
Open Journal of Statistics, 2020, 10, 261-273 
https://www.scirp.org/journal/ojs 

ISSN Online: 2161-7198 
ISSN Print: 2161-718X 

 
 
 

Analysis of Variance for Three-Way Unbalanced 
Mixed Effects Interactive Model 

Emmanuel W. Okereke1, Joy C. Nwabueze1, Stanislaus O. Obinyelu2 

1Department of Statistics, Michael Okpara University of Agriculture Umudike, Umuhia, Nigeria 
2Department of Statistics, Federal College of Agriculture Ishiagu, Ebonyi State, Nigeria 

 
 
 

Abstract 
In the study, a method of solving ANOVA problems based on an unbalanced 
three-way mixed effects model with interaction for data when factors A and B 
are fixed, and factor C is random was presented, and the required EMS was 
derived. Under each of the appropriate null hypotheses, it was observed that 
none of the derived EMS was unbiased for the other. Unbiased estimators of 
the mean squares were determined to test hypotheses. With the unbiased esti-
mators, appropriate F-statistics as well as their corresponding pseudo-degrees 
of freedom were obtained. The theoretical results presented in the paper were 
illustrated using a numerical example. 
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1. Introduction 

The role of multi-factor experiments in agriculture, engineering and other fields 
cannot be overemphasized. Through a multi-factor experiment, it is possible to 
test the interaction effect of two or more factors. Sometimes, a multi-factor ex-
periment conducted to compare factor levels and factor level combinations re-
sults in unbalanced data. Often, in the case of the analysis of variance (ANOVA) 
for unbalanced data, an exact F-test does not exist. As a remedy to this problem, 
authors have recommended some methods of testing effects in various multi-factor 
ANOVA problems. Consequently, [1] proposed an exact permutation test for 
fixed effects ANOVA based on balanced and unbalanced data. [2] derived ex-
pected mean squares for the unbalanced two-way random effects model with in-
teger degrees of freedom. The F-test statistics for testing main effects as well as 
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the interaction effects based on the two-way mixed effects model were derived 
by [3]. 

From the foregoing, it is obvious that a reasonable number of studies have been 
carried out on the unbalanced two-way fixed effects, random effects and mixed 
effects models. However, not much attention has been given to the unbalanced 
three-way analysis of variance problems, especially such problems requiring mixed 
factor effects. There are basically six cases of the unbalanced three-way mixed ef-
fects crossed classification models. This paper deals with hypothesis testing prob-
lems arising from one of the six cases, in which two (A and B) of the three fac-
tors are fixed and the other factor (C) is random. The remaining parts of this 
paper are organized in the following manner. Section 2 has to do with the model 
specification and the necessary notations. In Section 3, theoretical results pertain-
ing to expected mean squares, F-statistics and the corresponding pseudo-degrees 
of freedom are derived. A numerical example and the conclusion of this paper 
are presented in Sections 4 and 5 respectively. 

2. Model Specification and Restriction 

The three-way unbalanced mixed effects cross-classification model with interac-
tion terms, in which factors A and B are fixed while factor C is random is given 
by [4] and [5] as 

( ) ( ) ( )

( )

1,2, ,
1, 2, ,

,
1, 2, ,
1, 2, ,

ijkl i j k ij ik jk

ijklijk

ijk

X A B C AB AC BC

i a
j b

ABC e
k c
l n

µ= + + + + + +

=
 =+ +  =
 =









          (1) 

where: ijklX , denotes the 1st observation at the ith level of factor A, the jth level 
of factor B, and the kth level of factor C, µ  denotes the overall mean, iA  de-
notes the effect of the ith level of factor A. jB  denotes the effect of the jth level 
of factor B, kC  denotes the effect of the kth level of factor C, ( )ijAB , ( )ikAC ,
( ) jkBC  denotes the effects of the two-factor interactions A B× , A C× , B C× , 
respectively, ( )ijkABC  denotes the effect of the three-factor interaction A B C× × , 

ijkle  denotes the customary error term. 
The Model (1) is called unbalanced three-way mixed effects cross-classification 

model with interaction if the following assumptions by [4]. 
From Equation (1), if factor A and B are fixed while factor C is random. 
The model follows the following assumptions as: 

i) The effects iA s′  and jB s′  are assumed to be fixed subject to the constraint  

