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Abstract 
Understanding an underlying structure for phylogenetic trees is very impor-
tant as it informs on the methods that should be employed during phyloge-
netic inference. The methods used under a structured population differ from 
those needed when a population is not structured. In this paper, we compared 
two supervised machine learning techniques, that is artificial neural network 
(ANN) and logistic regression models for prediction of an underlying struc-
ture for phylogenetic trees. We carried out parameter tuning for the models 
to identify optimal models. We then performed 10-fold cross-validation on the 
optimal models for both logistic regression and ANN. We also performed a 
non-supervised technique called clustering to identify the number of clusters 
that could be identified from simulated phylogenetic trees. The trees were 
from both structured and non-structured populations. Clustering and predic-
tion using classification techniques were done using tree statistics such as 
Colless, Sackin and cophenetic indices, among others. Results from 10-fold 
cross-validation revealed that both logistic regression and ANN models had 
comparable results, with both models having average accuracy rates of over 
0.75. Most of the clustering indices used resulted in 2 or 3 as the optimal 
number of clusters. 
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1. Introduction 

A phylogenetic tree is defined by [1] [2] as a tree that represents evolutionary 
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relationships among species under consideration. Normally these trees are either 
sampled or simulated from populations. The populations are either structured or 
non-structured. A structured population is made up of types, called sub-populations 
as pointed out by [3] [4] [5]. A non-structured population does not have sub-popu- 
lations and the disease dynamics are considered to be uniform or homogeneous. 
A phylogenetic tree can be studied by analysing the inferred tree shape as pointed 
out in [6]. The inferred tree shape can be summarised by tree statistics or indices 
as described by [7]. We employed tree statistics to predict the underlying popu-
lation structure using classification techniques. These techniques were logistic 
regression and artificial neural network models. 

Logistic regression is a special case of linear regression. Both linear and logis-
tic regression have a dependent variable, say Y which is predicted using inde-
pendent variables, say 1 2, , , pX X X , in case where we have p independent va-
riables. For linear regression, Y is a continuous variable, while Y is a categorical 
variable which takes on two values (dichotomous) for logistic regression, for ex-
ample, logistic regression can be used to predict presence or absence of a certain 
symptom in patients, using variables like age, weight, race and others. Many stu-
dies have employed logistic regression to study various phenomena. For example, 
[8] used logistic regression to analyse 46 variable amino acid sites in reverse tran-
scriptase for their effect on susceptibility. Another classification technique which 
we used was artificial neural network. 

An artificial neural network (ANN) model consists of input neurons, hidden 
layers (with hidden neurons) and output neuron(s) as described in [9] [10] [11] 
[12]. For a classification problem, input neurons are features that are used dur-
ing the learning process of the network. These are the input variables for the net-
work as pointed out by [10]. Hidden layers and hidden neurons connect input 
neurons with output neurons. The output neurons are classification targets, for 
example, presence or absence of a disease. Layers and neurons in ANN models 
are connected by weights that are determined during the learning algorithm. ANN 
models are applicable in many fields, including financial management, manu-
facturing, pattern recognition, control systems, environmental science, among 
others as noted by [13]. For example, [9] used ANN models to predict five-year 
mortality for patients who were diagnosed with breast cancer. [13] applied ANN 
models to study rainfall-runoff patterns and forecasting floods. [10] applied ANN 
models for eutrophication prediction, where water quality indicators of a certain 
lake were predicted with reasonable accuracy. In other ANN applications, [14] 
used back-propagation neural network on classification of multi-spectral remote 
sensing data. 

In this paper, we used logistic regression and ANN models for classification. 
The two classes were structured and non-structured populations. The indepen-
dent variables were the tree statistics. We investigated the predictive ability of 
the logistic regression and ANN models. This was assessed using the average 
accuracy rates. We also performed unsupervised learning technique, called clus-
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tering. The aim was to obtain optimal number of clusters. Since we had struc-
tured and non-structured populations, average optimal number of clusters was 
expected to be two in order to consider clustering to have detected the underly-
ing structure about the populations. 

