 0.505 0.505 0.507 

0.318 0.257 0.260 0.260 0.260 0.318 

0.189 0.246 0.245 0.437 0.245 0.189 

0.000 0.000 0.000 0.192 0.000 0.000 

0.595 0.960 0.940 1.680 0.940 0.594 

~ 99.241 99.599 99.599 99.599 100.082 

0.498 0.498 0.499 0.499 0.499 0.497 

0.250 0.250 0.250 0.250 0.250 0.251 

0.248 0.248 0.249 0.478 0.250 0.246 

0.000 0.000 0.000 0.228 0.000 0.000 

0.992 0.993 0.998 1.915 1.000 0.982 

~ 99.986 100.084 100.183 100.181 99.700 

A.1.11. Mixed Data with Continuous Target 

Table A11. Bias-variance decomposition results for mixed data with continuous target. 

Data Model Normalization None Z-standard Min-Max MaxAbs (−1, 1) 
Quantile 

Transform 
Quantile 

Normalize 

Mixed Data - 
Continuous 

Target 
Linear Type of Loss MSE MSE MSE MSE MSE MSE 

  
Total Loss 0.367 

3,086,898,153,055,320,
000.000 

5,568,986.309 2121588770.884 1,895,990,182.853 0.363 

  
Bias 0.362 

2,060,070,195,326,140,
000.000 

5,568,970.874 2121584456.477 886.312 0.355 

  
Variance 0.005 

1,026,827,957,729,170,
000.000 

15.435 15.435 1,895,989,296.541 0.008 
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Noise 0.000 10240.000 0.000 4298.972 0.000 0.000 

  
Variance-Bias Ratio 0.014 0.498 0.000 0.000 2,139,189.427 0.022 

  
Percent Change 

from Raw 
~ 

841,116,717,750,002,0
00,000.000 

1,517,435,060.458 578,089,621,005.122 
516,618,612,087.6

59 
98.992 

 
Decision 

Tree        

  
Total Loss 0.955 74.278 74.222 74.222 74.222 1.193 

  
Bias 0.472 73.880 73.821 73.817 73.821 0.717 

  
Variance 0.483 0.398 0.401 0.401 0.401 0.476 

  
Noise 0.000 0.000 0.000 0.004 0.000 0.000 

  
Bias-Variance Ratio 1.023 0.005 0.005 0.005 0.005 0.664 

  
Percent Change 

from Raw 
~ 7777.318 7771.442 7771.406 7771.442 124.898 

 
Random 

Forest 
Total Loss 3.925 23.205 23.205 23.205 23.205 3.921 

  
Bias 3.506 22.923 22.923 22.923 22.923 3.502 

  
Variance 0.419 0.282 0.282 0.282 0.282 0.419 

  
Noise 0.000 0.000 0.000 0.000 0.000 0.000 

  
Bias-Variance Ratio 0.120 0.012 0.012 0.012 0.012 0.120 

  
Percent Change 

from Raw 
~ 591.191 591.191 591.191 591.191 99.893 

 
SVM Total Loss 0.816 11.521 11.548 11.528 12.201 0.831 

  
Bias 0.783 11.519 11.528 11.521 11.952 0.801 

  
Variance 0.032 0.002 0.021 0.021 0.250 0.031 

  
Noise 0.000 0.000 0.000 0.014 0.000 0.000 

  
Bias-Variance Ratio 0.041 0.000 0.002 0.002 0.021 0.038 

  
Percent Change 

from Raw 
~ 1412.698 1416.026 1413.574 1496.065 101.955 

 
Gradient 
Boosting 

Total Loss 1.695 59.055 62.797 62.806 62.797 1.694 

  
Bias 1.154 58.342 62.004 62.013 62.004 1.151 

  
Variance 0.541 0.712 0.792 0.792 0.792 0.543 

  
Noise 0.000 0.000 0.000 0.001 0.000 0.000 

  
Bias-Variance Ratio 0.469 0.012 0.013 0.013 0.013 0.472 

  
Percent Change 

from Raw 
~ 3483.593 3704.328 3704.895 3704.328 99.940 

 
Neural 

Network 
Total Loss 0.366 172,936.383 5,567,736.822 2,092,341,169.038 1,980,462.195 0.425 

  
Bias 0.359 172,879.121 5,567,709.809 2,077,346,984.312 1,980,266.673 0.355 

  
Variance 0.007 57.262 27.013 27.013 195.522 0.070 

  
Noise 0.000 0.000 0.000 14994157.713 0.000 0.000 

  
Bias-Variance Ratio 0.020 0.000 0.000 0.000 0.000 0.198 

  
Percent Change 

from Raw 
~ 47,277,162.892 1,522,101,918.052 572,001,983,668.337 541,416,629.719 116.261 
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A.1.12. Mixed Data with Poisson Target 

Table A12. Bias-variance decomposition results for mixed data with poisson target. 