( ) 0
a b ab

i j ij
i j ij

A B AB= = =∑ ∑ ∑ ; 

ii) kC s′  are assumed to be randomly and normally distributed with mean  
zero and variance 2

θσ . i.e. ( )2~ 0,k CC N σ , ( ) ( )2~ 0, ACikAC N σ ,  

( ) ( )2~ 0, BCjkBC N σ  and ( ) ( )2~ 0, ABCijkABC N σ . 
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iii) kC s′  are uncorrelated with one another kC s′  and ijke s′  that is 

( ) 0,k kE C C k k′ ′= ≠  

and 

( ) 0k ijkE C e =  for all ( ), ,i j k ’s; 
iv) Error terms are normally distributed with mean zero and variance 2

eσ , 

they are mutually independent i.e. ( )2~ 0,ijkl ee N σ . 
Under the assumptions above, we consider the following notations so as to 

derive the requisite expected mean squares. 
Now, let 

. . .

..

a b c a b a c b c

i j k ij i k jk
i j k i j i k j k

a b c a b c a b c

ijk i ijk ijk ijk
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= = = = = =
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        (2)

 

3. Main Results 

The mean squares due to the three main effects and four interaction terms for 
Model (1) are 
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and 
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( )2
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ijkna b c
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i j k l

E

X X
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N abc
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where: MSA is the Mean Square for factor A, MSB is the Mean Square for factor B, 
MSC is the Mean Square for factor C, MSAB is the Mean Square for the interac-
tion factor A and B, MSAC is the Mean Square for the interaction factor A and C, 
MSBC is the Mean Square for interaction of factor B and C, MSABC is the Mean 
Square for interaction of factor A, B and C, and MSE is the Mean Square for er-
ror term. 

Using Brute Force Method, the expected mean squares of Equation (1) when 
factor A and B is fixed while factor C is random the expected mean square are 
shown in theorem 1. 

Theorem 1: Given the model in (1), the expected mean square due to factor A 
is 

[ ]
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 and 2

eσ  is the error va-

riance. 
Proof: 
Using Equation (1), we have 

( ) ( )... . .... ..
0 0 0i i ii

X A C AC BC eµ= + + + + + + + +              (11) 

and 

( ) ( ) ( )..... . ...... .. ...
0 0 0X C AC BC ABC eµ= + + + + + + + +            (12) 

Substituting (11), (12) into (3), and taking expectations, we have 
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. This completes the proof.  

Similarly, if MSB and MSC denote the mean squares due to factor B and factor 
C respectively. Then 
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and 
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      (20) 

A major step in the derivation of the F-statistics is to find the unbiased esti-
mates of the mean squares due to the main factors and the interactions. There-
fore, the unbiased estimates are presented as follows. 

Theorem 2: Given the model in (1), if factors A and B are fixed while factor C 
is random, then ( )1 2 1 21AC ABC EMS MS MS MSφ φ φ φ φ= + + − −  is an unbiased es-
timate of 

2 2 2
1 3A AC ABC eMS k kσ σ σ= + + .

 
where, MSφ  is the unbiased estimate of the mean square for factor A. 