2. Methods 

A linear regression model is given as:  
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1,2, ,i n=  . Fitted values are denoted as Ŷ , while observed values for the de-
pendent variable are the iY s′ . A given coefficient value ( jβ ) indicates the extent 
to which the mean of dependent variable changes when a unit shift in an inde-
pendent variable ( jX ) occurs, while keeping other variables in the model constant. 
Coefficient 0β  signifies a value the dependent value assumes when all indepen-
dent variables in the model are equated to zero, or when they are all missing. Care 
has to be taken when interpreting 0β  as it might be meaningless in some re-
gression models. 

A logistic regression model is a special case of linear regression model for 
Bernoulli distributed dependent variable. The link function is the logit function 
which is defined as:  
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A logistic regression model is given below as: 

( )( ) 0
1

logit 1 .
p

j j
j

Pr Y Xβ β
=

= = +∑                    (3) 

We simulated phylogenetic trees from both structured and non-structured pop-
ulations. The structuring for the population was based on parameters for birth, 
death and migration. The choice for the values of the parameters in structured 
and non-structured populations were based on the work of [3] on estimation of 
binary character effect on speciation and extinction. In their work, birth, death 
and character change parameters were equal in the two sub-populations under a 
symmetrical scenario, while asymmetry was depicted by altering one of the three 
parameters at a time. In our simulation, the three parameters were changed at 
once to yield the asymmetry in all the three parameters. In our case, it is the 
asymmetry that introduced the population structure in the phylogenetic tree si-
mulation. In disease epidemiology, a structured population means that there are 
two or more sub-populations with varying infectivity rates, hence the choice of 
the parameters in our simulated trees under structured and non-structured pop-
ulations. 
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For parameters used in the simulation sets, the choice was based on a similar 
study done in [3]. We had three simulation sets, and in the first simulation set, 
we had: 1 2 100n n= = , 1 2 0.5λ λ= = , 1 2 0.01µ µ= =  and 12 21 0.02m m= =  
for a non-structured population. Parameter 1λ  is the rate at which individuals 
in sub-population 1 give birth to new individuals (birth rate in sub-population 
1), 1µ  is the rate at which individuals in sub-population 1 die (death rate) and 

12m  is the migration rate for individuals from sub-population 1 to 2. Parame-
ters 2λ , 2µ  and 21m  are analogously defined. Parameters 1n  and 2n  
represent the number of leaves (tips) in a phylogenetic tree that belong to 
sub-population 1 and 2, respectively. The sum of 1n  and 2n  gives the total 
number of leaves in a phylogenetic tree. For a structured population, we had the 
parameters as: 1 2 100n n= = , 1 1.5λ = , 1 0.03µ = , 12 0.06m = , while 2λ , 2µ  
and 21m  had the same values as those for non-structured. We simulated 1000 
trees in total and therefore 500 for each of structured and non-structured popu-
lations. It should be noted that structured and non-structured population in this 
study correspond to asymmetry and symmetry models, respectively used by [3]. 

For the second simulation set, parameters for structured and non-structured 
remained the same as those in the first simulation set, but with only changes made 
on the number of leaves of trees. The total number of leaves was changed from 
200 to 500. We therefore had 1 2 250n n= = . For the third simulation set, only 
the number of phylogenetic trees was doubled and we had 1000 for either struc-
tured or non-structured population, while other parameter values were the same 
as those for simulation set 1. 

Using simulated trees obtained under structured and non-structured popula-
tions, we used eight tree statistics for classification and clustering. These in-
cluded: number of cherries, Sackin, Colless and total cophenetic indices, ladder 
length, maximum depth, maximum width and maximum width over maximum 
depth. A cherry is defined as two leaves (tips) that are adjacent to a common an-
cestor node as described in [15]. A Sackin index index adds the number of in-
ternal nodes between each leaf and the root in a tree. This index was proposed 
by Sackin in 1972. For Colless index, the absolute difference between left and 
right hand leaves subtended at each internal node is computed. This is done over 
all the internal nodes and the sum gives Colless index. Details for Colless index 
can be obtained in [7]. The definition of total cophenetic index is given by [16]. 
Other definitions for ladder length, maximum depth of a tree, maximum width 
and maximum width over maximum depth can be found in [17]. The implemen-
tation of phylogenetic tree simulation and computation of tree statistics were 
implemented in Python software, version 3.7.3. 

