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Abstract 
Optimization has two faces, minimization of a loss function or maximiza-
tion of a gain function. We show that the mean absolute deviation about the 
mean, d, maximizes a gain function based on the power set of the individu-
als; and nd, where n is the sample size, equals twice the value of the 
cut-norm of the deviations about the mean. This property is generalized to 
double-centered and triple-centered data sets. Furthermore, we show that 
among the three well known dispersion measures, standard deviation, least 
absolute deviation and d, d is the most robust based on the relative contribu-
tion criterion. More importantly, we show that the computation of each prin-
cipal dimension of taxicab correspondence analysis (TCA) corresponds to 
balanced 2-blocks seriation. These ideas are applied on two data sets.  
 

Keywords 
Mean Absolute Deviations about the Mean, Cut Norm, Balanced 2-Blocks 
Seriation, Taxicab Correspondence Analysis 

 

1. Introduction 

Optimization has two faces, minimization of a loss function or maximization of 
a gain function. The following two well known dispersion measures, the variance 
(s2) and mean absolute deviations about the median (LAD), are optimal because 
each minimizes a different loss function  
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where 1 2, , , ny y y  and c represent a sample of ( 1n + ) values. To our know-
ledge, no optimality property is known for the mean absolute deviations about 
the mean defined by  

1 ,
n
i iy y

d
n

=
−

= ∑                          (3) 

even though it has been studied in several papers for modeling purposes by, see 
among others, [1] [2] [3]. [1] [2] essentially compare the dispersion measures d 
and s in the statistical literature, with their preference clearly oriented towards d 
for its simple interpretability. While the authors in [3] compare the statistics d 
and LAD with the Gini dispersion measure and conclude that “The downside of 
using (d and LAD) is that robustness is achieved by omitting the information on 
the intra-group variability”. 

The following inequality LAD d s≤ ≤  is well known and is a corollary to 
Lyapounov inequality, see for instance [4]: the first part LAD d≤  follows from 
(2) and the second part d s≤  follows from 2 2 2

1 0n
iins w nw

=
= − ≥∑ , where 

i iw y y= − . 
d is the measure of dispersion used in taxicab correspondence analysis (TCA), 

an L1 variant of correspondence analysis (CA), see [5]. An explanation for the 
robustness of d is the boundedness of the relative contribution of a point, see 
[6]-[11]. However, this paper provides further details on d, relating it to cut-norm 
and balanced 2-blocks seriation for double-centered data. [11] argued that often 
sparse contingency tables are better visualized by TCA; here, we present an anal-
ysis of a 0-1 affinity matrix, where TCA produces a much more interpretable 
map than CA, by comparing Figure 3 and Figure 4. We see that repetition and 
experience play an indispensable and illuminating role in data analysis. 

This paper is organized as follows: In Section 2, we show the optimality of the 
d, s2 and LAD statistics based on maximizing gain functions, but d beats s2 and 
LAD with respect to the property of relative contribution of a point (a robust-
ness measure used in French data analysis circles based on geometry): this re-
sults from Lemma 1, which states the fact that for a centered vector nd equals 
twice its cut-norm; Sections 3 and 4 generalize the optimality result of the d to 
double-centered and triple-centered arrays; and we conclude in Section 5. Ba-
lanced 2-blocks seriation of a matrix with application to TCA is discussed in 
Section 3. 

2. Optimality of d 

We consider the centered vector ny= −x y 1 , where n1  is composed of n ones. 
Let { }1,2, ,I n=   and I S S=   a binary partition of I. We have 

0 ;i i i
i I i S i S

x x x
∈ ∈ ∈

= = +∑ ∑ ∑  
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from which we deduce 
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We define the cut-norm of a centered vector x  to be  

max
opt opt

i i iS i S i S i S
x x x

∈ ∈ ∈

= = = −∑ ∑ ∑x


 by 

where { }: 0 for 1,2, ,opt iS i x i n= ≥ =  . By casting the computation of d as a 
combinatorial maximization problem, we have the following main result de-
scribing the optimality of the d-statistic over all elements of the power set of I. 