Proof: 
If we assume that ACMS  and ABCMS  are independent, we take expectations, 

to have 

( ) ( ) ( ) ( ) ( )1 2 1 21AC ABC EE MS E MS E MS E MSφ φ φ φ φ= + + − −  

( ) ( ) ( ) ( )2 2 2 2 2 2
1 9 10 2 13 1 21AC ABC e ABC e eE MS K K kφ φ σ σ σ φ σ σ φ φ σ= + + + + + − −  

( ) 2 2 2 2 2 2 2 2
1 9 1 10 1 2 13 2 1 2AC ABC e ABC e e e eE MS K K Kφ φ σ φ σ φ σ φ σ φ σ σ φ σ φ σ= + + + + + − −
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13 9 13

K KK
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( ) ( )2 2 2 21 101 1 2
9 10 13

9 9 13 9 13

2 2 21 101 2
1 10 13 13

9 13 9 13

AC ABC ABC e
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K KK K KE MS K K K
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K KK KK K K k
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φ σ σ σ σ

σ σ σ
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( ) 2 2 2
1 2AC ABC eE MS k kφ σ σ σ= + +  as required. 

Similarly, it can be shown that ( )1 2 1 21BC ABC EMS MS MS MSλ λ λ λ λ= + + − −  
is an unbiased estimate. 

2 2 2
3 4B AC ABC eMS k kσ σ σ= + + ,

 
( )1 2 3 1 2 31AC BC ABC EMX MS MS MS MSγ γ γ γ γ γ γ= + + + − − −  is an unbiased estimate. 

2 2 2 2
5 6 7C AC BC ABC eMS k k kσ σ σ σ= + + + , 

( )2 11ABC EMS MS MSπ π π= + −  is an unbiased estimate. 

2 2
8ABC ABC eMS k σ σ= + , 

( )1 2 1 21AC ABC EMS MS MS MSρ ρ ρ ρ ρ= + + − −  is an unbiased estimate. 
2 2 2

9 10AC AC ABC eMS k kσ σ σ= + + ,
  

and  
( )1 2 1 21BC ABC EMS MS MS MSτ τ τ τ τ= + + − −  is an unbiased estimate. 

2 2 2
11 12BC BC ABC eMS k kσ σ σ= + + . 

The F-statistics for the main effects and interactions effect are given below: 

A
A

MSF
MSφ

= ,                          (22) 

B
B

MSF
MSλ

= ,                          (23) 

C
C

MS
F

MSγ

= ,                          (24) 

AB
AB

MSF
MSπ

= ,                         (25) 

AC
AC

MS
F

MSρ

= ,                         (26) 

BC
BC

MS
F

MSτ
= ,                         (27) 

and 

ABC
ABC

e

MS
F

MS
= ,                       (28) 

where: FA is the F-statistic for factor A, FB is the F-statistic for factor B, FC 
is the F-statistic for factor C, FAB is the F-statistics for the interaction fac-
tors A and B, FAC is the F-statistics for the interaction factors A and C, 
FBC is the F-statistics for the interaction factors B and C, and FABC is the 
F-statistics for the interaction factors A, B and C. 
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Having presented the necessary F-statistic, we also have to determine the pseu-
do-degree of freedom corresponding to this statistic. Using the [6], the Welch Sat-
terthwaite equation is used to determine the pseudo-degrees of freedom in this 
paper. 

Theorem 3: Given the model in (1) and Welch Satterthwaite Equation, let fφ  
be the pseudo-degree of freedom for factor A. Then 
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1222 22 22 1 2 1 21
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φ φ φ φ
−
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Proof: 
Recall that 

( )1 2 1 21AC ABC eMS MS MS MSφ φ φ φ φ= + + − − ,              (30) 

If we assumed that ACMS  and ABCMS  are independent, we obtain 
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Extending our idea of (33) into (31), leads to 
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where: 
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( ) ( ) ( ) ( ) ( )
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The degree of freedom associated with FA is 
0.05

,Af ff
φ

 

Similarly, 
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The degree of freedom associated with FB is 
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The degree of freedom associated with FC is 
0.05
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The degree of freedom associated with interaction factor A and B is 
0.05
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The degree of freedom associated with interaction factor A and C is 
0.05

,ACf ff
ρ  
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f f fτ τ
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 − −   = + +   
 

   (39) 

The degree of freedom associated with interaction factor B and C is 
0.05

,BCf ff
τ

 
The degree of freedom associated with the interaction factors A B C× ×  is 

,ABC ef ff α  

This does not involve obtaining any expression, where , , ,f f f fλ γ π ρ  and  fτ  
represent the pseudo degrees of freedom for factors B and C, the interactions 
A B× , A C×  and B C× .  While fABC and fe are the numerator and denomina-

tor degrees of freedom respectively (Table 1). 
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Table 1. Table for the unbiased estimates of the mean squares under the null hypothesis. 