We then performed standardization for all the eight variables using a formula 
given by Equation (4). 

( )
( ) ( )
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max min

x x
z

x x
−

=
−

                       (4) 

where z, min(x) and max(x) are standardized input, minimum and maximum 
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for a particular variable, respectively. The standardization procedure used is ex-
plained in [18]. The standardized variables ranged in the interval [ ]0, 1 . 

2.1. Training Artificial Neural Network and Logistic Models 

With help of R package, neuralnet of [11], we first trained artificial neural net-
work (ANN) models using all the standardized eight tree statistics as the input 
variables. These were: number of cherries, Sackin, Colless and total cophenetic 
indices; ladder length; maximum depth; maximum width, and width-to-depth 
ratio. We used generalized weights as described in [12] to identify four most in-
fluential input variables for each of the three simulation sets. We first used one 
hidden layer with one neuron to identify four most influential input variables. 
This was done to reduce input variables for ANN models. Reduced ANN models 
with few input variables converged faster. 

For logistic regression, models were fitted using glm function of an R package 
called stats. The glm function fits generalized linear models. As pointed out by 
[19], these models comprise of a dependent variable (z), a set of independent 
variables ( 1 2, , , mx x x ), predicted variable ( i iY xβ= ∑ ) and a linking function 
( ( )f Yθ = ). The linking function connects parameter θ  of the distribution of 
z with the Y s′  of the linear model. We first fitted logistic models using all the 
eight variables. A summary of the output from glm function gives values of re-
gression coefficients, z-values and ( )Pr z> . For each of an input variable, 
z-values and ( )Pr z>  were used to identify four most significant variables for 
each of the three simulation sets. 

2.2. Parameter Tuning for Neural Network and Logistic Models 

Using ANN model with one hidden neuron, we identified four most influential 
input variables using generalized weights for all the three simulation sets. [9] ana-
lysed contributions of covariates (input variables) for ANN models using gene-
ralized weights. They point out that the distribution of generalized weights for a 
particular covariate signifies whether the effects are linear (small variance) or 
non-linear (large variance). We plotted the generalized weights for all the eight 
inputs for each of the three simulation sets using the same range. Input variables 
that had a distribution of generalized weights close to zero were deemed to have 
less contribution in explaining the output variable as pointed out by [11]. Para-
meter tuning was then performed on reduced ANN models. The parameters that 
were tuned to obtain optimal models were the number of hidden layers and 
hidden neurons. 

For each of the simulation set, having identified the four most influential in-
put variables, we ran reduced ANN models with two hidden layers. In each of 
hidden layers, we varied number of hidden neurons between one and two. In the 
first reduced ANN model, we had one neuron for both hidden layers. For second 
reduced ANN model, we used two, and one neuron for first, and second hidden 
layers, respectively. A third reduced ANN mode had one and two neurons for 
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first and second hidden layers, respectively. A fourth reduced ANN model had 
two neurons for both hidden layers. Models were compared using Akaike in-
formation criterion (AIC), Bayesian information criterion (BIC) and cross en-
tropy (ce) error. [20] defined AIC and BIC in Equations (5) and (6), respectively. 

( )( )ˆAIC 2ln 2L pθ= − +                       (5) 

( )( ) ( )ˆBIC 2ln ln 2L pθ= − +                     (6) 

where ( )ˆL θ  is the likelihood of estimated model. Parameter p and n are the 
total number of parameters estimated and sample size, respectively. For both 
AIC and BIC, smaller values imply better models. Cross entropy measures devi-
ations of predicted outcome from the observed ones. The smaller the ce error, 
the better the model. Details of cross entropy can be found in [11] [12]. 

For logistic models, we tuned the number of input variables. We reduced the 
input variables from eight to four. We identified four most significant for easy 
comparison with ANN models since we had also reduced ANN models to four 
input variables. 