Data Model Normalization None Z-standard Min-Max MaxAbs (−1, 1) 
Quantile 

Transform 
Quantile 

Normalize 

Categorical - 
Continuous 

Target 
Poisson Regression Type of Loss MSE MSE MSE MSE MSE MSE 

  
Total Loss 1.929 631.554 2.208 2.070 6.928 1.929 

  
Bias 1.743 6.792 1.801 1.928 1.271 1.740 

  
Variance 0.186 624.762 0.407 0.407 5.657 0.188 

  
Noise 0.000 0.000 0.000 0.264 0.000 0.000 

  
Variance-Bias Ratio 0.107 91.989 0.226 0.211 4.452 0.108 

  
Percent Change from 

Raw 
~ 32,734.401 114.423 107.289 359.076 99.957 

 
Decision Tree 

       

  
Total Loss 2.087 2.127 2.137 2.140 2.137 2.119 

  
Bias 1.123 1.199 1.213 1.212 1.213 1.264 

  
Variance 0.964 0.927 0.924 0.924 0.924 0.855 

  
Noise 0.000 0.000 0.000 0.004 0.000 0.000 

  
Variance-Bias Ratio 0.859 0.773 0.762 0.762 0.762 0.677 

  
Percent Change from 

Raw 
~ 101.899 102.382 102.521 102.382 101.557 

 
Random Forest Total Loss 1.820 2.129 2.113 2.113 2.113 1.821 

  
Bias 1.608 2.029 1.997 1.997 1.997 1.609 

  
Variance 0.212 0.100 0.116 0.116 0.116 0.212 

  
Noise 0.000 0.000 0.000 0.000 0.000 0.000 

  
Variance-Bias Ratio 0.132 0.049 0.058 0.058 0.058 0.132 

  
Percent Change from 

Raw 
~ 116.956 116.100 116.100 116.100 100.040 

 
SVM Total Loss 1.940 2.029 2.201 2.247 2.188 1.938 

  
Bias 1.775 1.865 2.157 2.244 2.133 1.771 

  
Variance 0.165 0.164 0.044 0.044 0.055 0.166 

  
Noise 0.000 0.000 0.000 0.041 0.000 0.000 

  
Variance-Bias Ratio 0.093 0.088 0.020 0.020 0.026 0.094 

  
Percent Change from 

Raw 
~ 104.577 113.429 115.807 112.765 99.867 

 
Gradient Boosting Total Loss 1.746 2.042 2.000 2.001 2.000 1.746 

  
Bias 1.531 1.876 1.787 1.787 1.787 1.530 

  
Variance 0.216 0.166 0.213 0.213 0.213 0.216 

  
Noise 0.000 0.000 0.000 0.000 0.000 0.000 

  
Variance-Bias Ratio 0.141 0.089 0.119 0.119 0.119 0.141 
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Percent Change from 

Raw 
~ 116.930 114.528 114.553 114.528 99.966 

 
Neural Network Total Loss 1.892 50.960 2168.995 531,230.373 508.503 1.882 

  
Bias 1.711 23.142 938.748 185,620.790 157.692 1.708 

  
Variance 0.181 27.817 1230.247 1230.247 350.811 0.175 

  
Noise 0.000 0.000 0.000 344,379.336 0.000 0.000 

  
Variance-Bias Ratio 0.106 1.202 1.311 0.007 2.225 0.102 

  
Percent Change from 

Raw 
~ 2693.431 114,640.142 28,077,665.821 26,876.443 99.497 

A.2. Benchmark Results 
A.2.1. Wine Quality Data with Binary Target 

Table A13. Bias-variance decomposition results for wine quality data with binary target. 

Data Model Normalization None Z-standard Min-Max MaxAbs (−1, 1) 
Quantile 

Transform 
Quantile 

Normalize 

Wine Quality with 
binary target 

Logistic Total Loss 0.038 0.058 0.100 0.166 0.062 0.038 

  
Bias 0.037 0.036 0.037 0.047 0.034 0.037 

  
Variance 0.000 0.022 0.063 0.144 0.028 0.001 

  
Noise 0.000 0.000 0.000 0.024 0.000 0.000 

  
Variance-Bias Ratio 0.010 0.609 1.710 3.086 0.809 0.022 

  
Percent Change from 

Raw 
~ 153.636 265.145 440.891 165.508 100.728 

 
Decision Tree 

       

