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Abstract 
There has been a moderate increase in newly diagnosed HIV-infected Minna 
populace, which calls for serious attention. This study used time series data 
based on monthly HIV cases from January 2007 to December 2018 taken 
from the statistical data document on HIV prevalence recorded in General 
Hospital Minna, Niger State. The methodology employed to analyze the data 
is based on mathematical models of ARMA, ARIMA and SARIMA which 
were computed and diagnosed. From the results of parameter estimation of 
the models, ARMA(2, 1) model was the best model among the other 
ARMA models using information criteria (AIC). Diagnostic test was run 
on the ARMA(2, 1) model where the results show that the model was ade-
quate and normally distributed using Box-Lung test and Q-Q plot respec-
tively. Furthermore, ARIMA of first and second differences was estimated 
and ARIMA(1, 0, 1) was the best model from the result of the AIC and diag-
nostic test carried out which revealed that the model was adequate and nor-
mally distributed using Box-Lung and Q-Q plot respectively. Furthermore, 
the results obtained in the ARMA and ARIMA models were used to arrive at 
a combined model given as ARIMA(1, 0, 1) × SARIMA(1, 0, 1)12 which was 
subsequently estimated and found to be adequate from the result of the 
Box-Lung and Q-Q plot respectively. Post forecasting estimation and perfor-
mance evolution were evaluated using the RMSE and MAE. The results 
showed that, ARIMA(1, 0, 1) × SARIMA(1, 0, 1)12 is the best forecasting 
model followed by ARIMA(1, 0, 2) on monthly HIV prevalence in Minna, 
Niger state. 
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1. Introduction 

HIV infection has spread over the last 30 years and has a great impact on health, 
welfare, employment and criminal justice sectors; affecting all social and ethnic 
groups throughout the world. Recent epidemiological data indicate that HIV 
remains a public health issue that persistently drains our economic sector having 
claimed more than 25 million lives over the last three decades [1]. The estimated 
overall number of People Living with HIV (PLWHIV) by the end of 2014 was 
approximately 36.9 (34.3 - 41.4) million and Sub-Saharan Africa was the most 
affected region, having 25.8 (24.0 - 28.7) million PLWHIV and 66% of all people 
with HIV infection living in the region (Yi, 2007). Of all people living with HIV 
globally, 9% of them live in Nigeria [2]. Most cases of HIV infection in Nigeria 
occur via heterosexual means with epidemics more pronounced among the fe-
males [3]. The country already burdened by political instability and endemic po-
litical corruption as a result of almost 33 years of military rule now seems pre-
pared to “wipe out” the virus within a few decades [3]. Notwithstanding the 
progress in institutional reforms and political commitment to tackle the disease, 
the country has seen more citizens placed on life-saving medication of active an-
tiretroviral therapy (AART) to increase the survival of such HIV seropositive in-
dividuals [3]. 

This study reviewed a discussion on the prevalence of HIV in Minna, Niger 
State and developed a best model that predicts the monthly HIV cases in Minna 
by means of the Seasonal Autoregressive Integrated Moving Average (SARIMA) 
with Box-Jenkins Method. HIV which stands for “Human Immunodeficiency 
Virus” is a serious disease that is caused by a virus that spread through the body 
fluids which attacks the body immune system just like cancer and can lead to 
death. Dissimilar to some different infections, the human body can’t dispose of 
HIV. That implies that once you have HIV, you have it forever [2]. HIV is found 
throughout the world and is prevalent in sub-Saharan Africa, accounting for 
70% of new infections yearly [2]. Worldwide, an estimated 36.9 million people 
are living with HIV and about 2 million people became newly infected in 2014 
[4].  

The earliest report of HIV dates back to 1981 with five cases of Pneumocystis 
carinii pneumonia in healthy young homosexual men in Los Angeles, CA. At the 
time, it was described as “cellular-immune dysfunction” related to “sexual con-
tact” [5]. Since then, tremendous efforts have been made worldwide for the di-
agnosis, control and prevention of HIV. Thirty-five million people are currently 
living with human immunodeficiency virus (HIV) globally. While 9.7 million 
infected people are receiving antiretroviral therapy, 2.3 million people are newly 
infected every year. Transmission via semen is one of the most prevalent me-
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thods of HIV-1 transmission, accounting for up to 80% of new infections every 
year. 

In the majority of cases, HIV is a sexually-transmitted infection. However, 
HIV can also be transmitted from a mother to her child, during pregnancy or 
childbirth (through blood or fluid exposure), or through breastfeeding. Non-sexual 
transmission can also occur through the sharing of injection equipment such as 
needles. 

Today, scientists are still working to find a treatment for HIV and the recent 
studies show that a new vaccine will be developed by 2025 [6]. These are quite 
promising studies for the whole world. However, it is important to understand 
people who are living with that virus are also struggling with social, economic 
and psychological problems. UNAID and the National Agency for the Control of 
AIDS estimate that there are 1.9 million people living with HIV in Nigeria 
(Punch News Paper). 

Results from the Nigeria HIV/AIDS Indicator and Impact Survey (NAISS) in-
dicate a national HIV prevalence in Nigeria of 1.5% among adults aged 15 - 49 
years. The survey revealed an improvement in the national prevalence rate from 
3.4% in 2012 to 1.9% in 2018. 

The President of Nigeria, Muhammadu Buhari early last year (2019) launched 
the Revised National HIV and AIDS Strategic Framework 2019-2021, which will 
guide the country’s future response to the epidemic. 

