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Abstract 
Heteroscedasticity and multicollinearity are serious problems when they exist 
in econometrics data. These problems exist as a result of violating the as-
sumptions of equal variance between the error terms and that of indepen-
dence between the explanatory variables of the model. With these assumption 
violations, Ordinary Least Square Estimator (OLS) will not give best linear 
unbiased, efficient and consistent estimator. In practice, there are several 
structures of heteroscedasticity and several methods of heteroscedasticity de-
tection. For better estimation result, best heteroscedasticity detection me-
thods must be determined for any structure of heteroscedasticity in the pres-
ence of multicollinearity between the explanatory variables of the model. In 
this paper we examine the effects of multicollinearity on type I error rates of 
some methods of heteroscedasticity detection in linear regression model in 
other to determine the best method of heteroscedasticity detection to use 
when both problems exist in the model. Nine heteroscedasticity detection 
methods were considered with seven heteroscedasticity structures. Simulation 
study was done via a Monte Carlo experiment on a multiple linear regression 
model with 3 explanatory variables. This experiment was conducted 1000 
times with linear model parameters of 0 4β = , 1 0.4β = , 2 1.5β =  and 

3 3.6β = . Five (5) levels of mulicollinearity are with seven (7) different sam-
ple sizes. The method’s performances were compared with the aids of set 
confidence interval (C.I.) criterion. Results showed that whenever multicolli-
nearity exists in the model with any forms of heteroscedasticity structures, 
Breusch-Godfrey (BG) test is the best method to determine the existence of 
heteroscedasticity at all chosen levels of significance. 
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1. Introduction 

The violation of the assumption of constant variance of error term in linear re-
gression model results into heteroscedasticity problem. In practice, the nature of 
heteroscedasticity is usually unknown [1]. The consequences of OLS in the pres-
ence of heteroscedasticity are not BLUE, Inefficiency and Invalid Hypothesis 
testing. Given this fact, the detection of heteroscedasticity in a linear regression 
model needs to be identified. In reality, multicollinearity may co-exist with the 
problem of heteroscedasticity. The condition of severe non-orthogonality is re-
ferred to as a problem of multicollinearity. Multicollinearity exist when there is 
high linear relationships between two or more explanatory variables. According 
to [2] and [3], one should be very cautious about any conclusion with regression 
analysis when there is multicollinearity in the model, because [4], opined that 
effect of multicollinearity on type I error rates of the ordinary least square esti-
mator is trivial in which the error rates exhibit no or little significance difference 
from the pre-selected level of significance. This paper attempts to determine the 
effects of multicollinearity on type I error rate of some heteroscedasticity detec-
tion methods in linear regression model. The heteroscedasticity detection me-
thods chosen for this study are; Breusch Pagan test (BPG), Park test (PT), 
Spearman’s Rank Correlation test (ST), Non-Constant Variation Score test (NVST), 
Glejser test (GLJ), Goldfeld-Quandt test (GFQ), Breusch-Godfrey test (BG), 
Harrison Mc Cabe test (HM) and White test (WT). 

2. Background 

Regression analysis is a statistical process for estimating the relationships among 
variables. It includes many techniques for modeling and analyzing several va-
riables. Simple linear regression model postulated the relationship between de-
pendent variable and one exogenous variable while multiple linear regression 
examine the relationship between dependent variable and a set of explanatory 
variables by fitting a linear equation to observed data. However, one of the as-
sumption of classical linear regression model is that the variance of the error 
term is constant across observations (homoscedasticity). When homoscedastici-
ty assumption is violated, it then leads to heteroscedasticity. Heteroscedasticity is 
a major concern in the application of regression analysis, which always occurs in 
cross sectional data, when the variances of the error terms are no longer con-
stant. It is often investigated with the ideology of relationship between error 
terms and exogenous variables. According to [5] and [1], the consequences of 
using the Ordinary Least Square(OLS) estimator to obtain estimates of the pop-
ulation parameters when there is heteroscedasticity includes; inefficient parame-
ter estimates and biased variance estimates which make standard hypothesis test 
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inappropriate. In practice, the nature of heteroscedasticity is usually unknown 
[1]. There are test procedures for establishing specific structures of heterosce-
dasticity. Brief literature reviews on some of these heteroscedasticity tests are as 
follows. 