  
Total Loss 0.061 0.772 0.696 0.684 0.688 0.061 

  
Bias 0.030 0.608 0.491 0.475 0.481 0.030 

  
Variance 0.031 0.164 0.205 0.046 0.207 0.031 

  
Noise 0.000 0.000 0.000 0.162 0.000 0.000 

  
Variance-Bias Ratio 1.033 0.269 0.417 0.098 0.430 1.034 

  
Percent Change from 

Raw 
~ 1259.483 1135.652 1116.508 1123.095 100.079 

 
Random Forest Total Loss 0.039 0.822 0.762 0.754 0.749 0.039 

  
Bias 0.031 0.692 0.593 0.581 0.572 0.031 

  
Variance 0.008 0.129 0.169 0.127 0.177 0.008 

  
Noise 0.000 0.000 0.000 0.047 0.000 0.000 

  
Variance-Bias Ratio 0.263 0.187 0.285 0.218 0.310 0.263 

  
Percent Change from 

Raw 
~ 2087.923 1936.937 1916.597 1902.651 100.093 

 
SVM Total Loss 0.038 0.037 0.037 0.037 0.037 0.038 

  
Bias 0.035 0.037 0.037 0.037 0.037 0.035 

  
Variance 0.003 0.000 0.000 0.000 0.000 0.003 
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Noise 0.000 0.000 0.000 0.000 0.000 0.000 

  
Variance-Bias Ratio 0.094 0.000 0.000 0.000 0.000 0.086 

  
Percent Change from 

Raw 
~ 97.849 97.849 97.849 97.849 100.306 

 
Gradient Boosting Total Loss 0.046 0.939 0.927 0.934 0.920 0.046 

  
Bias 0.035 0.913 0.891 0.905 0.876 0.035 

  
Variance 0.011 0.026 0.036 0.003 0.044 0.011 

  
Noise 0.000 0.000 0.000 0.027 0.000 0.000 

  
Variance-Bias Ratio 0.319 0.028 0.041 0.003 0.050 0.319 

  
Percent Change from 

Raw 
~ 2032.992 2007.584 2022.734 1991.394 100.018 

 
Neural Network Total Loss 0.038 0.406 0.387 0.526 0.178 0.038 

  
Bias 0.037 0.173 0.154 0.279 0.049 0.037 

  
Variance 0.001 0.232 0.234 0.000 0.129 0.001 

  
Noise 0.000 0.000 0.000 0.247 0.000 0.000 

  
Variance-Bias Ratio 0.025 1.340 1.521 0.000 2.629 0.017 

  
Percent Change from 

Raw 
~ 1072.621 1023.751 1391.955 471.839 99.592 

A.2.2. Breast Cancer Data with Binary Target 

Table A14. Bias-variance decomposition results for breast cancer data with binary target. 

Data Model Normalization None Z-standard Min-Max MaxAbs (−1, 1) 
Quantile 

Transform 
Quantile 

Normalize 

Breast cancer data 
with binary target 

Logistic Total Loss 0.043 0.626 0.626 0.626 0.626 0.042 

  
Bias 0.029 0.626 0.626 0.626 0.626 0.028 

  
Variance 0.013 0.000 0.000 0.000 0.000 0.014 

  
Noise 0.000 0.000 0.000 0.000 0.000 0.000 

  
Variance-Bias Ratio 0.451 0.000 0.000 0.000 0.000 0.487 

  
Percent Change from 

Raw 
~ 1465.753 1465.753 1465.753 1465.753 98.205 

 
Decision Tree 

       

  
Total Loss 0.091 0.601 0.514 0.488 0.536 0.090 

  
Bias 0.047 0.566 0.284 0.239 0.322 0.046 

  
Variance 0.043 0.035 0.231 0.370 0.214 0.044 

  
Noise 0.000 0.000 0.000 0.121 0.000 0.000 

  
Variance-Bias Ratio 0.911 0.062 0.814 1.544 0.667 0.951 

  
Percent Change from 

Raw 
~ 663.908 568.172 539.083 592.106 99.025 

 
Random Forest Total Loss 0.059 0.626 0.551 0.498 0.590 0.059 

  
Bias 0.048 0.626 0.449 0.289 0.512 0.048 
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Variance 0.011 0.000 0.102 0.124 0.078 0.011 

  
Noise 0.000 0.000 0.000 0.085 0.000 0.000 

  
Variance-Bias Ratio 0.232 0.000 0.226 0.429 0.152 0.232 

  
Percent Change from 

Raw 
~ 1061.508 934.306 845.407 1000.397 100.010 

 
SVM Total Loss 0.374 0.625 0.422 0.405 0.608 0.374 

  
Bias 0.374 0.622 0.268 0.297 0.543 0.374 

  
Variance 0.000 0.003 0.154 0.190 0.065 0.000 

  
Noise 0.000 0.000 0.000 0.082 0.000 0.000 

  
Variance-Bias Ratio 0.000 0.005 0.574 0.639 0.120 0.000 

  
Percent Change from 

Raw 
~ 166.986 112.766 108.264 162.484 100.000 

 
Gradient Boosting Total Loss 0.067 0.624 0.561 0.551 0.596 0.067 

  
Bias 0.042 0.623 0.418 0.343 0.502 0.042 

  
Variance 0.025 0.001 0.143 0.177 0.094 0.025 

  
Noise 0.000 0.000 0.000 0.031 0.000 0.000 

  
Variance-Bias Ratio 0.594 0.002 0.341 0.515 0.187 0.594 

  
Percent Change from 

Raw 
~ 938.808 843.573 827.809 896.325 100.053 

 
Neural Network Total Loss 0.069 0.626 0.626 0.626 0.374 0.068 

  
Bias 0.055 0.626 0.626 0.626 0.374 0.055 

  
Variance 0.014 0.000 0.000 0.000 0.000 0.013 

  
Noise 0.000 0.000 0.000 0.000 0.000 0.000 

  
Variance-Bias Ratio 0.249 0.000 0.000 0.000 0.001 0.230 

  
Percent Change from 

Raw 
~ 906.933 906.933 906.933 542.761 98.940 

A.2.3. Voting Data with Binary Target 

Table A15. Bias-variance decomposition results for congressional voting data with binary.  