Aim and Objectives 

The general objective of this study is to develop a best model that can predict the 
monthly HIV cases in Minna. This is to be achieved through the following Spe-
cific objectives: 

1) Formulate time series models on the data collected. 
2) Conduct a diagnostic check on the models formulated to determine the 

most suitable model. 
3) Estimate the parameters of the various models and forecast the HIV preva-

lence. 

2. Empirical Framework and Theoretical Issues 

A few related works of the use of SARIMA methodology to model epidemic in-
cidence include the following; [7] worked on forecasting monthly cases of Hu-
man immunodeficiency syndrome (HIV) of the Philippines. The researchers uti-
lized advanced statistical tool in developing the model using univariate 
Box-Jekins method in forecasting the HIV cases per month. The result showed 
that monthly cases of HIV in the Philippines had an upward trend. The re-
searchers came up with the best model based on AIC which is (2, 1, 0) × (0, 0, 
1)12. 

[8] used HIV infection data from 1985 to 2012 to fit ARIMA models. Akaike 
Information Criterion and Schwartz Bayesian Criterion statistics were used to 
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evaluate the constructed models. Estimation was via the maximum likelihood 
method. To assess the validity of the proposed models, the mean absolute per-
centage error (MAPE) between the number of observed and fitted HIV infec-
tions from 1985 to 2012 was calculated. The fitted ARIMA models were used to 
forecast the number of HIV infections from 2013 to 2017 and the result showed 
that the fitted number of HIV infections was calculated by optimum ARIMA(2, 
2, 1) model from 1985-2012 and the number was similar to the observed number 
of HIV infections, with a MAPE of 13.7%. 

[9] conducted a study with the aim of formulating a model to determine the 
trend, prevalence and projecting HIV/AIDS epidemics in Ethiopia. Data were 
obtained from UNAIDS and Ministry of Health bulletin in Ethiopia. The data 
was analyzed using Autoregressive Integrated Moving Average (ARIMA) time 
series analysis model and the ARIMA(2, 3, 2) appeared to be providing the best 
fit for the observed data. 

[10] worked on Epidemiology and ARIMA model of positive-rate of influenza 
viruses among children in Wuhan, China. The study aims to describe the epi-
demiology of influenza viruses among children in Wuhan, China during the past 
nine influenza seasons (2007-2015) and to predict the positive rate of different 
types of influenza virus in the future. Their study suggests that the ARIMA model 
can be used to forecast the positive rate of different types of influenza virus.  

The estimated results of model showed that Peads incoming is influenced by 
seasonal variation of data, [11] works on Energy Consumption Forecasting Us-
ing Seasonal ARIMA with Artificial Neural Networks Models. The quarterly 
energy consumption of the United States from January 1973 to June 2015 is 
used. It aimed to forecast the residential energy consumption in U.S. using the 
Box-Jenkins methodology and Artificial Neural Network approach and com-
pared their results in order to know the best model for predicting energy con-
sumption in U.S. From their results they concluded that the forecasting accuracy 
is not quite significant. But, the performance of ANN model is better than 
SARIMA model in terms of forecasting accuracy from the test data using MAE 
and MAPE, the opposite result happens for MSE. While the SARIMA model fits 
better the historical data (training data) than ANN models using all performance 
parameters. 

[12] also worked on Forecasting Precipitation Using SARIMA Model: A Case 
Study of Mt. Kenya Region. Two objectives were formulated from their research 
which is to determine the forecasted values of precipitation in Mt. Kenya region 
and also to determine the accuracy of the SARIMA model in forecasting preci-
pitation in the same region. Monthly data collected from Kenya meteorological 
department covering a period of 1995 to 2010 for wind data and 1970 to 2011 for 
precipitation data but will be limited to the available wind data. SARIMA models 
were fitted and the least AIC and BIC value was picked which is SARIMA(1, 0, 
1) × (1, 0, 0)12 that turns out to be the best model since it has the least values of the 
information criteria and forecasting evaluation was conducted using the RMSE.  
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3. Research Methodology 
3.1. Research Design 

The research design adopted for this study is a descriptive and Box-Jenkins re-
search design. Descriptive survey design is a research design in which data is 
collected consistently to explain and predict the given situation. For this pur-
pose, non-seasonal Box Jenkins approach is used to find the best fitted, the best 
forecasting model and the accuracy of the forecasting values are checked by 
comparing residuals. The steps of the suggested model and its forecasting can be 
explained in the following steps. Determining whether the time series is statio-
nary or not is a very important concept before making any inferences in time se-
ries analysis. Therefore, Augmented Dickey Fuller (ADF) and Phillips-Person 
(PP) tests will be used to check the stationarity of the data series. There are sev-
eral methods that can be used to fit a time series model, among them, ARMA, 
ARIMA, and SARIMA model which will be used on the stationary data of this 
study.  

3.2. Population of the Study and Research Sample 

The study was carried out based on monthly data on HIV prevalence as second-
ary data, which was collected from document based on January 2007 to Decem-
ber 2018 retrievable document from the Statistical data record on HIV preva-
lence from the record of Communicable diseases in Minna general hospital for 
both male and female. 

3.3. Method of Data Collection 

Documentary evidence constitutes the instrument of data collection. The major 
sources of data are from Minna general hospital Statistical record on commu-
nicable diseases. The data for this study are secondary monthly HIV data 
sourced from the General hospital Minna in Niger state from January 2007 to 
December 2018. 