Lemma 1: (2-equal parts property) 2 2 ii Snd x
∈

= ≥ ∑x
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Corollary 1: d n′≥ x u  for { }1,1 n∈ −u . 
Proof: By defining ( ) 1optu i =  if opti S∈  and ( ) 1opt i = −u  if opti S∈ , we get 

optd n n′ ′= ≥x u x u . 
Corollary 2: ( )nLAD median n′≥ −y u1  for { }1,1 n∈ −u . 
Corollary 2 shows that LAD has a second optimality property. We emphasize 

the fact that the optimizing function in (2) is a univariate loss function of c∈ ; 
while the optimizing function in Corollary 2 is a multivariate gain function of 

{ }1,1 n∈ −u . 
There is a similar result also for the variance in (1), based on Cauchy-Schwarz 

inequality stated in Lemma 2. 

Lemma 2: ( ) ( )
2n ns y n y n′= − ≥ −y y u1 1  for 1′ =u u . 

We note that Corollaries 1 and 2 and Lemma 2 represent particular cases of 
Hölder inequality, see [11]. 

Definition 1: We define the relative contribution of an element iy  to d, LAD 
and s2, respectively, to be 

( ) ,i
d i

y y
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Then the following inequalities are true 

( )0 0.5,d iRC y≤ ≤  

( )20 1,is
RC y≤ <  

( )0 1;LAD iRC y≤ ≤  
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from which we conclude that the most robust dispersion measure among the 
three dispersion measures, based on the relative contribution criterion, is d be-
cause it is bounded above by 0.5. 

We note that the inequality, ( )20 1is
RC y≤ < , is a weaker variant of La-

guerre-Samuelson inequality; see for instance [13], whose MS thesis presents 
nine different proofs. 

We have 
Definition 2: An element i ix y y= −  is a heavyweight if ( ) 0.5d iRC y = ; 

that is, 2i ix y y nd= − = . 
We note that a heavyweight element attains the upper bound of ( )d iRC y , 

but it never attains the upper bound of ( )2 is
RC y  and ( )LAD iRC y . 

3. 2-Way Interactions of a Correspondence Matrix 

Let ( )ijp=P  be a correspondence matrix; that is, 0ijp ≥  for i I∈  and 

{ }1,2, ,j J m∈ =   and 1 1 1m n
ijj i p

= =
=∑ ∑ . As usual, we define 1

m
i ijjp p∗ =
= ∑  

and 1
n

j ijip p∗ =
= ∑ . Let ( )1 ij ij i jx p p p∗ ∗= = −P  for i I∈  and j J∈ ; then 1P  

represents the residual matrix of P  with respect to the independence model 

( )i jp p∗ ∗ . In the jargon of statistics, the cell ijx  represents the multiplicative 

2-way interaction of the cell ( ),i j I J∈ × . 1P  is double-centered 

1 1and .m n n m′= =1 0 1 0P P                     (5) 

From (5) we get 

for ,ij ij
i S i S

x x j J
∈ ∈

= − ∈∑ ∑                     (6) 
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x x i I
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for T J⊂ . From (6) and (7), we get 
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We define the cut-norm of 1P  to be  

1 ,
max .

opt opt

ij ijS T j T i S j T i S
x x

∈ ∈ ∈ ∈

= =∑∑ ∑ ∑P


 

The cut-norm 1P


 is a well known quantity in theoretical computer science, 
because of its relationship to the famous Grothendieck inequality, which is based 
on 1 1∞→

P , see among others [14]. 
The matrix 1P  can be considered as the starting point in taxicab correspon-

dence analysis, an L1 variant of correspondence analysis, see [5]. The optimiza-
tion criterion in TCA of P  or 1P  is based on taxicab matrix norm, which is a 
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combinatorial optimization problem 
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{ } { }1max subject to 1, 1 , 1, 1 ,m n′= ∈ − + ∈ − +v P u u v         (11) 

1 1 1.′= v P u                                         (12) 

In data analysis, the vectors 1v  and 1u  are interpreted as first taxicab principal 
axes and 1δ  as first taxicab dispersion. So we can compute the projection of the 
rows (resp. the columns) of 1P  on the first taxicab principal axis 1u  (resp. 1v ) 
to be  

1 1 1=a P u                            (13) 

1 1 1.′=b P v                           (14) 

Equation (12) implies 
( )1 1 ,sign=v a                         (15) 

( )1 ,sign= 1u b                         (16) 

named transition formulas, see [5] and [11]. We also note the following identities 

1 1 1 10 and ,n δ′ = =a a1                    (17) 

1 1 1 10 and .m δ′ = =b b1                    (18) 

Using the above results, we get the following  
Lemma 3: (4-equal parts property) The norm  

1 1 11 4 4 ijj T i S xδ
∈ ∈∞→

= = ≥ ∑ ∑P P
 . 