Data Model Normalization None Z-standard Min-Max MaxAbs (−1, 1) 
Quantile 

Transform 
Quantile 

Normalize 

Voting data with 
binary target 

Logistic Total Loss 0.058 0.112 0.058 0.058 0.058 0.059 

  
Bias 0.046 0.078 0.046 0.046 0.046 0.048 

  
Variance 0.011 0.034 0.011 0.017 0.011 0.011 

  
Noise 0.000 0.000 0.000 0.005 0.000 0.000 

  
Variance-Bias Ratio 0.247 0.435 0.247 0.365 0.247 0.227 

  
Percent Change from 

Raw 
~ 193.123 100.000 100.000 100.000 101.162 
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Decision Tree 

       

  
Total Loss 0.066 0.063 0.066 0.066 0.066 0.066 

  
Bias 0.036 0.040 0.036 0.036 0.036 0.036 

  
Variance 0.030 0.023 0.030 0.043 0.030 0.030 

  
Noise 0.000 0.000 0.000 0.013 0.000 0.000 

  
Variance-Bias Ratio 0.853 0.567 0.816 1.182 0.816 0.816 

  
Percent Change from 

Raw 
~ 96.100 100.475 100.475 100.475 100.475 

 
Random Forest Total Loss 0.044 0.053 0.044 0.044 0.044 0.044 

  
Bias 0.031 0.041 0.031 0.031 0.031 0.031 

  
Variance 0.012 0.012 0.012 0.018 0.012 0.012 

  
Noise 0.000 0.000 0.000 0.005 0.000 0.000 

  
Variance-Bias Ratio 0.388 0.297 0.388 0.561 0.388 0.388 

  
Percent Change from 

Raw 
~ 121.723 100.000 100.000 100.000 100.000 

 
SVM Total Loss 0.052 0.054 0.052 0.052 0.052 0.052 

  
Bias 0.045 0.038 0.045 0.045 0.045 0.045 

  
Variance 0.007 0.016 0.007 0.011 0.007 0.007 

  
Noise 0.000 0.000 0.000 0.004 0.000 0.000 

  
Variance-Bias Ratio 0.162 0.427 0.162 0.247 0.162 0.163 

  
Percent Change from 

Raw 
~ 102.883 100.000 100.000 100.000 99.649 

 
Gradient Boosting Total Loss 0.056 0.058 0.056 0.056 0.056 0.056 

  
Bias 0.033 0.039 0.033 0.033 0.033 0.033 

  
Variance 0.022 0.019 0.022 0.032 0.022 0.022 

  
Noise 0.000 0.000 0.000 0.009 0.000 0.000 

  
Variance-Bias Ratio 0.668 0.472 0.668 0.949 0.668 0.668 

  
Percent Change from 

Raw 
~ 103.490 100.000 100.000 100.000 100.000 

 
Neural Network Total Loss 0.059 0.079 0.059 0.059 0.059 0.058 

  
Bias 0.045 0.059 0.045 0.045 0.045 0.044 

  
Variance 0.014 0.021 0.014 0.020 0.014 0.014 

  
Noise 0.000 0.000 0.000 0.006 0.000 0.000 

  
Variance-Bias Ratio 0.312 0.353 0.312 0.442 0.312 0.307 

  
Percent Change from 

Raw 
~ 134.324 100.000 100.000 100.000 98.049 

 

 

 

https://doi.org/10.4236/ojs.2020.105046


J. M. Rudd, H. G. Ray 
 

 

DOI: 10.4236/ojs.2020.105046 784 Open Journal of Statistics 
 

A.2.4. Abalone Data with Binary Target 

Table A16. Bias-variance decomposition results for abalone data with binary target. 