FACTORS HYPOTHESIS 
UNBIASED ESTIMATES OF THE 

MEAN SQUARES 
APPROXIMATE 

F-STATISTIC 

A 0 1: 0A nH A A= = =  
( )

1

2 1 21
AC

ABC E

MS MS

MS MS
φ φ

φ φ φ

=

+ + − −
 AMS

MSφ

 

B 0 1: 0B nH B B= = =  
( )

1

2 1 21
BC

ABC E

MS MS
MS MS

λ λ
λ λ λ

=

+ + − −  
BMS

MSλ

 

C 2
0 : 0C CH σ =  

( )
1 2 3

1 2 31
AC BC ABC

E

MS MS MS MS

MS
γ γ γ γ

γ γ γ

= + +

+ − − −  
BMS

MSγ

 

AB ( ) ( )0 1
: 0AB n

H AB AB= = =  ( )1 11ABC EMS MS MSπ π π= + −
 

ABMS
MSπ

 

AC 2
0 : 0AC ACH σ =  

( )
1

2 1 21
AC

ABC E

MS MS

MS MS
ρ ρ

ρ ρ ρ

=

+ + − −  
ACMS

MSρ

 

BC 2
0 : 0BC BCH σ =  

( )
1

2 1 21
BC

ABC E

MS MS
MS MS

τ τ
τ τ τ

=

+ + − −  
BCMS

MSτ

 

ABC 2
0 : 0ABC ABCH σ =   ABC

E

MS
MS

 

4. Numerical Example 

Consider a three-factorial experiment involving factor A (Solvents-water, etha-
nol, ether), factor B (Volumes of solute-25, 50 and 100 ml) and factor C (Time-40, 
50, 60 and 70 mins) respectively. The solvents are of varying polarities. Arbitrary 
volumes of 25, 50 and 100 ml were chosen while the extraction was done at in-
tervals of time 40, 50, 60 and 70 mins. The major aim is to determine the effi-
ciency of different quantities of solvents on the extraction of soluble components 
of lemon grass per unit time. 

In the experiment, the sample (lemon grass) was dried in the oven at 45˚C for 
1440 mins. The dried sample was pulverized and 1 g of pulverized sample was 
used for each solvent in a typical extraction 1g of sample was dissolved in 25 ml 
of water for 40 mins. At the end of the time, the solute was filtered using a suita-
ble filter paper (Whatman). The solution was then vaporized at 105˚C for 720 
mins leaving the remaining extract which was weighted in an analytical balance. 
The process was repeated and replicated three times for 50, 60 and 70 mins. A 
similar procedure was done using different volumes of ethanol and ether as ex-
tracts at different durations of 40, 50, 60 and 70mins. Results of the extraction 
are shown in Table 2. 

Using the information in Table 2 as well as the formulae for computing MSA, 
MSB, MSC, MSAB, MSAC, MSBC, MSABC and MSE, we have 

72.4819, 50.5353, 67.0578,
53.4128, 25.4262, 86.2273,
193.7391 and 1.9473.

A B C

AB BC AC

ABC E

MS MS MS
MS MS MS
MS MS

= = =

= = =

= =

 

Again, the constants are calculated as follows: 
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1 2 3 4

5 6 7 8

9 10 11

12 13

 7.7153, 1.2531, 6.8274, 1.2531,
1.7325, 2.2840, 0.8354, 8.6482,
11.2040, 0.4177, 0.4177,
67.3453, 4.8323

k k k k
k k k k
k k k
k k

= = = =

= = = =

= = =

= =

 

The ANOVA table for the data is shown in Table 3. 
Our hypothesis for factor A shall be 0 1: 0A nH A A= = = ; 
Similarly, our hypothesis for factor B shall be 0 1: 0B nH B B= = = ; 
Our hypothesis for factor C shall be 2

0 : 0C CH σ = ; 
Our hypothesis for factor A and B shall be ( ) ( )0 1: 0AB nH AB AB= = = ; 
Our hypothesis for factor A and C shall be 2

0 : 0AC ACH σ = ; 
Our hypothesis for factor B and C shall be 2

0 : 0BC BCH σ = ; 
And Our hypothesis for factor A, B and C shall be 2

0 : 0ABC ABCH σ = . 
 