In data analysis, Lemma 3 implies balanced 2-blocks seriation of 1P ; see ex-
ample 1. The subsets optT  and optS  are positively associated and  

1 opt opt ijj T i S x
∈ ∈

= ∑ ∑P
 ; similarly the subsets optT  and optS  are positively asso-

ciated and 1 opt opt ijj T i S x
∈ ∈

= ∑ ∑P
 . While the subsets optT  and optS  are nega-

tively associated and 1 opt opt ijj T i S x
∈ ∈

= −∑ ∑P
 ; similarly the subsets optT  and 

optS  are negatively associated and 1 opt opt ijj T i S x
∈ ∈

= −∑ ∑P
 . [15] presents an 

interesting overview of seriation and block seriation. 
Using Definition 2, we get 
Definition 3: The relative contribution of the row i to 1δ  (respectively of the 

column j to 1δ ) is 

( ) ( ) ( ) ( )
1 1

1 1

1 1

and .
i j

RC row i RC col jδ δδ δ
= =

a b
 

We have 

( ) ( )
1 1

0 and 0.5.RC row i RC col jδ δ≤ ≤  
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Definition 4: 1) On the first taxicab principlal axis the row i is heavyweight if 
( )

1
0.5RC row iδ = , and the column j is heavyweight if ( )

1
0.5RC col jδ = . 

2) On the first taxicab principlal axis the cell ( ),i j  is heavyweight if and only 
if both row i and column j are heavyweights; and in this case  

( )1
1

0.25ij i j
ij i j

p p p
RC p p pδ δ

∗ ∗
∗ ∗

−
− = = . 

For an application of Definitions 3 and 4 see [6]. 
Using Wedderburn’s rank-1 reduction rule, see [11], we construct the 2nd re-

sidual matrix 
( ) ( )1 1

2
1

ij ij i j
a i b j

x p p p
σ∗ ∗

 
= = − − 
 

P , which is also  

double-centered, and repeat the above procedure. After ( )1k rank= P  itera-
tions, we decompose the correspondence matrix P  into ( 1k + ) bilinear parts 

( ) ( )
1

,
k

ij i j
a i b j

p p p α α

α αδ
∗ ∗

=

= + ∑  

named taxicab singular value decomposition; which can be rewritten, similar to 
data reconstruction formula in correspondence analysis (CA), as 

( ) ( )
1

1 ,
k

ij i j
f i g j

p p p α α

α αδ
∗ ∗

=

 
= + 

 
∑  

where in TCA 

( ) ( ) ( ) ( )and .i jf i a i p g j b j pα α α α∗ ∗= =            (19) 

We note that Equations (5) through (18) are valid for higher residual corres-
pondence matrices αP  for 1, ,kα =  . 

CA and TCA satisfy an important invariance property: columns (or rows) 
with identical profiles (conditional probabilities) receive identical factor scores 

( )g jα  (or ( )f iα ). The factor scores are used in the graphical displays. More-
over, merging of identical profiles does not change the results of the data analy-
sis: This is named the principle of equivalent partitioning by [16]; it includes the 
famous invariance property named principle of distributional equivalence, on 
which [17] developed CA. 

In the next subsections we shall present two data sets, where taxicab corres-
pondence analysis (TCA) is applied. The first data set is a small contingency ta-
ble taken from [18], for which we present the details of the computation of the 
first two principal dimensions; in particular we highlight the balanced 2-blocks 
seriation of the residual data sets αP  for 1,2α =  during the computation of 
each principal dimension. The second data set is a networks affinity matrix from 
[19] who applied CA to visually explore it; on this data set we compare CA and 
TCA maps highlighting the robustness of the TCA map to rare observations on 
the second principal dimension. 