Data Model Normalization None Z-standard Min-Max MaxAbs (−1, 1) 
Quantile 

Transform 
Quantile 

Normalize 

Abalone data with 
binary target 

Logistic Total Loss 0.093 0.093 0.093 0.093 0.093 0.093 

  
Bias 0.093 0.093 0.093 0.093 0.093 0.093 

  
Variance 0.000 0.000 0.000 0.144 0.000 0.000 

  
Noise 0.000 0.000 0.000 0.144 0.000 0.000 

  
Variance-Bias Ratio 0.000 0.000 0.000 1.542 0.000 0.000 

  
Percent Change from 

Raw 
~ 100.000 100.000 100.000 100.000 100.000 

 
Decision Tree 

       

  
Total Loss 0.145 0.102 0.230 0.252 0.391 0.145 

  
Bias 0.079 0.091 0.098 0.111 0.174 0.079 

  
Variance 0.066 0.011 0.131 0.046 0.217 0.066 

  
Noise 0.000 0.000 0.000 0.095 0.000 0.000 

  
Variance-Bias Ratio 0.847 0.124 1.340 0.419 1.248 0.847 

  
Percent Change from 

Raw 
~ 70.193 158.349 173.704 269.903 100.000 

 
Random Forest Total Loss 0.108 0.093 0.122 0.127 0.149 0.108 

  
Bias 0.081 0.093 0.077 0.082 0.079 0.081 

  
Variance 0.027 0.000 0.045 0.127 0.070 0.027 

  
Noise 0.000 0.000 0.000 0.081 0.000 0.000 

  
Variance-Bias Ratio 0.337 0.000 0.587 1.554 0.881 0.337 

  
Percent Change from 

Raw 
~ 86.254 112.596 117.182 138.182 100.000 

 
SVM Total Loss 0.093 0.093 0.093 0.093 0.093 0.093 

  
Bias 0.093 0.093 0.093 0.093 0.093 0.093 

  
Variance 0.000 0.000 0.000 0.000 0.000 0.000 

  
Noise 0.000 0.000 0.000 0.000 0.000 0.000 

  
Variance-Bias Ratio 0.000 0.000 0.000 0.000 0.000 0.000 

  
Percent Change from 

Raw 
~ 100.000 100.000 100.000 100.000 100.000 

 
Gradient Boosting Total Loss 0.103 0.094 0.171 0.213 0.237 0.103 

  
Bias 0.081 0.093 0.086 0.109 0.105 0.081 

  
Variance 0.021 0.001 0.085 0.003 0.132 0.021 

  
Noise 0.000 0.000 0.000 0.102 0.000 0.000 

  
Variance-Bias Ratio 0.261 0.015 0.985 0.025 1.263 0.261 

  
Percent Change from 

Raw 
~ 92.110 166.500 207.969 230.980 100.000 

 
Neural Network Total Loss 0.093 0.093 0.093 0.093 0.093 0.093 
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Bias 0.093 0.093 0.093 0.093 0.093 0.093 

  
Variance 0.000 0.000 0.000 0.000 0.000 0.000 

  
Noise 0.000 0.000 0.000 0.000 0.000 0.000 

  
Variance-Bias Ratio 0.001 0.000 0.000 0.000 0.004 0.001 

  
Percent Change from 

Raw 
~ 99.989 99.985 99.987 100.166 100.055 

A.2.5. Arrhythmia Data with Binary Target 

Table A17. Bias-variance decomposition results for arrhythmia data with binary target. 

Data Model Normalization None Z-standard Min-Max MaxAbs (−1, 1) 
Quantile 

Transform 
Quantile 

Normalize 

Arrhythmia data 
with binary target 

Logistic Total Loss 0.065 0.875 0.755 0.636 0.905 0.064 

  
Bias 0.046 0.828 0.650 0.476 0.877 0.046 

  
Variance 0.018 0.047 0.105 0.144 0.027 0.018 

  
Noise 0.000 0.000 0.000 0.016 0.000 0.000 

  
Variance-Bias Ratio 0.398 0.057 0.161 0.302 0.031 0.395 

  
Percent Change from 

Raw 
~ 1350.982 1165.815 983.032 1397.399 98.683 

 
Decision Tree 

       

  
Total Loss 0.034 0.094 0.099 0.098 0.100 0.034 

  
Bias 0.018 0.056 0.055 0.056 0.055 0.018 

  
Variance 0.016 0.038 0.044 0.046 0.044 0.016 

  
Noise 0.000 0.000 0.000 0.004 0.000 0.000 

  
Variance-Bias Ratio 0.907 0.691 0.796 0.834 0.798 0.907 

  
Percent Change from 

Raw 
~ 274.608 290.841 286.111 291.056 100.000 

 
Random Forest Total Loss 0.059 0.111 0.172 0.153 0.160 0.059 

  
Bias 0.059 0.057 0.063 0.062 0.062 0.059 

  
Variance 0.001 0.054 0.108 0.127 0.098 0.001 

  
Noise 0.000 0.000 0.000 0.035 0.000 0.000 

  
Variance-Bias Ratio 0.013 0.937 1.708 2.057 1.594 0.013 

  
Percent Change from 

Raw 
~ 186.609 289.307 258.218 268.824 100.000 

 
SVM Total Loss 0.059 0.059 0.059 0.059 0.059 0.059 

  
Bias 0.059 0.059 0.059 0.059 0.059 0.059 

  
Variance 0.000 0.000 0.000 0.000 0.000 0.000 

  
Noise 0.000 0.000 0.000 0.000 0.000 0.000 

  
Variance-Bias Ratio 0.000 0.000 0.000 0.000 0.000 0.000 

  
Percent Change from 

Raw 
~ 100.000 100.000 100.000 100.000 100.000 
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Gradient Boosting Total Loss 0.033 0.061 0.061 0.061 0.061 0.033 