3.4. Technique of Data Analysis and Model Specification 

The advances in Time Series enable researchers to use those techniques in their 
analysis to re-analyze the traditional rotation analysis applied in earlier studies 
[13]. The central idea behind model identification is a time series derived from 
ARIMA process which has some sort of theoretical autocorrelation properties. 
Fitting the empirical autocorrelation patterns with the theoretical ones helps to 
identify the potential tentative model for the given time series data. In this step, 
transformation of observed time series to stationary is inevitable.  

The software that was used for the test is Eviews 4.0 version. 

3.5. Autoregressive Moving Average (ARMA) Models 

We can have combinations of the two processes to give a new series of models 
called ARMA(p, q) models. The Autoregressive model (AR) and moving average 
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(MA). 
Where 
AR of order p is: 

1 1 2 2n n n n p n pX m e X X Xϕ ϕ ϕ− − −= + + + + +              (3.4) 

for n ≥ 0, where {en} n ≥ 0 is a series of independent, identically distributed (iid) 
random variables, and m is a constant.  

MA of order q is: 

1 1 2 2n n n n q n qX m e e e eθ θ θ− − −= + + + + + ,              (3.5) 

for n ≥ 1 where 1, , qθ θ  are real numbers and m is a real number. 
The general form of the ARMA(p, q) models where p is used for the number 

of autoregressive components, and q for the number of moving average compo-
nents is written as: 

∑ ∑
= =

−− +++=
p

k

q

j
njnjknkn eeXmX

1 1

1 ,θφ ,0≥n         (3.6) 

where {Xn} n ≥ 1, is some constant, and the φk and θj are defined as for AR and 
MA models respectively. 

3.6. Autoregressive Integrated Moving Average (ARIMA) Models 

Autoregressive (AR), Moving Average (MA) or Autoregressive Moving Average 
(ARMA) models in which differences have been taken are collectively called 
Autoregressive Integrated Moving Average or ARIMA models. A time series {Yt} 
is said to follow an integrated autoregressive moving average model if the dth dif-
ference d

t tW Y= ∇  is a stationary ARMA process. If {Wt} follows an ARMA(p, q) 
model, we say that {Yt} is an ARIMA(p, d, q) process. For example, for practical 
purposes, we can usually take d = 1 or at most 2.  

Consider then an ARIMA(p, 1, q) process. With 1t t tW Y Y −= − , we have  

1 1 2 2 1 1 2 2t t t p t p t t t q t qW W W Wφ φ φ ε θ ε θ ε θ ε− − − − − −= + + + + − − − −      (3.7) 

Or, in terms of the observed series, 

( ) ( ) ( )1 1 1 2 2 2 3 1

1 1 2 2

t t t t t t p t p t p

t t t q t q

Y Y Y Y Y Y Y Yφ φ φ

ε θ ε θ ε θ ε
− − − − − − − −

− − −

− = − + − + + −

+ − − − −





.    (3.8) 

3.7. Seasonal Autoregressive Integrated Moving Average (SARIMA)  
Models 

The ARIMA model (3.7) is for non-seasonal non-stationary data. A purely sea-
sonal time series is the one that has only seasonal AR or MA parameters. Sea-
sonal autoregressive models are built with parameter called seasonal autoregres-
sive (SAR) parameters. The SAR parameters represent the autoregressive rela-
tionships that exist between time series data separated by multiples of the num-
ber of periods per season. Box and Jenkins have generalized this model to deal 
with seasonality. Their proposed model is known as the Seasonal ARIMA 
(SARIMA) model. In this model seasonal differencing of appropriate order is 
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used to remove non-stationarity from the series. A first order seasonal difference 
is the difference between an observation and the corresponding observation 
from the previous year and is calculated as t t t sX Y Y −= − . For monthly time se-
ries S = 12 and for quarterly time series S = 4 This model is generally termed as 
the SARIMA(p, d, q) × (P, D, Q)S. 

For a seasonal time series of order s, [14] proposed that {Xt} be modelled by:  

( ) ( ) ( ) ( )s d s
s t tA L L X B L L εΦ ∇ = Θ                 (3.9) 

where the series must have been subjected to seasonal differencing D times and 
non-seasonal differencing d times, 1 s

s L∇ = − , being the seasonal differencing 
operator. Moreover, Φ(L) and Θ(L) are the seasonal autoregressive and moving 
average operators respectively. These seasonal operators are polynomials in L.  

Suppose that ( ) 2
1 21 P

PL L L Lϕ ϕ ϕΦ = + + + +  and  
( ) 2

1 21 Q
QL L L Lθ θ θΘ = + + + + , then the time series {Xt} is said to follow a 

multiplicative seasonal autoregressive integrated moving average model of or-
ders p, d, q, P, D, Q and s, designated (p, d, q) × (P, D, Q)s SARIMA model. 

4. Presentation of Result and Finding 

To really come out with a good forecasting model of the HIV Prevalence Rec-
orded in General Hospital Minna (2007-2018) data, ARMA, ARIMA and 
SARIMA models were fitted to the series. Furthermore, this section also explains 
the behavior of the rate of contracting HIV in Minna general hospital of Nigeria, 
test for unit root, specification of the models, estimation of the parameters of the 
forecasting model using the above model, selection of the best competing fore-
casting models using AIC while forecast evaluation of these models using Root 
Mean Square Error, Mean Absolute Error and Mean Absolute Percentage Error 
and forecast plot for seasonal models were critically looked into. 

4.1. Descriptive Statistics of the HIV Data 

In this section, we discuss empirical results beginning with preliminary analysis 
conducted with the aim to determine the normality of the data. Skewness, kurto-
sis and Jarque-Bera show the normality of the distribution. A distribution is said 
to be normal when skewness is approximately zero and kurtosis is three. Also, 
the probability of the Jarque-Bera statistics tells whether the series is normal or 
not. The null hypothesis of the Jarque-Bera test says that the distribution is a 
normal one. Therefore, if the probability is less than 0.05, we reject the null hy-
pothesis and conclude that the distribution is not normal (Table 1). 