2.1. Breush-Pagan Test (BP) 

[6] developed a test used in examining the presence of heteroscedasticity in a li-
near regression model. The variance of the error term was tested from a regres-
sion and is dependent on the value of the independent variables. [3] illustrates 
this test by considering the following: 

Given the regression model 

0 1Y Xβ β µ= + +                        (1) 

where Y is the dependent variables, X is the exogenous or explanatory variables, 
μ is the error term and β’s are the regression coefficient. 

[3] suggests that to determine the existence of heteroscedasticity in a given 
data the following procedures must followed; 

Apply OLS in the model and compute the regression residuals. 
Perform the auxiliary regression 

2
1 2 2i i p pi iy y z y zµ η= + + + +                   (2) 

where z could be partly replaced by independent variable X. 
The test statistic is the result of the coefficient of determination of the aux-

iliary regression in (2) and sample size n with LM = nR2. The test statistic is 
asymptotically distributed as 2

1pχ −  under the null hypothesis of homoscedasticity. 

2.2. Park Test (PT) 

[5] proposes a LM test, the test assumes the proportionality between error va-
riance and the square of the regressor. According to [1] and [5], LM test formu-
lizes the graphical method by suggesting that 2σ  is a particular function of the 
explanatory variables. Park illustrates this test by regressing the natural log of 
squared residuals against the independent variable; if the independent variable 
has a significant coefficient, the data are likely to be heteroscedasticity in nature. 
Given the model below 

2 2 ev
iX βσ σ=                          (3) 

We need to find the log 
2 2ln ln lni i iX vσ σ β= + +                     (4) 

where iv  is the stochastic disturbance term, since 2
iσ  is not known, Park sug-

gest using 2ˆiu  as a proxy and run the following regression 
2 2ln ln ln lni i i i iX v X vµ σ β α β= + + = + +              (5) 

If β  turns out to be statistically significant, we there say that heteroscedas-
ticity is present in the data and if it turns out to be insignificant, we may accept 
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the assumption of homoscedasticity. 

2.3. Spearman’s Rank Correlation Test (ST) 

Spearman’s Rank correlation [7] assumes that the variance of the disturbance 
term is either increasing or decreasing as X increases and there will be a correla-
tion between the absolute size of the residuals and the size of X in an OLS re-
gression. The data on X and the residuals are both ranked. The rank correlation 
coefficient is defined as 

( )

2

, 2
1 6 ; 1 1

1

i
i

X e

d
r r

n n

 
 = − − ≤ ≤ −  

∑
                  (6) 

where id  is the difference between the rank of X and the rank of e in observa-
tions i and n is the number of individual ranked. 

2.4. Glejser Test (GLJ) 

[8] developed a test similar to the Park test, after obtaining the residual ( iu ) 
(from the OLS regression. [8] suggests that regressing the absolute value of the 
estimated residuals on the explanatory variables that is thought to be closely as-
sociated with the heteroscedastic variance and attempts to determine whether as 
the independent variable increase in size, the variance of the observed dependent 
variable increases. This is done by regressing the error term of the predicted 
model against the independent variable. A high t-statistic (or low prob-value) for 
the estimate coefficient of the independent variable(s) would indicate the pres-
ence of heteroscedasticity. 