  
Bias 0.019 0.059 0.059 0.059 0.059 0.019 

  
Variance 0.014 0.002 0.003 0.003 0.003 0.014 

  
Noise 0.000 0.000 0.000 0.000 0.000 0.000 

  
Variance-Bias Ratio 0.768 0.036 0.046 0.046 0.047 0.768 

  
Percent Change from 

Raw 
~ 184.039 185.689 185.823 185.800 100.000 

 
Neural Network Total Loss 0.071 0.387 0.059 0.061 0.074 0.073 

  
Bias 0.057 0.206 0.059 0.058 0.057 0.057 

  
Variance 0.014 0.181 0.000 0.000 0.018 0.015 

  
Noise 0.000 0.000 0.000 0.003 0.000 0.000 

  
Variance-Bias Ratio 0.251 0.880 0.000 0.000 0.309 0.268 

  
Percent Change from 

Raw 
~ 547.100 83.160 86.268 104.927 102.682 

A.2.6. Forest Fires Data with Continuous Target 

Table A18. Bias-variance decomposition results for forest fires data with continuous target. 

Min-Max MaxAbs (−1, 1) Quantile Transform Quantile Normalize 

MSE MSE MSE MSE 

54,418,873.320 61,656,927.105 77,782,033.117 8254.563 

38,494,821.256 43,230,677.674 12,450,153.080 8188.901 

15,924,052.064 15,924,052.064 65,331,880.037 65.662 

0.000 2,502,197.367 0.000 0.000 

0.414 0.368 5.247 0.008 

659,258.104 746,943.595 942,291.388 100.000 

191,218.064 191,189.902 191,069.504 14,564.197 

82,269.473 82,240.074 82,166.683 9705.018 

108,948.592 108,948.592 108,902.820 4859.179 

0.000 1.237 0.000 0.000 

1.324 1.325 1.325 0.501 

1312.932 1312.739 1311.912 100.000 

83,921.663 83,911.156 83,802.232 9973.155 

60,221.253 60,210.717 60,139.045 9118.659 

23,700.410 23,700.410 23,663.187 854.497 

0.000 0.029 0.000 0.000 

0.394 0.394 0.393 0.094 

841.476 841.370 840.278 100.000 

8540.229 8542.123 8535.867 8527.384 
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8539.941 8541.850 8535.546 8527.287 

0.288 0.288 0.321 0.096 

0.000 0.014 0.000 0.000 

0.000 0.000 0.000 0.000 

100.151 100.173 100.099 100.000 

173,769.259 173,744.792 173,578.379 12,412.847 

108,617.796 108,588.723 108,475.548 9842.247 

65,151.463 65,151.463 65,102.831 2570.601 

0.000 4.606 0.000 0.000 

0.600 0.600 0.600 0.261 

1399.915 1399.717 1398.377 100.000 

54,421,909.843 61,660,412.813 77,784,164.639 8253.828 

38,495,662.258 43,234,843.780 12,450,637.226 8190.207 

15,926,247.585 15,926,247.585 65,333,527.413 63.621 

0.000 2,499,321.449 0.000 0.000 

0.414 0.368 5.247 0.008 

659,345.259 747,042.891 942,389.202 99.999 

A.2.7. Solar Flares Data with Continuous Target 

Table A19. Bias-variance decomposition results for solar flares data with continuous target. 

Data Model Normalization None Z-standard Min-Max MaxAbs (−1, 1) 
Quantile 

Transform 
Quantile 

Normalize 

Solar Flare Data 
- Continuous 

Target 
Linear Type of Loss MSE MSE MSE MSE MSE MSE 

  
Total Loss 0.376 0.457 0.376 0.376 0.376 0.376 

  
Bias 0.346 0.454 0.345 0.346 0.346 0.345 

  
Variance 0.030 0.002 0.031 0.031 0.030 0.031 

  
Noise 0.000 0.000 0.000 0.001 0.000 0.000 

  
Variance-Bias Ratio 0.087 0.005 0.089 0.089 0.087 0.089 

  
Percent Change from 

Raw 
~ 121.569 100.043 100.000 100.000 100.127 

 
Decision Tree 

       

  
Total Loss 0.769 0.734 0.769 0.769 0.769 0.772 

  
Bias 0.534 0.408 0.534 0.534 0.534 0.534 

  
Variance 0.235 0.326 0.235 0.235 0.235 0.237 

  
Noise 0.000 0.000 0.000 0.000 0.000 0.000 

  
Bias-Variance Ratio 0.440 0.799 0.440 0.440 0.440 0.444 

  
Percent Change from 

Raw 
~ 95.427 100.000 100.000 100.000 100.413 
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Continued 