The theory of CA can be found, among others, in [17] [20]-[25]; the recent 
book, authored by [18], presents a panoramic review of CA and related me-
thods.  
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3.1. Selikoff’s Asbestos Data Set 

Table 1, taken from [18], is a contingency table Y of size 5 4×  cross-classifying 
1117 New York workers with occupational exposure to asbestos; the workers are 
classified according to the number of exposure in years (five categories) and the 
asbestos grade diagnosed (four categories). Figure 1 and Figure 2 display the 
maps obtained by CA and TCA: almost no difference between them. Here, we 
present the details of the computation for TCA. Table 2 presents the residual 
correspondence table 1P  with respect to the independence model, where we see 
diagonal 2-blocks seriation of 1P  with: { }row1,row2optS =  is positively asso-
ciated with { }column1optT =  and the cut-norm  

( )1 0.1181 0.0151 0.1332= + =P


; similarly, { }row3,row4,row5optS =  is posi-
tively associated with { }column2,column3,column4optT =  and  

1 0.0087 0.0202 0.1332
opt opt ijj T i S x

∈ ∈
= = + + =∑ ∑P 

 . Note that the elements 
in the positively associated diagonal blocks have in majority positive values; 
while the elements in the negatively associated diagonal blocks have in majority 
negative values. The last three columns and the last three rows of Table 2 display 
principal axes ( 1v  and 1u ), coordinates of the projected points ( 1a  and 1b ) 
and coordinates of TCA factor scores ( 1f  and 1g ). 

Table 3 shows the 2nd residual correspondence matrix 2P , where we note 
that its first column is zero, because by Definition 4a column 1 is heavyweight in 

1P : ( )
1

G0 0.5RCδ = , see [6]. We see that columns (3 and 4) are positively asso-
ciated with rows (1 and 5); similarly column 2 is positively associated with rows 
(2, 3 and 4). It is difficult to interpret the diagonal balanced 2-blocks seriation in 
Table 3; however, the map in Figure 2 is interpretable, it shows a Guttman ef-
fect known as horseshoe or parabola. 
 

 
Figure 1. CA map of asbestos exposure data. 
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Table 1. Selikoff’s Asbestos contingency table of size 5 4× . 

Exposure 
in years 

Asbestos Grade Diagnosed 

None 
(G0) 

Grade 1 
(G1) 

Grade 2 
(G2) 

Grade 3 
(G3) 

Total ip ∗  

0 - 9 310 36 0 0 346 0.3098 

10 - 19 212 158 9 0 379 0.3393 

20 - 29 21 35 17 4 77 0.0689 

30 - 39 25 102 49 18 194 0.1737 

40+ 7 35 51 28 121 0.1083 

Total 575 366 126 50 1117 1 

jp∗  0.5148 0.3277 0.1128 0.0448 1  

 
Table 2. Balanced 2-blocks seriation of ( )1 ij i jp p p∗ ∗= −P  of size 5 4× . 

Exposure 
in years 

Asbestos Grade Diagnosed 

None 
(G0) 

Grade 1 
(G1) 

Grade 2 
(G2) 

Grade 3 
(G3) 

Total 1v  1a  1f  

0 - 9 0.1181 −0.0693 −0.0349 −0.0139 0 −1 −0.2362 −0.7624 

10 - 19 0.0151 0.0303 −0.0302 −0.0152 0 −1 −0.0303 −0.0892 

20 - 29 −0.0167 0.0087 0.0074 0.0005 0 1 0.0334 0.4841 

30 - 39 −0.0670 0.0344 0.0243 0.0083 0 1 0.1340 0.7718 

40+ −0.0495 −0.0042 0.0334 0.0202 0 1 0.0990 0.9138 

Total 0 0 0 0 0  1 4 0.1332δ = ×  

1u  −1 1 1 1   1 0.1332=P


 

1b  −0.2664 0.0780 0.1302 0.0582   0.1332 0.1332−  

1g  −0.5175 0.2380 1.1553 1.2981   0.1332−  0.1332 

 

Table 3. Balanced 2-blocks seriation of 1 1
2

1

i j
ij i j

a b
p p p

δ∗ ∗

 
= − − 
 

P  of size 5 4× . 