2.3. Cross-Validation of Classification Results for ANN and Logistic  
Models 

Having obtained optimal models for each of the simulation set for both ANN 
and logistic regression models, we performed 10-fold cross-validation for classi-
fication of simulated trees from both structured and non-structured populations. 
Measures used to compare classification results included: sensitivity, specificity, 
accuracy and area under the curve (AUC) for receiver operating characteristic 
(ROC) graphs. [21] defined sensitivity as a ratio of true positive to sum of true 
positive and false negative, while specificity as a ratio of true negative to sum of 
false positive and true negative. In classification problems, true positive and false 
positive are number of cases predicted as positive yet they were actually positive 
and cases predicted positive yet they were negative, respectively. True negative 
and false negative are analogously defined. This implies that false positive and 
false negative are considered as miss-classification cases. Accuracy is therefore a 
sum of true positive and true negative cases divided by the total number of cases 
classified. AUC for ROC graphs were defined in [22]. 

2.4. Clustering of Phylogenetic Trees Using Tree Statistics 

Since ANN and logistic regression models are supervised learning techniques, 
we wanted to compare the two with unsupervised learning technique. We there-
fore did clustering by k-means. We were interested in finding out the optimal 
number of clusters that could be obtained from the tree simulated sets. We first 
used all the eight tree statistics and later reduced to four for easy comparison 
with ANN and logistic regression models. We used the exact four tree statistics 
that were used for reduced ANN and logistic regression models. Using R pack-
age NbClust of [23], we obtained optimal number of clusters for both full simu-
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lation sets (when all eight tree statistics used) and reduced simulation sets (when 
four tree statistics were used). NbClust gives optimal number of clusters for a 
given data set using thirty indices. 

3. Results 
3.1. Results for ANN and Logistic Regression Models 

The visualization for a full ANN model for simulation set 1 is shown in Figure 1. 
The ANN model shown has one input layer with eight neurons. The entropy er-
ror was approximately 335 and it required 46934 steps to converge. 

The corresponding generalized weights for ANN model in Figure 1 are shown 
in Figure 2. These generalized weights are for all the eight tree statistics for si-
mulation set 1. From Figure 2, the four input variables with the largest variance, 
hence most influential in explaining the underlying structure for simulation set 1 
are Colless and Sackin indices, maximum width and width-to-depth ratio. We 
also plotted the generalized plots for simulation sets 2 and 3. For these two si-
mulation sets, the four most influential input variables were the same and these 
were Colless, Sackin, and total cophenetic indices and maximum depth. 

We obtained optimal ANN models for each of the three simulation sets using 
AIC, BIC and entropy error. Results for simulation sets 1 and 2 are shown in 
Figure 3. The optimal model for simulation sets 1 and 3, had 2 neurons for the 
first hidden layer and 1 neuron for second hidden layer. For simulation set 2, the 
optimal model had 1 neuron for the first hidden layer and 2 neurons for the 
second hidden layer. 
 

 
Figure 1. Aplot of a trained ANN model for simulation set 1 including 
synaptic weights, error and steps involved during the training. 

 

DOI: 10.4236/ojs.2020.102017 245 Open Journal of Statistics 
 

https://doi.org/10.4236/ojs.2020.102017


H. W. Kayondo, S. Mwalili 
 

 
Figure 2. A plot of generalized weights with respect to each variable for general ANN model of simulation set 1. 
 

For logistic regression models, the most significant variables for simulation 
sets 1 and 2 were: number of cherries, Colless, Sackin and total cophenetic in-
dices. For simulation set 3, the four most significant variables were: number of 
cherries, total cophenetic index, maximum width and maximum depth. 

3.2. Results for the 10-Fold Cross-Validation for ANN and Logistic  
Models 

Having established the optimal models for both ANN and logistic regression mod-
els, we performed 10-fold cross-validation. Table 1 shows means for sensitivity, 
specificity, accuracy and AUC. Results for ANN and logistic regression are 
comparable, though in both models, simulation set 1 had the least mean values, 
but simulation set 3 had the best mean values for the measures used. 