 
Random Forest Total Loss 0.408 0.459 0.408 0.408 0.408 0.408 

  
Bias 0.380 0.459 0.380 0.380 0.380 0.380 

  
Variance 0.028 0.000 0.028 0.028 0.028 0.028 

  
Noise 0.000 0.000 0.000 0.000 0.000 0.000 

  
Bias-Variance Ratio 0.074 0.000 0.074 0.074 0.074 0.074 

  
Percent Change from 

Raw 
~ 112.494 100.000 100.000 100.000 99.989 

 
SVM Total Loss 0.457 0.459 0.457 0.457 0.457 0.457 

  
Bias 0.454 0.459 0.455 0.454 0.455 0.455 

  
Variance 0.003 0.000 0.002 0.002 0.002 0.003 

  
Noise 0.000 0.000 0.000 0.000 0.000 0.000 

  
Bias-Variance Ratio 0.006 0.000 0.005 0.005 0.005 0.006 

  
Percent Change from 

Raw 
~ 100.520 100.094 100.000 100.094 100.018 

 
Gradient Boosting Total Loss 0.475 0.495 0.474 0.475 0.475 0.474 

  
Bias 0.386 0.452 0.386 0.386 0.386 0.386 

  
Variance 0.089 0.043 0.089 0.089 0.089 0.089 

  
Noise 0.000 0.000 0.000 0.000 0.000 0.000 

  
Bias-Variance Ratio 0.230 0.095 0.230 0.230 0.230 0.230 

  
Percent Change from 

Raw 
~ 104.234 99.950 100.000 100.019 99.971 

 
Neural Network Total Loss 0.376 0.459 0.382 0.376 0.380 0.376 

  
Bias 0.346 0.454 0.343 0.346 0.343 0.346 

  
Variance 0.030 0.006 0.039 0.039 0.037 0.030 

  
Noise 0.000 0.000 0.000 0.009 0.000 0.000 

  
Bias-Variance Ratio 0.087 0.012 0.114 0.114 0.107 0.087 

  
Percent Change from 

Raw 
~ 122.285 101.825 100.017 101.063 100.011 

A.2.8. Auto MPG Data with Continuous Target 

Table A20. Bias-variance decomposition results for auto mpg data with continuous target. 

Data Model Normalization None Z-standard Min-Max MaxAbs (−1, 1) 
Quantile  

Transform 
Quantile 

Normalize 

Auto mpg Data 
- Continuous 

Target 
Linear Type of Loss MSE MSE MSE MSE MSE MSE 

  
Total Loss 12.98046102 294,549,287 21.07621525 10,679,343,815 1,330,291,933 12.98015593 

  
Bias 12.26544827 28,970,4291.2 15.90522095 10,498,618,797 1,271,499,879 12.26513305 

  
Variance 0.715012746 4,844,995.802 5.170994305 5.170994305 58,792,054.55 0.715022881 

  
Noise 0.000 0.000 0.000 180,725,013.172 0.000 0.000 

  
Variance-Bias 

Ratio 
0.058 0.017 0.325 0.000 0.046 0.058 

  
Percent Change 

from Raw 
~ 2,269,174,312.476 162.369 82,272,453,970.192 10,248,418,231.961 99.998 
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Continued 

 
Decision 

Tree        

  
Total Loss 20.35952034 192.7351085 192.3863593 192.6548085 192.6548085 20.34683051 

  
Bias 11.75359202 190.2749575 189.3929514 189.6552294 189.6552294 11.73801808 

  
Variance 8.605928322 2.460151 2.993407966 2.993407966 2.999579076 8.608812432 

  
Noise 0.000 0.000 0.000 0.006 0.000 0.000 

  
Bias-Variance 

Ratio 
0.732 0.013 0.016 0.016 0.016 0.733 

  
Percent Change 

from Raw 
~ 946.658 944.945 946.264 946.264 99.938 

 
Random 

Forest 
Total Loss 13.88021356 198.0505356 196.9833525 196.9741881 196.9799559 13.87697119 

  
Bias 12.26761708 197.5658196 196.3927268 196.3792721 196.3848908 12.2658974 

  
Variance 1.612596483 0.484716 0.59062578 0.59062578 0.595065085 1.611073788 

  
Noise 0.000 0.000 0.000 0.004 0.000 0.000 

  
Bias-Variance 

Ratio 
0.131 0.002 0.003 0.003 0.003 0.131 

  
Percent Change 

from Raw 
~ 1426.855 1419.167 1419.101 1419.142 99.977 

 
SVM Total Loss 64.88569492 65.64744407 66.1892 65.76787458 65.50859322 64.88569492 

  
Bias 64.42644 65.51012007 65.930896 65.32432358 65.23181822 64.42644 

  
Variance 0.459254915 0.137324 0.258304 0.258304 0.276775 0.459254915 

  
Noise 0.000 0.000 0.000 0.185 0.000 0.000 

  
Bias-Variance 

Ratio 
0.007 0.002 0.004 0.004 0.004 0.007 

  
Percent Change 

from Raw 
~ 101.174 102.009 101.360 100.960 100.000 

 
Gradient 
Boosting 

Total Loss 12.87477458 165.7410966 147.1753051 147.0851763 147.0084356 12.87114746 