Furthermore, from the Jarque-Bera test for normality of each of the variables, 
it was observed in the above table that the variables “HIV prevalence” p-value is 
less than 0.1 (10%) level of significance and not at 5% level. Thus, the enter va-
riable is normally distributed at 10% level of significance. This is a strong factor 
of the fundamental assumptions of the application of ARMA, ARIMA and 
SARIMA models. Hence, data differencing transformation is considered in order 
to correct for the normality assumption violation (Table 2). 

https://doi.org/10.4236/ojs.2020.103030


Umunna N. C., Olanrewaju S. O. 
 

 

DOI: 10.4236/ojs.2020.103030 501 Open Journal of Statistics 
 

Table 1. Descriptive statistics of the HIV prevalence recorded in General Hospital Minna 
(2007-2018). 

Statistics HIV Prevalence 

Mean 85.51389 

Median 80.00000 

Maximum 228.0000 

Minimum 0.000000 

Std. Dev. 46.75049 

Skewness 0.487059 

Kurtosis 2.559941 

Jarque-Bera 6.855339 

Probability 0.032463 

Sum 12314.00 

Sum Sq. Dev. 312542.0 

Observations 144 

 
Table 2. Augmented dickey-fuller test of stationarity (ADF) of the HIV Prevalence Rec-
orded in General Hospital Minna (2007-2018) data. 

Null Hypothesis: HIV has a unit root  

Exogenous: Constant, Linear Trend  

Lag Length: 0 (Automatic—based on SIC, maxlag = 13) 

  t-Statistic Prob.* 

Augmented Dickey-Fuller test statistic −4.411370 0.0029 

Test critical values: 1% level −4.023506  

 5% level −3.441552  

 10% level −3.145341  

*MacKinnon (1996) one-sided p-values. 

4.2. Parameter Estimation of ARMA Models and Models Selection 

Table 3 shows the results of parameter estimation and model selection for the 
ARMA models, where results of the different estimation parameter of ARMA 
were estimated with most of the parameter significant at 1% and 5%. AIC was 
used to select the best model that will be used for ARIMA and SARIMA model 
because it is the combination of AR and MA model. From the AIC, ARMA(2, 1) 
was selected to be the best model since it has the smallest AIC. With this selec-
tion, our ARIMA model will be AR(2) and MA(1) while the integrated differ-
ence will be of one (1) and two (2). 

4.3. Diagnostic Tests for ARMA Models 

Using the best model in Table 2, the result of Table 3 shows the P-value for 
ARMA(2, 1) indicates there is no evidence that the residuals are dependent. This 
further confirms that the ARMA(2, 1) model is adequate. 
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Table 3. Parameter estimation of ARMA models and models selection. 

 ARMA(1, 1) ARMA(2, 1) ARMA(1, 2) ARMA(2, 2) 

Intercept −527.6081 −489.1910 −618.0471 −489.2602 

AR1 −0.2819* −0.7670* −0.9625* −0.7684* 

AR2 - −0.6447* - −0.6443* 

MA1 −0.7131** −0.2148** 0.1985* −0.2130 

MA2 - - −0.7837** −0.0041 

Log Likelihood −2149.62 −2111.91 −2153.72 −2111.91 

AIC 24.8858 24.6035 24.9447 24.6152 

BIC 24.9406 24.6768 25.0176 24.7067 

* at 1%, ** at 5%. 

 
Figure 1 presents the trends analysis of the monthly data on HIV prevalence 

during the period of 2007 to 2018. The HIV prevalence started in January 2007 
at a very slow prevalence rate. Until about September, 2008 when there was a 
sharp increase on the prevalence from 50 units to about 170 units. This clearly 
suggests an outbreak in the HIV virus. Although a relative decline in this trend 
was similarly observed as from July 2009 through to mid-year 2012. Another 
sharp increase in the trend is also observed in November 2012 but declined to 
almost zero in May 2015. With a steady gradual steady increase observed from 
march 2016 till date. This shows that if something is not done immediately the 
trend will go out of control.  

4.4. Parameter Estimation of AR, MA, ARMA AND SARMA Models  
and Models Selection 

Table 3 shows the results of parameter estimation and model selection for the 
AR, MA, ARMA & SARIMA models, where results of the different estimation 
parameter of the models were estimated with most of the parameter significant 
at 1% and 5%. AIC was used to select the best model. The models AR, MA, 
ARMA AND SARIMA were considered because the data set is in stationary at 
its original state and thus requires no differencing and transformation. Hence, 
the order and combination of the AR and MA component of the model is de-
termined from the Correlogram plot below (Table 4). 

These plots are used to choose the order parameters for candidates ARMA 
model. The simple moving average (MA) model is a parsimonious time series 
model used to account for very short-run autocorrelation. It does have a regres-
sion like form, but here each observation is regressed on the previous innova-
tion, which is not actually observed. A weighted sum of previous and current 
noise is called Moving Average (MA) model. 

Model identification started with autocorrelation analysis. Plots of autocorre-
lation function (ACF) and partial autocorrelation function (PACF) (Figure 2) 
showed only the first lag of the ACF was significant (i.e. laying outside the grey  
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Figure 1. HIV Prevalence recorded in General Hospital Minna (2007-2018) Trend. 