2.5. Goldfeld-Quandt Test (GFQ) 

[9] developed an alternative test to LM test, applying this test requires to per-
form a sequence of intermediate stages. First step involves to arrange the obser-
vations either is ascending or in descending order. Another step aims to divide 
the ordered sequence into two equal sub-sequences by omitting an arbitrary 
number P of the central observation. Consequently, the two equal sub-sequences  

will summarize each of them a number of 
2

n p−  observations. We then compute  

two different OLS regression the first one for the lowest values of iX  and the 
second for the highest values of iX , in addition, obtain the residual sum of 
squares (RSS) for each regression equation, RSS1 for the lowest values of iX  
and RSS2 for the highest values of iX . An F-statistic is calculated based on the 
following formula: 

1

2

RSS
RSS

F =                           (7) 

The F-statistics is distributed with 2
2

N P K− −  degrees of freedom for both  
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numerator and denominator. Subsequently, compare the value obtained for the 
F-statistic with the tabulated values of F-critical for the specified number of de-
grees of freedom and a certain confidence level. If F-statistic is higher than 
F-critical, the null hypothesis of homoscedasticity is rejected and the presence of 
heteroscedasticity is confirmed. 

2.6. Breusch-Godfrey Test (BG) 

[10] developed a LM test of the null hypothesis of no heteroscedasticity against 
heteroscedasticity of the form ( )2 2

t th zσ σ α′= , where tz  is a vector of inde-
pendent variables. This vector contains the regressors from the original least 
square regression. The test is performed by completing an auxiliary regression of 
the squared residuals from the original equation on (1, tz ). The test statistic 
follows a Chi-square distribution with degrees of freedom equal to the number 
of z under the null hypothesis of no heteroscedasticity. 

2.7. White’s Test (WT) 

[11] proposed a statistical test that establishes whether the variance of the error 
in a regression model is constant. This test is generally, unrestricted and widely 
used for detecting heteroscedasticity in the residual from a least square regres-
sion. Particularly, White test is a test of heteroscedasticity in OLS residual. The 
null hypothesis is that there is no heteroscedasticity. The procedure for running 
the test is shows as follows: 

Given the model 

1 2 2 3 3i i i iY X X uβ β β= + + +                     (8) 

Estimate Equation (8) and obtained the residual ˆiu  we then run the follow-
ing auxiliary regression 

2 2 2
1 2 2 3 3 4 2 5 3 6 2 3ˆi i i i i i i iu b b X b X b X b X b X x v= + + + + + +           (9) 

The null hypothesis of homoscedasticity is 0 1 2: 0mH b b b= = = =  where 

0H  highlights the fact that the variance of the residual is homoscedasticity i.e., 
( ) ( ) 2

i ivar Var Yε σ= = . The alternative hypothesis is 1H  aims the fact that the 
variance of the residual is heteroscedasticity ( ) ( ) 2

i i ivar Var Yε σ= =  that is at 
least one of the bi’s is different from zero, the null hypothesis is rejected. The 
LM-statistic = nR2 follows as 2χ  distribution characterized by m − 1, where n 
is the number of observation established to determine the auxiliary regression 
and R2 is the coefficient of determination. Finally, we assume to reject the null 
hypothesis and to highlight the presence of heteroscedasticity when LM-statistic 
is higher than the critical value. 

2.8. Harrison McCabe Test (HM) 

[12] proposes a test to check the heteroscedasticity of the residuals. The break-
point in the variances is set by default to the half of the sample. The p-value is 
estimated-using simulation. If the binary quality measure is false, then the ho-
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moscedasticity hypothesis can be rejected with respect to the given level. 

2.9. Non-Constant Variation Score Test (NVST) 

[5] [13] and [14] develop a test of null hypothesis ( )2 2
0 1 2: / , , , kH E X X Xε σ=  

against an alternative ( 1H ) hypothesis with a general functional form. We recall 
the central issue is whether ( )2 2

iE wε σ=  is related to X and iX . Then, a sim-
ple strategy is to use OLS residuals to estimate disturbance and check the rela-
tionship between 2

iε  and iX  and that of 2
iX . Suppose that the relationship 

between 2
iε  and X is linear 

2 X vε α= +                          (10) 

Then, we test 0 : 0H α =  against 1 : 0H α ≠  and base the test on how the 
squared OLS residual ε  correlate with X. 