Exposure 
in years 

Asbestos Grade Diagnosed 

None 
(G0) 

Grade 1 
(G1) 

Grade 2 
(G2) 

Grade 3 
(G3) 

Total 2v  2a  2f  

0 - 9 0 −0.0347 0.0228 0.0119 0 1 0.0694 0.2241 

40+ 0 −0.0186 0.0092 0.0094 0 1 0.0372 0.3443 

10 - 9 0 0.0347 −0.0228 −0.0119 0 −1 −0.0694 −0.2046 

20 - 29 0 0.0038 −0.0007 −0.0031 0 −1 −0.0076 −0.1121 
30 - 39 0 0.0148 −0.0085 −0.0063 0 −1 −0.0296 −0.1703 

Total 0 0 0 0 0  2 4 0.0533δ = ×  

2u  1±  −1 1 1   2 0.0533=P


 

2b  0 −0.1066 0.0640 0.0426   0.0533−  0.0533 

2g  0 −0.3257 0.5681 0.9521   0.0533 0.0533−  
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Figure 2. TCA map of asbestos exposure data. 

3.2. Western Hemisphere Countries and Their Memberships in  
Trade and Treaty Organizations 

Table 4 presents a two-mode affiliation network matrix ( )ijz=Z  of size 
22 15×  taken from [19]. The 22 rows represent 22 countries and the 15 col-
umns the regional trade and treaty organizations, described in Appendix A. The 
country i is a member of the organization j if 1ijz = ; and 0ijz =  means the 
country i is not a member of the organization j. [19] visualized this data by cor-
respondence analysis, see Figure 3, which is quite cluttered. She interpreted the 
first two principal dimensions by examining the factor scores of the countries 
and summarized the results in 3 points: 

1) The first dimension contrasts South American countries and organizations 
on the one hand, and Central American countries and organizations on the oth-
er hand. 

2) The second dimension clearly distinguishes Canada and the United States 
(both North American countries) along with NAFTA from other countries and 
organizations. In CA, the relative contribution of Canada (resp. US) to the 
second axis is ( ) ( )2 2

2 2
Canada US 0.409RC RC

σ σ
= = , and  

( )2
2

NAFTA 0.821RC
σ

= , where 2
2σ  is the variance, also named inertia, of the 

second principal dimension. 
3) Organizations (SELA, OAS, and IDB) are in the center because they have 

membership profiles that are similar to the marginal profile: almost all countries 
belong to (SELA, OAS, and IDB), see Table 4. 

Figure 4 provides the TCA map, which is much more interpretable than the 
corresponding CA map in Figure 3; where we see that, additionally to the three 
points mentioned by [19], the south american countries are divided into two  
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Figure 3. CA map of Western Hemisphere affinity network. 
 
Table 4. Sociomatrix of American countries and their memberships. 

Countries 
Regional Trade and Treaty Organizations 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Sum 

Argentina 0 1 0 0 0 1 1 0 1 1 0 1 0 0 1 7 

Belize 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 5 

Bolivia 0 1 1 1 0 1 1 0 1 0 0 1 0 0 1 8 

Brazil 0 1 1 0 0 1 1 0 1 1 0 1 0 0 1 8 

Canada 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 3 

Chile 0 1 0 0 0 0 1 0 1 0 0 1 0 0 1 5 

Colombia 1 1 1 1 0 1 1 1 1 0 0 1 0 0 1 10 

CostaRica 1 0 0 0 0 1 0 0 1 0 0 1 0 1 1 6 

Ecuador 0 1 1 1 0 1 1 0 1 0 0 1 0 0 1 8 

ElSalvador 1 0 0 0 0 1 0 0 1 0 0 1 1 1 1 7 

Guatemala 1 0 0 0 0 1 0 0 1 0 0 1 1 1 1 7 

Guyana 1 0 1 0 1 1 0 0 1 0 0 1 0 0 1 7 

Honduras 1 0 0 0 0 1 0 0 1 0 0 1 1 1 1 7 

Mexica 1 1 0 0 0 1 1 1 1 0 1 1 0 0 1 9 

Nicaragua 1 0 0 0 0 1 0 0 1 0 0 1 0 1 1 6 

Panama 1 0 0 0 0 1 0 0 1 0 0 1 0 1 1 6 

Paraguay 0 1 0 0 0 0 1 0 1 1 0 1 0 0 1 6 

Peru 0 1 1 1 0 1 1 0 1 0 0 1 0 0 1 8 

Suriname 1 0 1 0 0 0 0 0 1 0 0 1 0 0 1 5 

United States 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 3 

Uruguay 0 1 0 0 0 1 1 0 1 1 0 1 0 0 1 7 

Venezuela 1 1 1 1 0 1 1 1 1 0 0 1 0 0 1 10 

Sum 12 11 8 5 2 16 11 3 22 5 3 22 3 6 20 149 
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Figure 4. TCA map of Western Hemisphere affinity network. 
 