 

 
Figure 2. Plot of ACF and PACF of ARMA model. 

 
Table 4. Correlogram plot. 

ACF and PACF Model Description 

Model Name MOD_5 

Series Name 1 HIV 

Transformation None 

Non-Seasonal Differencing 0 

Seasonal Differencing 0 

Length of Seasonal Period 12 

Maximum Number of Lags 16 

Process Assumed for Calculating the Standard  
Errors of the Autocorrelations 

Independence (white noise)a 

Display and Plot All lags 

 
95% CI band). It was also observed that the first few lags of ACF did not decay 
with time. Based on the autocorrelation structure, several potential models were 
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Table 5. Candidate models proposed.  

Candidate models 

MA(1) ARMA(1, 4) 

MA(2) ARMA(1, 5) 

MA(3) ARMA(1, 6) 

MA(4) SARIMA(1, 0, 1) (1, 0, 1) 

MA(5) SARIMA(1, 0, 2) (1, 0, 2) 

MA(6) SARIMA(1, 0, 3) (1, 0, 3) 

AR(1) SARIMA(1, 0, 4) (1, 0, 4) 

ARMA(1, 1) SARIMA(1, 0, 5) (1, 0, 5) 

ARMA(1, 2) SARIMA(1, 0, 6) (1, 0, 6) 

 
identified.  

ACF plots display correlation between a series and its lags. In addition to sug-
gesting the order of differencing, ACF plots can help in determining the order of 
the MA(q) model. Thus, as observed from the ACF plots we have MA(1, 2, 3, 4, 
5, 6).  

Based on the ACF/PACF plots the following candidate models was proposed 
(Table 5). 

The candidate model with the smallest value of the residual sums of squares is 
the model that best fit the data at hand. Also, using order selection strategy pro-
posed in Hannan and Rissanan (1982) and used by [15] and [16], the model with 
the least Akaike Information Criterion (AIC) and Bayesian Information Crite-
rion (BIC) is the best among other models under consideration. 

4.5. Parameter Estimation for Candidate Models Codes and  
Summary Using R-Console 

> library(forecast) 
> library(“ggplot2”) 
> library(“forecast”) 
> library(“tseries”) 
> data = ts(read.csv(“data.hiv.csv”, header = TRUE, stringsAsFactors = FALSE)) 
> ma1 <- arima(data, order = c(0, 0, 1)) 
> ma2 <- arima(data, order = c(0, 0, 2)) 
> ma3 <- arima(data, order = c(0, 0, 3)) 
> ma4 <- arima(data, order = c(0, 0, 4)) 
> ma5 <- arima(data, order = c(0, 0, 5)) 
> ma6 <- arima(data, order = c(0, 0, 6)) 
> summary(ma1) 
Call: 
arima(x = data, order = c(0, 0, 1)) 
Coefficients: 
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  ma1  intercept 
  0.6401 85.2213 
s.e. 0.0594 4.8635 
sigma^2 estimated as 1273: log likelihood = −719.33, aic = 1444.66 
> summary(ma2) 
Call: 
arima(x = data, order = c(0, 0, 2)) 
Coefficients: 
  ma1  ma2  intercept 
  0.6542 0.3323 85.0295 
s.e. 0.0869 0.0709 5.5283 
sigma^2 estimated as 1125: log likelihood = −710.43, aic = 1428.87 
> summary(ma3) 
Call: 
arima(x = data, order = c(0, 0, 3)) 
Coefficients: 
  ma1  ma2  ma3  intercept 
  0.6543 0.4557 0.4208 85.0665 
s.e. 0.0847 0.0761 0.0764 6.4169 
sigma^2 estimated as 939.9: log likelihood = −697.68, aic = 1405.37 
> summary(ma4) 
Call: 
arima(x = data, order = c(0, 0, 4)) 
Coefficients: 
  ma1  ma2  ma3  ma4  intercept 
  0.6724 0.5009 0.5015 0.1576 85.0292 
s.e. 0.0812 0.0890 0.0862 0.0740 7.0642 
sigma^2 estimated as 912.2: log likelihood = −695.54, aic = 1403.08 
> summary(ma5) 
Call: 
arima(x = data, order = c(0, 0, 5)) 
Coefficients: 
  ma1  ma2  ma3  ma4  ma5  intercept 
  0.6746 0.5279 0.5277 0.2259 0.1656 84.9291 
s.e. 0.0869 0.1014 0.0925 0.0848 0.0793 7.6515 
sigma^2 estimated as 884.3: log likelihood = −693.31, aic = 1400.63 
> summary(ma6) 
Call: 
arima(x = data, order = c(0, 0, 6)) 
Coefficients: 
  ma1  ma2  ma3  ma4  ma5  ma6  intercept 
  0.6370 0.493 0.5412 0.2747 0.2829 0.1507 84.9344 
s.e. 0.0871 0.100 0.0939 0.0884 0.1044 0.0952 8.1966 
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sigma^2 estimated as 869.9: log likelihood = −692.15, aic = 1400.31 
> ar1 <- arima(data, order = c(1,0,0)) 
> summary(ar1) 
Call: 
arima(x = data, order = c(1, 0, 0)) 
Coefficients: 
  ar1  intercept 
  0.7637 84.4499 
s.e. 0.0532 10.3551 
sigma^2 estimated as 900.1: log likelihood = −694.55, aic = 1395.1 
> arma1<-arima(data, order = c(1, 0, 1)) 
> arma2<-arima(data, order = c(1, 0, 2)) 
> arma3<-arima(data, order = c(1, 0, 3)) 
> arma4<-arima(data, order = c(1, 0, 4)) 
> arma5<-arima(data, order = c(1, 0, 5)) 
> arma6<-arima(data, order = c(1, 0, 6)) 
> summary(arma1) 
Call: 
arima(x = data, order = c(1, 0, 1)) 
Coefficients: 
  ar1  ma1  intercept 
  0.8448 −0.1980 84.4697 
s.e. 0.0555 0.0981 12.3268 
sigma^2 estimated as 878.1: log likelihood = −692.79, aic = 1393.58 
> summary(arma2) 
Call: 
arima(x = data, order = c(1, 0, 2)) 
Coefficients: 
  ar1  ma1  ma2  intercept 
  0.8311 −0.2073 0.0587 84.5462 
s.e. 0.0640 0.1039 0.1051 12.0457 
sigma^2 estimated as 876.1: log likelihood = −692.63, aic = 1395.27 
> summary(arma3) 
Call: 
arima(x = data, order = c(1, 0, 3)) 
Coefficients: 
  ar1  ma1  ma2  ma3  intercept 
  0.768 −0.1151 0.026 0.1704 84.6665 
s.e. 0.096 0.1311 0.109 0.0967 11.0960 
sigma^2 estimated as 858: log likelihood = −691.16, aic = 1394.33 
> summary(arma4) 
Call: 
arima(x = data, order = c(1, 0, 4)) 
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Coefficients: 
  ar1  ma1  ma2  ma3  ma4  intercept 
  0.8049 −0.1446 0.0054 0.1729 −0.0938 84.6406 
s.e. 0.0928 0.1231 0.1021 0.0932 0.1069 11.4072 
sigma^2 estimated as 853.3: log likelihood = −690.78, aic = 1395.57 
> summary(arma5) 
Call: 
arima(x = data, order = c(1, 0, 5)) 
Coefficients: 
  ar1  ma1  ma2  ma3  ma4  ma5  intercept 
  0.7282 −0.0884 0.0604 0.2236 −0.0561 0.1425 84.8513 
s.e. 0.1266 0.1438 0.1100 0.0963 0.1093 0.1021 11.1302 
sigma^2 estimated as 841.4: log likelihood = −689.83, aic = 1395.66 
> summary(arma6) 
Call: 
arima(x = data, order = c(1, 0, 6)) 
Coefficients: 
  ar1  ma1  ma2  ma3  ma4  ma5  ma6 