3. Materials and Method 

Consider the regression model of the form: 

0 1 1 2 2t t t p pt tY X X X uβ β β β= + + + + +              (11) 

( )2~ 0,t tu N σ ; 

where tu  is the error term and 2
tσ  is the heteroscedasticity variance that is 

considered. tY  is the dependent variable, ptX  is the explanatory variables that 
contain multicollinearity and pβ  is the regression coefficient of the model. A 
Monte Carlo Experiment was performed 1000 times, in generating the data for 
the simulation study. The error term containing different explanatory variables, 
heteroscedasticity structure and dependent variable were generated. The proce-
dure used by [15] [16] and [17], was adopted to generate explanatory variables 
in this study. This is given as: 

( )
1

2 21ti ti tpX z zρ ρ= − ∗ +                    (12) 

1, , 2,3, ,t n=   and 1,2,3, ,i p= 
 

where tiZ  is the independent standard normal distribution with mean zero and 
unit variance. Rho ( ρ ) is the correlation between any two explanatory variables 
and p is the number of explanatory variables. In this study, seven (7) error va-
riance containing heteroscedasticity structures were considered, which are; 

( )22 2 2
2t tXσ σ=                         (13) 

( )2 2 2
2t tXσ σ=                         (14) 

( )2 2
2t tXσ σ=                         (15) 

( )22 2
t tE yσ σ  =                         (16) 

( )2 2
t tE yσ σ  =                          (17) 

( )2 2
0 1 1 2 2 3 3expt t t tX X Xσ σ β δβ δβ δβ = + + +  , where 0δ =  and 0.2  (18) 
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( )22 2 2
21t tXσ σ= +                       (19) 

these tests were investigated and observed under type I error via the hypothe-
sized values, to achieve this, Monte Carlo experiments is employed. 

Moreover, in order to determine the dependent variables, Equation (1) was 
used in conducting the Monte Carlo experiments. The true values of the model 
parameters were fixed as follows; 0 4β = , 1 0.4β = , 2 1.5β = , 3 3.6β = . The 
sample sizes varied from 15, 20, 30, 40, 50, 100 and 250. At a specified value of 
sample size and multicollinearity level, the fixed X’s are first generated; followed 
by the tu  and the values of tY  were then determined. Then tY  and X’s were 
then treated as real life data set while the methods were applied. 

The hypothesis about the methods of detecting heteroscedasticity under dif-
ferent forms of heteroscedasticity structures was tested at (10%, 5% and 1%) le-
vels of significance to examine the (type I error rate) of each error terms. These 
intervals were referred to as the estimated significance level. The intervals was 
set to know the number of times each significance level falls between the range 
set for the confidence interval of each method of detecting heteroscedasticity in 
order to reject the hypothesis or not. At each level of significance; the interval set 
for 0.1α =  is (0.09 to 0.14), the interval set for 0.05α =  is (0.045 to 0.054), 
and the interval set for 0.01α =  is (0.009 to 0.014). 

Sample sizes were classified as small (15 30n≤ ≤ ), medium ( 40 50n≤ ≤ ) 
and large (100 250n≤ ≤ ). 

Multicollinearity levels were classified, the least value considered as low 
( 0.8ρ = ), high ( 0.9ρ = ), very high ( 0.95ρ = ), Severe ( 0.99ρ = ) and very se-
vere ( 0.999ρ = ). 

At a particular α  level a confidence interval was set for 10 percent, 5 percent 
and 1 percent, the number of times α̂  falls in between, the set confidence in-
terval was counted over the sample size, multicollinearity and heteroscedasticity 
structures. The heteroscedasticity test with highest number of count is chosen to 
be the best. 

ˆ r
R

α =                            (20) 

where r is the number of times α̂  falls in between the confidence interval set at 
a particular significance level. While R is the number of times the experiment 
was carried out. At a given α , the number of time α̂  falls in between the set 
confidence interval at a particular sample sizes, multicollinearity levels and he-
teroscedasticity structures for each of the heteroscedasticity test was counted and 
the method with highest count is the best. 