groups, northern (Venezuela, Bolivia, Peru and Ecuador) and southern countries 
(Brazil, Uruguay, Argentina, Paraguay and Chile). Furthermore, the contribu-
tions of the points Canada, the United States, and NAFTA to the second axis are 
not substantial compared to CA: ( ) ( )

2 2
Canada US 0.088RC RC

δ δ
= = , and  

( )
2

NAFTA 0.10RC
δ

= . This shows the robustness of TCA due to the robustness 
of the δ  statistic following Definition 1. 

It is well known that, CA is very sensitive to some particularities of a data set; 
further, how to identify and handle these is an open unresolved problem. Howev-
er, for contingency tables [12] enumerated three under the umbrella of sparse con-
tingency tables: rare observations, zero-block structure and relatively high-valued 
cells. It is evident that this data set has specially three rare observations (NAFTA, 
CANADA and USA), which determine the 2nd dimension of CA. A row or a 
column category is considered rare, if its marginal probablity is quite small. 

3.3. Maximal Interaction Two-Mode Clustering of Continuous  
Data 

[26] discussed maximum interaction two-mode clustering of continuous data. 
By generalizing their objective function, we want to show that the results of this 
section can be considered a particular robust L1 variant of their approach. Let 

( )ijy=Y  be a 2-way array for ,i I j J∈ ∈ . As usual, we define, for instance, 

1
n ij

j i

y
y

n∗ =
= ∑  and 1 1

m n ij
j i

y
y

mn∗∗ = =
= ∑ ∑ . Let ( )ijx=X  be the additive 

double-centered array, where  
.ij ij i jx y y y y∗ ∗ ∗∗= − − +  
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In the jargon of statistics, the cell ijx  represents the additive 2-way interac-
tion of the cell ( ),i j I J∈ × . The matrix X  is double-centered, and it satisfies 
Equations (6) through (10). Let 1

rI U Sα α==  be an r-partition of I and 

1
cJ U Tβ β==  be a c-partition of J. We consider the following maximization of the 

overall interaction problem for 1p ≥  

( ) ( )
1 1

, : 1, , and 1, , , ,
r c

p pf S T r c S T gα β α β
α β

α β α β
= =

= = = ∑∑   

where Sα  is the cardinality of the set Sα  and 

( ), = .

p

iji S j T
p

x
g

S T
α β

α β

α β ∈ ∈
 
 
 
 

∑ ∑
 

When 2p = , then maximizing ( )2 , : 1, , and 1, ,f S T r cα β α β= =  , 
named maximal overall interaction, is the criterion computed in [26]. When 

1, 2p r c= = = , then maximizing  
( )1 1, : 1,2 and 1,2 4f S Tα β α β

∞→
= = = =X X


 by Lemma 3, which is the cri-

terion computed in TCA. 

4. Triple-Centered Arrays 

To motivate our subject, we start with an example. Let ( )ijky=Y  be a 3-way 

array for ,i I j J∈ ∈  and { }1,2, ,k K t∈ =  . As usual, we define, for instance, 

1
t

ij ijkky y t∗ =
= ∑ , 1 1

t n ijk
j k i

y
y

tn∗ ∗ = =
= ∑ ∑  and 1 1 1

t m n ijk
k j i

y
y

tmn∗∗∗ = = =
= ∑ ∑ ∑ . Let  

( )ijkx=X  be the triple-centered array, where  

.ijk ijk ij i k jk i j kx y y y y y y y y∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗∗∗= − − − + + + −  

In the jargon of statistics, the cell ijkx  represents the additive 3-way interac-
tion of the cell ( ), ,i j k I J K∈ × × . The tensor X  is triple-centered; that is, 