 intercept 
  0.6865 −0.0478 0.0853 0.2518 −0.0288 0.1512 0.0439

 84.9150 
s.e.  0.1731 0.1839 0.1286 0.1198 0.1288 0.1054 0.0970

  10.9617 
sigma^2 estimated as 840.2: log likelihood = −689.73, aic = 1397.46 
> sarma1<-arima(data, order = c(1, 0, 1), seasonal = list(order = c(1, 0, 1), pe-

riod = 12)) 
> sarma2<-arima(data, order = c(1, 0, 2), seasonal = list(order = c(1, 0, 2), pe-

riod = 12)) 
> sarma3<-arima(data, order = c(1, 0, 3), seasonal = list(order = c(1, 0, 3), pe-

riod = 12)) 
> sarma4<-arima(data, order = c(1, 0, 4), seasonal = list(order = c(1, 0, 4), pe-

riod = 12)) 
> sarma5<-arima(data, order = c(1, 0, 5), seasonal = list(order = c(1, 0, 5), pe-

riod = 12)) 
> sarma6<-arima(data, order = c(1, 0, 6), seasonal = list(order = c(1, 0, 6), pe-

riod = 12)) 
> summary(sarma1) 
Call: 
arima(x = data, order = c(1, 0, 1), seasonal = list(order = c(1, 0, 1), period = 

12)) 
Coefficients: 
  ar1  ma1  sar1  sma1 intercept 
  0.8399 −0.1750 −0.6316 0.7791 84.4652 
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s.e. 0.0552 0.0977 0.3538 0.3155 13.1139 
sigma^2 estimated as 845.2: log likelihood = −690.59, aic = 1393.17 
> summary(sarma2) 
Call: 
arima(x = data, order = c(1, 0, 2), seasonal = list(order = c(1, 0, 2), period = 

12)) 
Coefficients: 
  ar1  ma1  ma2  sar1  sma1 sma2 intercept 
  0.8245 −0.1879 0.0717 −0.6498 0.8021 0.0059 84.5483 
s.e. 0.0630 0.1054 0.1039 0.6473 0.6575 0.1714 12.8811 
sigma^2 estimated as 841.7: log likelihood = −690.35, aic = 1396.7 
> summary(sarma3) 
Call: 
arima(x = data, order = c(1, 0, 3), seasonal = list(order = c(1, 0, 3), period = 

12)) 
Coefficients: 
  ar1  ma1  ma2  ma3  sar1  sma1 sma2

 sma3 
  0.7548 −0.0856 0.0523 0.1840 −0.1493 0.3056 −0.0128

 0.1610 
s.e. 0.0966 0.1308 0.1067 0.0948 0.5515 0.5475 0.1286

 0.1154 
  intercept 
  83.514 
s.e. 13.396 
sigma^2 estimated as 812.1: log likelihood = −688.04, aic = 1396.08 
> summary(sarma4) 
Call: 
arima(x = data, order = c(1, 0, 4), seasonal = list(order = c(1, 0, 4), period = 