Procedure to Determine the Best Method of Detecting 
Heteroscedasticity When Multicollinearity Exist 

1) α , which is the probability of committing type I error was chosen to be 
(10%, 5% and 1%). 
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2) Calculate α̂  where ˆ r
R

α = , r is the number of times 0H  was rejected by  
a particular heteroscedasticity test in a particular sample sizes over a level of 
multicollinearity with a given heterosceasticity form. R is the number of replica-
tions. 

3) Set confidence interval for each of the chosen level of the significance as 
follows; 0.1α =  is (0.09 to 0.14), the interval set for 0.05α =  is (0.045 to 
0.054), and the interval set for 0.01α =  is (0.009 to 0.014). 

4) At a given α , count the number of time α̂  falls in between the set confi-
dence interval at a particular sample sizes, multicollinearity levels and heteros-
cedasticity forms for each of the heteroscedasticity detection test. 

5) The heteroscedasticity detection method with highest count in (4) is the 
best. 

4. Results and Discussion 

Results obtained from the simulation study show the number of times the esti-
mated probability of type I error ( α̂ ) fall in between the set confidence interval 
for 10%α = , 5% and 1% was counted over the sample sizes and heteroscedas-
ticity structures for each heteroscedasticity detection method at different levels 
of multicollinearity as presented in Table 1. 

 
Table 1. The number of time estimated probability of type I error α̂  fall in between the set confidence interval over the sample 
sizes, levels of multicollinearity and heteroscedasticity structures for various heteroscedasticity detection methods investigated. 

Rho Method Estimated Alpha = 0.1 Estimated Alpha = 0.05 Estimated Alpha = 0.01 

sample size (n) sample size (n) sample size (n) 

15 20 30 40 50 100 250 Total 15 20 30 40 50 100 250 Total 15 20 30 40 50 100 250 Total 

0.8 BPG 4 4 0 0 0 0 0 8 0 3 0 0 0 0 0 3 0 0 1 2 0 0 0 3 

PT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

ST 4 2 0 0 0 0 1 7 1 0 0 0 0 0 0 1 2 1 1 0 0 0 1 5 

NVST 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

GLJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

GFQ 0 0 0 0 3 3 0 6 1 0 0 1 0 0 0 2 0 0 1 4 0 0 0 5 

BG 3 3 6 4 4 6 3 29 2 1 0 2 1 1 3 10 1 3 3 2 3 1 3 16 

HM 0 2 1 0 3 3 0 9 0 0 0 1 0 0 0 1 0 2 0 3 0 0 0 5 

WT 0 0 0 4 2 3 0 9 0 0 0 0 0 2 0 2 0 0 0 2 0 1 0 3 

0.9 BPG 3 2 0 0 0 0 0 5 0 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 

PT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

ST 0 3 0 0 0 2 0 5 1 2 0 0 0 0 0 3 1 2 0 0 0 1 0 4 

NVST 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

GLJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

GFQ 1 0 1 0 3 0 0 5 0 0 0 0 0 0 0 0 0 0 1 4 1 0 0 6 

BG 3 6 5 4 4 7 3 32 2 1 1 2 1 1 3 11 1 4 2 2 3 2 2 16 
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Continued 