1 1 1
0.

t n m

ijk ijk ijk
k j i

x x x
= = =

= = =∑ ∑ ∑  

A generalization of Lemma 3 is 
Lemma 4: (8-equal parts property) The tensor norm 

( ) { }, 1 max subject to 1, 1

8 8 ,
opt opt opt

m n t
k j i ijk

k K j J i I

ijk ijk
k W j T i S k W j T i S

w v u x

x x

× ×

∞ ∞ →
∈ ∈ ∈

∈ ∈ ∈ ∈ ∈ ∈

= × × ∈ − +

= ≥

∑∑∑

∑ ∑ ∑ ∑∑∑

X u v w
 

where W K⊂ . 
The proof is similar to the proof of Lemma 3. 
Lemma 4 can easily be generalized to higher-way arrays. 

5. Conclusions 

This essay is an attempt to emphasize the following two points. 
First, we showed the optimality and robustness of the mean absolute devia-

tions about the mean, its interpretation, and its generalization to higher-way ar-
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rays. A key notion in describing its robustness is that the relative contribution of 
a point is bounded by 50%. 

Second, within the framework of TCA, we showed that the following three 
identities 1 1 11 4δ

∞→
= =P P


 reveal three different but related aspects of TCA: 

1) 1δ , computed in (17) and (18), by (19) represents the mean absolute devia-
tions about the mean statistic; 2) The taxicab norm 1 1∞→

P , via (15) and (16), 
shows that uniform weights are affected to the columns and the rows; 3) The cut 
norm 14 P


 shows that the computation of each principal dimension of TCA 

corresponds to balanced 2-blocks seriation, with equality of the cut norm in the 
4 associated blocks. 

A list of the principal used variables is provided in Appendix B. 
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Appendix A: List of Western Hemisphere Organizations 

1) Association of Caribbean States (ACS): Trade group sponsored by the Ca-
ribbean Commnnity and Common Market (CARlCOM). 

2) Latin American Integration Association (ALADI): Free trade organization. 
3) Amazon Pact: Promotes development of Amazonian territories. 
4) Andean Pact: Promotes development of members through economic and 

social integration. 
5) Caribbean Commnnity and Common Market (CARICOM): Caribbean 

trade organization; promotes economic development of members. 
6) Group of Latin American and Caribbean Sugar Exporting Countries 

(GEPLACEA): Sugar-producing and exporting countries. 
7) Group of Rio: Organization for joint political action. 
8) Group of Three (G-3): Trade organization. 
9) Inter-American Development Bank (IDB): Promotes development of 

member nations. 
10) South American Common Market (MERCOSUR): Increases economic 

cooperation in the region. 
11) North American Free Trade Agreement (NAFTA): Free trade organiza-

tion. 
12) Organization of American States (OAS): Promotes peace, security, eco-

nomic, and social development in the Western Hemisphere. 
13) Central American Parliament (PARLACÉN): Works for the political inte-

gration of Central America. 
14) San José Group: Promotes regional economic integration. 
15) Latin American Economie System (SELA): Promotes economic and social 

development of member nations. 
Appendix B: A List of principal used variables 

Mean absolute deviations about the mean of a sample 1
n

ii y y
d

n
=

−
= ∑  

Mean absolute deviations of a sample about the median  

1
n

ii y median
LAD

n
=

−
= ∑  

Variance of a sample 
( )2

2 1
n

ii y y
s

n
=

−
= ∑  

Cut norm of a centered sample ( )maxn S ii Sy y y
∈

− = −∑y


1 , where 
{ }1,2, ,S I n⊂ =   

Taxicab operator norm of a double centered matrix  

1
1 max mu

α
α αδ

∞→ ∈
∞

= =
P u

P
u

 

Cut norm of a double centered matrix ( ),max ,S T j T i S P i jα α∈ ∈
= ∑ ∑P

 , 
where { }1,2, ,T J m⊂ =   

αδ  is the dispersion value of αth taxicab principal axis 
( )f iα  is taxicab principal factor score of row i on the αth principal axis and 
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( )1
n

ii p f iα αδ ∗=
= ∑  
( )g jα  is taxicab principal factor score of column j on αth principal axis and 

( )1
m

jj p g jα αδ ∗=
= ∑  
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