12)) 
Coefficients: 
  ar1  ma1  ma2  ma3  ma4  sar1  sma1

 sma2 sma3 
  0.7795 −0.1115 0.034 0.1849 −0.0602 0.5665 −0.4278

 −0.1129 0.1898 
s.e. 0.0991 0.1308 0.106 0.0937 0.1185 1.4295 1.4192

 0.2226 0.1184 
  sma4 intercept 
  −0.1457 83.3802 
s.e. 0.2379 12.8059 
sigma^2 estimated as 808.5: log likelihood = −687.79, aic = 1399.58 
> summary(sarma5) 
Call: 
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arima(x = data, order = c(1, 0, 5), seasonal = list(order = c(1, 0, 5), period = 
12)) 

Coefficients: 
  ar1  ma1  ma2  ma3  ma4  ma5  sar1 

 sma1 
  0.7210 −0.0708 0.0679 0.2325 −0.0364 0.1106 0.2541

 −0.1284 
s.e. 0.1306 0.1528 0.1115 0.1026  0.1226 0.1020 1.3827

 1.3780 
  sma2 sma3 sma4 sma5 intercept 
  −0.0660 0.1698 −0.0931 −0.0366 83.5674 
s.e. 0.1874 0.1119 0.2567 0.1631 12.2876 
sigma^2 estimated as 802.2: log likelihood = −687.19, aic = 1402.38 
> summary(sarma6) 
Call: 
arima(x = data, order = c(1, 0, 6), seasonal = list(order = c(1, 0, 6), period = 

12)) 
Coefficients: 
  ar1  ma1  ma2  ma3  ma4  ma5  ma6 

 sar1  sma1 
0.6824 −0.0383 0.0986 0.2631 −0.0172 0.1171 0.0532 0.476

 −0.3471 
s.e. 0.1673 0.1804 0.1330 0.1244 0.1307 0.1025 0.1065

 NaN  NaN 
  sma2 sma3 sma4 sma5 sma6 intercept 
  −0.0877 0.1773 −0.1227 −0.0133 0.0171 83.6397 
s.e. NaN  0.0892 NaN  0.1252 NaN  12.6138 
sigma^2 estimated as 801.4: log likelihood = −687.08, aic = 1406.16 
Estimated value of the parameter of the best model 
> summary(sarma1) 
Call: 
arima(x = data, order = c(1, 0, 1), seasonal = list(order = c(1, 0, 1), period = 

12)) 
Coefficients: 
  ar1  ma1  sar1  sma1 intercept 
  0.8399 −0.1750 −0.6316 0.7791 84.4652 
s.e. 0.0552 0.0977 0.3538 0.3155 13.1139 
sigma^2 estimated as 845.2: log likelihood = −690.59, aic = 1393.17. 
The result shows the estimation of the best model and also identifies the signi-

ficance of its parameter. Based on the computed value of the coefficient for each 
parameter and its standard error, the absolute quotient value of the AR1, MA1, 
SAR1, SMA1 respectively, is greater than 0.05, it means that there is statistical 
sufficient evidence to say that the parameters are significant (Table 6). 
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Table 6. Candidate models performance summary based on the Akaike information cri-
terion (AIC). 

sn MODEL log likelihood 
Akaike info  

criterion (AIC) 
Model Rank 

1 MA(1) −719.33 1444.66 3 

2 MA(2) −710.43 1428.87 6 

3 MA(3) −697.68 1405.37 12 

4 MA(4) −695.54 1403.08 11 

5 MA(5) −693.31 1400.63 10 

6 MA(6) −692.15 1400.31 13 

7 AR(1) −694.55 1395.1 5 

8 ARMA(1, 1) −692.79 1393.58 2 

9 ARMA(1, 2) −692.63 1395.27 7 

10 ARMA(1, 3) −691.16 1394.33 4 

11 ARMA(1, 4) −690.78 1395.57 8 

12 ARMA(1, 5) −689.83 1395.66 16 

13 ARMA(1, 6) −689.73 1397.46 17 

14 SARIMA(1, 0, 1) (1, 0, 1)12 −690.59 1393.17 1* 

15 SARIMA(1, 0, 2) (1, 0, 2)12 −690.35 1396.7 15 

16 SARIMA(1, 0, 3) (1, 0, 3)12 −688.04 1396.08 18 

17 SARIMA(1, 0, 4) (1, 0, 4)12 −687.79 1399.58 14 

18 SARIMA(1, 0, 5) (1, 0, 5)12 −687.19 1402.38 19 

19 SARIMA(1, 0, 6) (1, 0, 6)12 −687.08 1406.16 9 

*The best performing model. 

 
Figure 3 shows the residual plot of the best model created as part of residual 

diagnostics of the model. This shows that the variance of the error term are 
seems to be constant. It also shows that the average of the residual is approx-
imately equal to zero.  

Figure 3 further shows the residual analysis to identify the normality of error 
terms. Since the computed p-value of Jarque-Bera test with p-value is greater 
than 0.05 level of significance, there is statistical evidence not to reject or fail to 
reject the null hypothesis of the normality of error term. This means that the er-
ror term is normally distributed.  

Table 7 shows the residual analysis in identifying the independency of error 
term for Autoregressive Conditional Heteroskedasticity (ARCH). Since the 
computed p-value Box-Ljung test is equal to 0.1846 which is greater than the as-
signed alpha 5%, there is a statistical sufficient evidence to say that the error 
term is independent.  

Figure 4 shows the Independency of error term generalized autoregressive 
conditional heteroskedasticity (GARCH) (informal way). It is however noticed  
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Figure 3. Independency of error term autoregressive conditional heteroskedasticity. 

 

 
Figure 4. ACF and PACF of independency of residual. 
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that no spike hits the line at any lag, this strongly suggests that the model is free 
of white noise (Figure 5). 