 HM 1 2 2 0 3 0 0 8 0 0 0 1 0 0 0 1 0 1 0 4 1 0 0 6 

WT 0 0 0 3 2 4 0 9 0 0 0 1 1 1 0 3 0 0 0 1 0 1 0 2 

0.95 BPG 1 2 0 0 0 0 0 3 0 1 0 0 0 0 0 1 0 2 0 0 0 0 0 2 

PT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

ST 0 3 0 0 0 3 0 6 0 2 0 0 0 2 0 4 1 3 0 0 0 2 0 6 

NVST 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

GLJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

GFQ 2 0 1 0 3 0 0 6 2 0 1 0 1 0 0 4 2 0 0 5 1 0 0 8 

BG 3 5 4 4 5 7 3 31 1 2 2 2 2 0 2 11 1 5 2 3 4 3 3 21 

HM 4 2 1 0 2 0 0 9 0 0 1 1 0 0 0 2 2 1 2 6 1 0 0 12 

WT 0 0 0 4 3 4 0 11 0 0 0 2 0 1 0 3 0 0 0 1 0 2 0 3 

0.99 BPG 1 1 0 0 0 0 0 2 0 1 0 0 0 0 0 1 0 2 0 0 1 0 0 3 

PT 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 2 

ST 0 2 0 0 0 1 0 3 0 1 0 0 0 1 0 2 0 2 0 0 0 1 0 3 

NVST 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

GLJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

GFQ 2 0 1 0 2 0 0 5 0 0 1 2 1 0 0 4 3 0 0 1 1 0 0 5 

BG 3 3 4 5 6 6 3 30 1 1 4 1 2 0 3 12 2 1 3 3 5 2 2 18 

HM 4 2 1 0 2 0 0 9 0 0 0 2 1 0 0 3 1 1 1 3 1 0 0 7 

WT 0 0 0 4 4 2 0 10 0 0 0 3 2 2 0 7 0 0 0 1 0 2 0 3 

0.999 BPG 1 1 0 0 0 0 0 2 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 1 

PT 1 2 0 0 1 1 1 6 0 1 0 0 0 1 0 2 1 1 0 0 0 1 0 3 

ST 0 1 0 0 2 0 0 3 0 1 0 0 0 0 0 1 0 0 0 0 2 0 0 2 

NVST 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

GLJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

GFQ 2 1 1 3 2 0 0 9 0 0 0 1 1 0 0 2 1 0 0 2 0 0 0 3 

BG 3 3 5 5 7 6 3 32 1 0 3 1 4 0 3 12 1 0 3 2 6 2 3 17 

HM 4 2 1 2 3 0 0 12 0 0 0 3 1 0 0 4 2 1 0 3 0 0 0 6 

WT 0 0 0 4 3 3 0 10 0 0 0 1 1 2 0 4 0 0 0 0 0 1 0 1 

Source: Simulated data. 
 

From Table 1, the figures showing the performances of the heteroscedastic-
ity detection method over the levels of multicollinearity were presented for 
ˆ 0.1α = , ˆ 0.05α =  and ˆ 0.01α =  in Figure 1, Figure 2 and Figure 3 respec-

tively. 
From Table 1 and Figure 1, when alpha = 0.1, it was generally observed that 

BG test is the best-performed method over all the structural forms of heterosce-
dasticity and sample sizes when there exist multicollinearity in the model. 
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Figure 1. Figure showing the performances of the heteroscedasticity detection methods 
over the levels of multicollinearity when Alpha = 0.1. 

 
Also, it was observed from Table 1 that; 
1) When multicollinearity level is 0.8 and sample size is 15, BPG and ST me-

thods of heteroscedasticity detection outperformed BG method. 
When multicollinearity level is 0.8 and sample size is 20, BPG method of he-

teroscedasticity detection outperforms BG method. 
When multicollinearity level is 0.8 and sample size is greater than 20 BG me-

thod’s of heteroscedasticity detection outperformed all other methods. 
2) When multicollinearity level is 0.9 BG method of heteroscedasticity detec-

tion performed best than all other methods except at sample size 15, at this in-
stance, BPG method of heteroscedasticity detection outperformed equivalently 
well with BG method. 

3) When multicollinearity level is grater or equal to 0.95, BG method of hete-
roscedasticity detection outperformed all other methods. 

Hence, the performances of BG method of heteroscedasticity detection in-
crease as the level of multicollinearity and sample sizes increases. 

From Table 1 and Figure 2, when alpha = 0.05, it was generally observed that 
BG test is the best-performed method over all the structural forms of heterosce-
dasticity and sample sizes when there exist multicollinearity in the model. 

Also, it was observed from Table 1 that; 
1) When multicollinearity level is 0.8 and sample size is 15, BG method’s of 

heteroscedasticity detection outperformed all other methods except at sample 
size 20 and sample size 100, at these instances, BPG and WT method of heteros-
cedasticity detection out performed BG method of heteroscedasticity detection 
respectively. 