  
Bias 9.470313237 158.7233288 138.9423038 138.8274936 138.7787025 9.467715856 

  
Variance 3.404461339 7.017767822 8.233001305 8.233001305 8.22973311 3.403431602 

  
Noise 0.000 0.000 0.000 0.025 0.000 0.000 

  
Bias-Variance 

Ratio 
0.359 0.044 0.059 0.059 0.059 0.359 

  
Percent Change 

from Raw 
~ 1287.332 1143.129 1142.429 1141.833 99.972 

 
Neural 

Network 
Total Loss 19.39505593 295,027,446.4 5,028,226,627 10,679,463,722 1,330,243,795 19.17344576 

  
Bias 16.20878464 290,183,140.4 4,945,080,967 10,498,761,102 1,271,459,586 16.07586747 

  
Variance 3.186271297 4,844,306.03 83,145,660.64 83,145,660.64 58,784,209.06 3.097578297 

  
Noise 0.000 0.000 0.000 97,556,959.755 0.000 0.000 

  
Bias-Variance 

Ratio 
0.197 0.017 0.017 0.008 0.046 0.193 

  
Percent Change 

from Raw 
~ 1,521,147,695.846 25,925,300,988.752 55,062,814,767.424 6,858,674,704.191 98.857 
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Appendix B 
B.1. Simulations 
B.1.1. Bivariate Normal Data with Binary Target 

 
Figure B1. Bias-variance decomposition for bivariate normal data with binary target. 
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B.1.2. Bivariate Normal Data with Continuous Target 

 
Figure B2. Bias-variance decomposition for bivariate normal data with continuous target. 
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B.1.3. Bivariate Normal Data with Poisson Target 

 
Figure B3. Bias-variance decomposition for bivariate normal data with poisson target. 
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B.1.4. Ranked Data with Binary Target 

 
Figure B4. Bias-variance decomposition for ranked data with binary target. 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.4236/ojs.2020.105046


J. M. Rudd, H. G. Ray 
 

 

DOI: 10.4236/ojs.2020.105046 794 Open Journal of Statistics 
 

B.1.5. Ranked Data with Continuous Target 

 
Figure B5. Bias-variance decomposition for ranked data with continuous target. 
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B.1.6. Ranked Data with Poisson Target 

 
Figure B6. Bias-variance decomposition for ranked data with poisson target. 
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B.1.7. Categorical Data with Binary Target 

 
Figure B7. Bias-variance decomposition for categorical data with binary target. 
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B.1.8. Categorical Data with Continuous Target 

 
Figure B8. Bias-variance decomposition for categorical data with continuous target. 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.4236/ojs.2020.105046


J. M. Rudd, H. G. Ray 
 

 

DOI: 10.4236/ojs.2020.105046 798 Open Journal of Statistics 
 

B.1.9. Categorical Data with Poisson Target 

 
Figure B9. Bias-variance decomposition for categorical data with poisson target. 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.4236/ojs.2020.105046


J. M. Rudd, H. G. Ray 
 

 

DOI: 10.4236/ojs.2020.105046 799 Open Journal of Statistics 
 

B.1.10. Mixed Data with Binary Target 

 
Figure B10. Bias-variance decomposition for mixed data with binary target. 
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B.1.11. Mixed Data with Continuous Target 

 
Figure B11. Bias-variance decomposition for mixed data with continuous target. 
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B.1.12. Mixed Data with Poisson Target 

 
Figure B12. Bias-variance decomposition for mixed data with poisson target. 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.4236/ojs.2020.105046


J. M. Rudd, H. G. Ray 
 

 

DOI: 10.4236/ojs.2020.105046 802 Open Journal of Statistics 
 

B.2. Benchmark Data Results 
B.2.1. Wine Quality Data 

 
Figure B13. Bias-variance decomposition for wine quality data with binary target. 
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B.2.2. Breast Cancer Data 

 
Figure B14. Bias-variance decomposition for breast cancer data with binary target. 
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B.2.3. Voting Data 

 
Figure B15. Bias-variance decomposition for congressional voting data with binary target. 
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B.2.4. Abalone Data 

 
Figure B16. Bias-variance decomposition for abalone data with binary target. 
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B.2.5. Arrhythmia Data 

 
Figure B17. Bias-variance decomposition for arrhythmia data with binary target. 
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B.2.6. Forest Fires Data 

 
Figure B18. Bias-variance decomposition for forest fires data with continuous target. 
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B.2.7. Solar Flares Data 

 
Figure B19. Bias-variance decomposition for solar flares data with continuous target. 
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B.2.8. Auto MPG Data 

 
Figure B20. Bias-variance decomposition for auto MPG data with continuous target. 
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