4.6. Forecast with the Fitted Model 

One of the objectives of fitting and selecting the best model from AR/MA/ 
ARMA/SARIMA model to data is to be able to forecast its future values. The 
model that best fits the data going by the various statistics given in Table 8 be-
low is SARIMA(1, 0, 1) × (1, 0, 1)12. 

Figure 6 shows the point forecast (blue), it indicates that the forecasted value 
from the created model has an increasing and decreasing trend from 2019 Janu-
ary-2019 October with a semi-continuous increase in January, 2019 till October, 
2019.  
 
Table 7. Ljung-box test. Independency of error term for Autoregressive Conditional He-
teroskedasticity (ARCH). 

data: Residuals from ARIMA(1, 0, 1)(1, 0, 1) [12] with non-zero mean 

Model 
Number of 
Predictors 

Model Fit statistics Ljung-Box Q (18) Number of 
Outliers Stationary R-squared Statistics DF Sig. 

HIV-Model_1 0 0.603 7.5221 5 0.1846 0 

Total lags used: 10. 

 

 
Figure 5. Plots of the observed and the forecast trend of HIV prevalence data. 

 

 
Figure 6. Forecasted value from 2007 to 2019. 
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Table 8. Forecast of data using SARIMA(1, 0, 1) × (1, 0, 1)12. 

Forecast data 

Date Point.Forecast Lo.80 Hi.80 Lo.95 Hi.95 

2019 

JANUARY 96.94 59.68 134.20 39.96 153.93 

FEBRUARY 91.71 46.97 136.45 23.28 160.14 

MARCH 91.21 41.87 140.56 15.75 166.68 

APRIL 80.85 28.50 133.20 0.79 160.91 

MAY 76.16 21.79 130.53 −6.99 159.31 

JUNE 80.46 24.71 136.20 −4.80 165.72 

JULY 83.64 26.94 140.34 −3.08 170.36 

AUGUST 82.33 24.97 139.70 −5.40 170.06 

SEPTEMBER 85.62 27.79 143.45 −2.82 174.06 

OCTOBER 89.81 31.66 147.96 0.87 178.75 

 
The fitted number of HIV infections was calculated by optimum SARIMA(1, 

0, 1) model from 2019 January-2019 October. The fitted number or the inbound 
forecast was similar to the observed number of HIV cases. 

5. Summary 

This study revealed that SARIMA(1, 0, 1) (1, 0, 1)12 without drift is the best fit 
mathematical model forecasting monthly cases of Human Immunodeficiency 
Virus (HIV) of Minna population. Time series data which is monthly HIV new 
cases in Minna General Hospital (year 2007-2018) was used. Models such as 
ARMA, ARIMA and SARIMA were used with a monthly dataset from “January 
2007”, to “December, 2018”. The preliminary analysis of the data obtained 
shows that the distribution of the monthly HIV cases in Minna is stationary at 
first difference and result of Jarque-Bera statistic revealed that Minna HIV data 
is not normally distributed as the probability-values is less than 1% and 5%. The 
Parameter of the ARMA models and Models selection were estimated with most 
of the parameter significant at 1% and 5%. AIC was used to select the best model 
that was used for ARIMA and SARIMA models because it is the combination of 
AR and MA model. From the AIC, ARMA(1, 1) was selected to be the best mod-
el since it has the smallest AIC. The diagnostic test shows that ARMA(1, 1) 
shows no evidence that the residual is dependent, also the Q-Q plot result con-
firmed that the model is normally distributed. 

More so, ARIMA of first and second difference were estimated and ARIMA(1, 
0, 1) was the best model from the result of the AIC and diagnostic test carried 
out which revealed that the model was adequate and normally distributed using 
Box-Lung and Q-Q plot respectively. From the results of the parameter esti-
mated, most of the parameters were significant and SARIMA(1, 0, 1) was se-
lected to be the best model since it has the smallest AIC. A diagnostic test also 
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was evaluated which confirms that SARIMA(1, 0, 1) is an adequate model be-
cause the residual is not dependent and the Q-Q plot is normally distributed.  

Furthermore, estimating the SARIMA model, shows that the parameter are 
significant at 1% and 5% and the diagnostic test indicate that SARIMA(1, 0, 1) × 
(1, 0, 1)12 without drift is an adequate model since there is no evidence of de-
pendent in the residual of the model and the Q-Q plot is normally distributed. 
The monthly HIV cases in Minna time series were normal on its level but sta-
tionary at first difference. The range of monthly cases that occurred from year 
2007 to 2018 is from 147 to 845 cases and the highest peak happened in May 
2009 and May 2015 with 182 cases. 

6. Conclusion 

The following conclusions are derived from the findings presented: 
1) The monthly HIV cases from 2017 to 2018 show an increasing trend, 

somewhat have a cycle and seasonality as well.  
2) It found out that the highest increase of the HIV cases is on November 

2012 to September 2013 and the highest decrease of the HIV cases is on January 
2007 to September 2008. 

3) The best model that can predict the HIV monthly cases is SARIMA(1, 0, 1) 
× (1, 0, 1)12 without drift. 

4) The forecasted value of the created model has moderate increasing trend.  
5) The average forecasted value is half of the actual value from January 2007. 
Therefore, in this study based on the seasonal pattern of HIV prevalence in 

Minna, the SARIMA model is proposed as a useful tool for monitoring preva-
lence. The results of the study will be beneficial specifically to Niger State Gov-
ernment for prevention and control of HIV and Nigeria Government. 
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