Table 2. The extract data. 

Time Solvents (B) Volumes (A) 
.. .kX  kN  .. .kX  

(mins) (C)  25 50 100 

40 

1 

1.0 5.0 8.0    

2.0 2.0 9.0    

3.0      

2 

2.0 13.0 12.0    

4.0  15.0 145 20 7.25 

  16.0    

3 

4.0 3.0 15.0    

7.0 5.0 14.0 
   

   

5.0      

50 

1 

12.0 16.0 2.0    

11.0 17.0 
    

    

 14.0  
222 21 10.5714 

   

13.0 8.0 13.0    

2 

15.0 9.0 15.0    

 
8.0 11.0 

   

    

      

2.0 10.0 14.0    

3 
5.0  11.0    

4.0  12.0    
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Continued 

60 

 6.0 12.0 5.0    

1 5.0  4.0    

 2.0      

 5.0 12.0 6.0 123 19 6.4737 

2 7.0 11.0     

3 
2.0 13.0 3.0    

4.0 15.0 2.0    

 5.0  4.0    

70 

1 
13.0 3.0 1.0    

14.0 5.0 2.0    

   4.0    

2 
9.0 13.0 6.0 

156 21 7.4286 
9.0  4.0 

 7.0  5.0    

3 
2.0 6.0 15.0    

 8.0 13.0    

  5.0 12.0    

...iX  180 213 253    

iN  29 23 29     

...iX  6.2069 9.2069 8.7241     

.. .jX  178 248 220     

iN  26 26 29     

.. .jX  6.8462 9.8462 7.5862     

Table 3. Complete ANOVA table for extraction solution. 

S.V d.f SS MS Expected mean square f-ratio 

A 2 144.9638

 
72.4819

 2

2 2 27.7153 1.2531
1

a

i i
i

AC ABC e

N A

a
σ σ σ+ + +

−

∑
 0.7373

 

B 2 101.0706

 

50.5353
 2

2 2 26.8274 1.2531
1

b

j j
j

BC ABC e

N B

b
σ σ σ+ + +

−

∑
 0.9649 

C 3 201.1734 67.0578
 

2 2 2 2 226.963 1.7325 2.2840 0.8354C AC BC ABC eσ σ σ σ σ+ + + +  1.4645 

AB 4 213.6512 53.4128

 ( )

( )( )

2

.
2 28.6482

1 1

ab

ij ij
ij

ABC e

n E AB

a b
σ σ+ +

− −

∑
 0.2757 

AC 6 152.5572 86.2273 2 2 211.2040 0.4177AC ABC eσ σ σ+ +  1 

BC 6 517.3638 25.3261

 
2 2 20.4177 67.3453BC ABC eσ σ σ+ +  1 

ABC 12 2324.8692 193.7391

 
2 24.8323 ABC eσ σ+  99.4911 

Error 54 87.6285 1.9473
 

2
eσ   

Total 80     

NOTE: UEMS= UNBIASED ESTIMATES OF THE MEAN SQUARES. 
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5. Conclusion 

In this study, we have presented a hypothesis testing procedure based on an un-
balanced three-way cross-classification mixed effects model with interaction when 
factors A and B are fixed while factor C is random. From the theoretical results 
obtained in this study, it was observed that exact F-tests do not exist for any of 
the hypotheses to be tested. As a consequence, approximate F-tests were consi-
dered. A numerical example was given to illustrate theoretical our results. 
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