3.3. Results for Clustering 

Figure 4 shows the optimal number of clustering using average silhouette width 
and gap statistic for simulation sets 1 and 2. For these two statistics, the optimal 
number of clusters was 2. We analysed both for full simulation sets (when all eight 
tree statistics used) and for reduced simulation sets (when only four tree statis-
tics) were used. We had six reduced simulation sets, three according to reduced 
simulation sets used for ANN models and three according to reduced simulation  
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Figure 3. AIC, BIC and entropy error for reduced ANN models of simulation sets 1 and 2. 

 
Table 1. Results of 10-fold cross-validated classification. The values shown are the aver-
age for the measures. 

ANN 10-fold cross-validation for classification 

Dataset sensitivity specificity accuracy AUC 

1 0.7322 0.7883 0.7560 0.7547 

2 0.7954 0.8127 0.8010 0.8012 

3 0.8371 0.8336 0.8355 0.8358 

Logistic Regression 10-fold cross-validation for classification 

1 0.6976 0.6977 0.6960 0.6970 

2 0.8111 0.8196 0.8150 0.8136 

3 0.9650 0.9839 0.9740 0.9737 

 
sets used for logistic regression models. This led to nine simulation sets (since 
we had three full simulation sets) that we investigated the optimal number clus-
ters that was ideal for the data. Out of nine, five simulation sets resulted in the 
optimal number of clusters as two and the rest three. 

4. Conclusions 

From the results obtained, it was evident that ANN and logistic regression mod-
els had comparable performance. A comparison of reduced models with four 
input variables revealed that for any of the three simulation sets, at least two in-
put variables in the reduced models for ANN and logistic regression were similar.  

 

DOI: 10.4236/ojs.2020.102017 247 Open Journal of Statistics 
 

https://doi.org/10.4236/ojs.2020.102017


H. W. Kayondo, S. Mwalili 
 

 
Figure 4. Average Silhouette width and Gap statistic indices that were used to detect the num-
ber of clusters in our simulation sets of data. (a) Average Silhouette width for simulation set 1; 
(b) Gap statistic for simulation set 1; (c) Average Silhouette width for simulation set 2; (d) Gap 
statistic for simulation set 2. 
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For simulation set 1, ANN models had the four most significant input variables 
as Colless and Sackin indices, maximum width and width to depth ratio. For lo-
gistic regression, four most significant variables were: number of cherries, Col-
less, Sackin and total cophenetic indices. For simulation set 2, three of the four 
significant input variables were common in both ANN and logistic regression 
models. These were: Colless, Sackin and total cophenetic indices. For simulation 
set 3, two input variables of the four most significant were common in both ANN 
and logistic models. These were: total cophenetic index and maximum depth. 

For 10-fold cross-validation classification, in both ANN and logistic regres-
sion models, the mean values for sensitivity, specificity, accuracy and AUC were 
least for simulation set 1 and highest for simulation set 3, as shown in Table 1. 
The mean accuracy values for both ANN and logistic regression models were 
comparable with highest value of 0.974 for logistic regression for simulation set 3. 
The lowest was still for logistic regression of 0.696, and it was for simulation set 1. 
This was because phylogenetic trees simulated in set 3 had more leaves. This im-
plied more information during the training of the classification models, hence 
better classification results for simulation set 3 compared to simulation set 1. We 
choose to compare logistic regression with ANN models because ANN models are 
considered as complex and whose internal mechanism is hard to understand, hence 
it is referred to as a black box classification technique in literature. Whereas logis-
tic regression is one of the simplest regression models with only regression coef-
ficients to be estimated during the model training. The fact that ANN models 
performed comparably with logistic regression models suggests that the tree sta-
tistics employed to predict the underlying population structure did well. 

The results for clustering revealed that 2 or 3 clusters were optimal for most of 
the indices for clustering that were used. The unsupervised learning results re-
veal that structure was fairly detected by the clustering technique though not as 
accurate as expected since some indices were reporting 3 clusters. This is not 
surprising for clustering technique given the fact that it is a non-supervised tech-
nique. 
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