2) When multicollinearity level is 0.9, BG method of heteroscedasticity detec-
tion outperformed all other methods, except when sample size is 15, at this in-
stance ST method of heteroscedasticity detection out performed BG method of  
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Figure 2. Figure showing the performances of the heteroscedasticity detection methods 
over the levels of multicollinearity when Alpha = 0.05. 

 
heteroscedasticity detection. 

3) When multicollinearity level is 0.95 BG method of heteroscedasticity detec-
tion outperformed all other methods except at sample size 40 and sample size 
100, at these instance, WT method of heteroscedasticity detection out performed 
BG method of heteroscedasticity detection respectively. 

4) When multicollinearity level is 0.99 BG method of heteroscedasticity detec-
tion performed best than all other methods except at sample size 10, at this in-
stance, ST method of heteroscedasticity detection outperformed BG method. 

5) When multicollinearity level is grater or equal to 0.999, BG method of he-
teroscedasticity detection outperformed all other methods except at sample size 
15, at these instance, HM method of heteroscedasticity detection compete well 
with BG method of heteroscedasticity detection to outperform it. 

Hence, the performances of BG method of heteroscedasticity detection in-
crease as the level of multicollinearity and sample sizes increases. 

From Table 1 and Figure 3, when ˆ 0.01α = , it was generally observed that 
BG test is the best-performed method of heteroscedasticity detection over all the 
structural forms of heteroscedasticity and sample sizes when there exist multi-
collinearity in the model. 

Also, it was observed from Table 1 that; 
1) When multicollinearity level is 0.8 and sample size is 15, BG method of he-

teroscedasticity detection outperformed all other methods except at sample size 
15 and sample size 100, at these instances, GFQ and ST method of heteroscedas-
ticity detection out performed BG method of heteroscedasticity detection re-
spectively. Also, BPG method of heteroscedasticity detection compete favorably 
well with BG method at sample size 40. 

2) When multicollinearity level is 0.9, BG method of heteroscedasticity detec-
tion outperformed all other methods, except when sample size is 40, at this instance  
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Figure 3. Figure showing the performances of the heteroscedasticity detection methods 
over the levels of multicollinearity when Alpha = 0.01. 

 
GFQ and HM method of heteroscedasticity performed equivalently well to out-
performed BG method of heteroscedasticity detection. 

3) When multicollinearity level is 0.95, BG method’s of heteroscedasticity de-
tection outperformed all other methods except at sample size 15 and sample size 
40, at these instances, GFQ and HM method of heteroscedasticity compete well 
to outperform BG method of heteroscedasticity detection respectively. 

4) When multicollinearity level is 0.99, BG method of heteroscedasticity per-
formed best than all other methods at all sample sizes except at sample size 15 
and sample size 20; at these sample sizes, BPG and ST methods of heteroscedas-
ticity detection performed well and outperformed BG method. 

5) When multicollinearity level is grater or equal to 0.999, BG’s method of he-
teroscedasticity detection outperformed all other methods at all sample sizes ex-
cept at sample size 15 and sample size 20, at these instances, HM’s method of 
heteroscedasticity detection compete well with BG’s method of heteroscedastici-
ty detection to outperform it. 

Hence, the performances of BG’s method of heteroscedasticity detection in-
crease as the level of multicollinearity and sample sizes increases. 

5. Conclusions 

In spite of the level of multicollinearity, heteroscedasticity structures and sample 
size, we are able to conclude from the study on effects of multicollinearity on 
type I error rates of some methods of detecting heteroscedasticity when there 
exist multicollinearity in the model that; 

The perfomances of BG’s method of heteroscedasticity detection increases as 
the multicollinearity level increases at all the levels of significance. 

The perfomances of BG method of heteroscedasticity detection increases as 
the sample size increases at all the levels of significance. 
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Whenever multicollinearity presents in the model with any heteroscedasticity 
structure, BG’s test is the best method for heteroscedasticity detection in the 
model at different levels of significance in all sample size categories. 
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